
CPU Programmer’s Reference Manual

GFK-2950M

Dec 2024

PACSystems ™ CPU Programmer’s
REFERENCE MANUAL

CPU Programmer’s Reference Manual Contents
GFK-2950M Dec 2024

Contents i

Contents

Section 1 Introduction ..1

1.1 Revisions in this Manual ...2

1.2 PACSystems Programming and Configuration..3

1.3 Migrating Series 90 Applications to PACSystems..3

1.4 VersaMax SafetyNet Safety System ...3

1.5 PACSystems Simulator...3

1.6 PACSystems Documentation ...4

1.6.1 PACSystems Manuals ...4

1.6.2 RSTi-EP Manuals ...4

1.6.3 RX3i Manuals...4

1.6.4 Series 90 Manuals ..5

Section 2 Program Organization ..6

2.1 Structure of a PACSystems Application Program ..6

2.1.1 Blocks ...6

2.1.2 Functions and Function Blocks..7

2.1.3 How Blocks Are Called ..7

2.1.4 Nested Calls ..8

2.1.5 Types of Blocks ..8

2.1.6 Local Data ... 20

2.1.7 Parameter Passing Mechanisms ... 22

2.1.8 Languages... 24

2.2 Controlling Program Execution... 26

2.3 Interrupt-Driven Blocks ... 26

2.3.1 Interrupt Handling ... 27

2.3.2 Timed Interrupts ... 29

2.3.3 I/O Interrupts .. 29

2.3.4 Module Interrupts .. 29

2.3.5 Interrupt Block Scheduling.. 30

2.3.6 PACSystems Simulator Interrupt-Driven Blocks 31

Section 3 Program Data ..32

3.1 Variables .. 33

3.1.1 Mapped Variables ... 33

3.1.2 Symbolic Variables.. 33

3.1.3 I/O Variables .. 35

CPU Programmer’s Reference Manual Contents
GFK-2950M Dec 2024

Contents ii

3.1.4 Arrays ... 37

3.1.5 Variable Indexes and Arrays ... 38

3.2 Reference Memory... 42

3.2.1 Word (Register) References ... 42

3.2.2 Bit (Discrete) References ... 45

3.3 User Reference Size and Default ... 46

3.3.1 %G User References and CPU Memory Locations........................... 46

3.4 Genius Global Data .. 46

3.5 Transitions and Overrides ... 47

3.6 Retentiveness of Logic and Data .. 48

3.7 Data Scope ... 49

3.8 System Status References .. 50

3.8.1 %S References .. 50

3.8.2 %SA, %SB, and %SC References... 52

3.8.3 Fault References .. 54

3.9 How Program Functions Handle Numerical Data 56

3.9.1 Data Types .. 56

3.9.2 Floating Point Numbers ... 57

3.10 User Defined Types (UDTs)... 59

3.10.1Working with UDTs ... 59

3.10.2UDT Properties... 60

3.10.3UDT Limits... 61

3.10.4RUN Mode Store of UDTs .. 61

3.10.5UDT Operational Notes.. 62

3.11 Operands for Instructions .. 63

3.12 Word-for-Word Changes ... 64

3.12.1Exception: Symbolic Variables .. 64

3.13 PACSystems Simulator Program Data .. 64

3.13.1Variables ... 65

3.13.2Reference Memory.. 65

3.13.3System Status References ... 65

Section 4 Ladder Diagram (LD) Programming67

4.1 Advanced Math Functions ... 68

4.1.1 Exponential/Logarithmic Functions .. 69

4.1.2 Square Root... 70

4.1.3 Trig Functions .. 72

4.1.4 Inverse Trig – ASIN, ACOS, and ATAN .. 72

4.2 Bit Operation Functions .. 74

CPU Programmer’s Reference Manual Contents
GFK-2950M Dec 2024

Contents iii

4.2.1 Data Lengths for the Bit Operation Functions 75

4.2.2 Bit Position .. 76

4.2.3 Bit Sequencer .. 78

4.2.4 Bit Set, Bit Clear ... 81

4.2.5 Bit Test.. 82

4.2.6 Logical AND, Logical OR, and Logical XOR 84

4.2.7 Logical NOT ... 87

4.2.8 Masked Compare ... 88

4.2.9 Rotate Bits ... 93

4.2.10Shift Bits .. 94

4.3 Coils .. 97

4.3.1 Coil Checking ... 97

4.3.2 Graphical Representation of Coils ... 97

4.3.3 Set Coil, Reset Coil ... 99

4.3.4 Transition Coils... 100

4.4 Contacts ... 104

4.4.1 Continuation Contact ... 105

4.4.2 Fault Contact.. 106

4.4.3 High and Low Alarm Contacts ... 107

4.4.4 No Fault Contact... 108

4.4.5 Normally Closed and Normally Open Contacts 109

4.4.6 Transition Contacts ... 110

4.5 Control Functions... 116

4.5.1 Do I/O ... 117

4.5.2 Edge Detectors... 121

4.5.3 Drum .. 124

4.5.4 For Loop.. 129

4.5.5 Mask I/O Interrupt ... 132

4.5.6 Read Switch Position... 133

4.5.7 Scan Set IO ... 134

4.5.8 Suspend I/O ... 135

4.5.9 Suspend or Resume I/O Interrupt .. 137

4.6 Conversion Functions ... 138

4.6.1 Convert Angles ... 140

4.6.2 Convert UINT or INT to BCD4 ... 140

4.6.3 Convert DINT to BCD8 .. 142

4.6.4 Convert BCD4, UINT, DINT, or REAL to INT 143

CPU Programmer’s Reference Manual Contents
GFK-2950M Dec 2024

Contents iv

4.6.5 Convert BCD4, INT, DINT, or REAL to UINT 145

4.6.6 Convert BCD8, UINT, INT, REAL or LREAL to DINT 147

4.6.7 Convert BCD4, BCD8, UINT, INT, DINT, and LREAL to REAL 149

4.6.8 Convert REAL to LREAL .. 152

4.6.9 Convert DINT to LREAL ... 153

4.6.10Truncate .. 153

4.7 Counters .. 154

4.7.1 Data Required for Counter Function Blocks................................... 154

4.7.2 Down Counter .. 156

4.7.3 Up Counter .. 157

4.8 Data Move Functions.. 159

4.8.1 Array Size.. 160

4.8.2 Array Size Dimension Function Blocks ... 162

4.8.3 Block Clear .. 165

4.8.4 Block Move .. 167

4.8.5 BUS_ Functions.. 168

4.8.6 Communication Request (COMMREQ) .. 175

4.8.7 Data Initialization .. 180

4.8.8 Data Initialize ASCII .. 182

4.8.9 Data Initialize Communications Request....................................... 182

4.8.10Data Initialize DLAN .. 183

4.8.11Move .. 184

4.8.12Move Data ... 186

4.8.13Move Data Explicit .. 187

4.8.14Move From Flat .. 188

4.8.15Move to Flat ... 189

4.8.16Shift Register ... 192

4.8.17Size Of .. 194

4.8.18Swap .. 195

4.9 Data Table Functions ... 197

4.9.1 Array Move .. 199

4.9.2 Array Range... 202

4.9.3 FIFO Read... 204

4.9.4 FIFO Write ... 206

4.9.5 LIFO Read ... 207

4.9.6 LIFO Write ... 208

4.9.7 Search .. 209

CPU Programmer’s Reference Manual Contents
GFK-2950M Dec 2024

Contents v

4.9.8 Sort .. 212

4.9.9 Table Read .. 213

4.9.10Table Write .. 214

4.10 Math Functions .. 216

4.10.1Overflow .. 217

4.10.2Absolute Value ... 217

4.10.3Add... 218

4.10.4Divide ... 220

4.10.5Modulus .. 222

4.10.6Multiply.. 222

4.10.7Scale .. 225

4.10.8Subtract .. 226

4.11 Program Flow Functions ... 227

4.11.1Argument Present ... 227

4.11.2Call... 230

4.11.3Comment... 234

4.11.4JumpN .. 234

4.11.5Master Control Relay/End Master Control Relay 235

4.11.6Wires .. 237

4.12 Relational Functions ... 237

4.12.1Compare ... 238

4.12.2Equal, Not Equal, Greater or Equal, Greater Than, Less or Equal, Less Than240

4.12.3EQ_DATA.. 242

4.12.4Range ... 243

4.13 Timers.. 244

4.13.1Timed Contacts .. 244

4.13.2Timer Function Blocks ... 245

4.14 PACSystems Simulator Ladder Diagram (LD) Program............................ 265

4.14.1Math Functions ... 266

4.14.2Contacts .. 266

4.14.3Control Functions.. 266

4.14.4Data Move Functions... 266

4.14.5Timers... 267

4.14.6Motion Function Blocks .. 267

4.14.7Communication Blocks .. 267

Section 5 Function Block Diagram (FBD).............................268

5.1 Note on Reentrancy ... 269

CPU Programmer’s Reference Manual Contents
GFK-2950M Dec 2024

Contents vi

5.2 Advanced Math Functions ... 269

5.2.1 EXPT Function ... 271

5.3 Bit Operation Functions .. 271

5.3.1 Logical AND, Logical OR, and Logical XOR 273

5.3.2 Logical NOT ... 275

5.4 Comments .. 276

5.4.1 Text Block.. 276

5.5 Comparison Functions .. 277

5.5.1 Equal, Not Equal, Greater or Equal, Greater Than, Less or Equal, Less Than278

5.6 Control Functions... 279

5.7 Counters .. 280

5.8 Data Move Functions.. 282

5.8.1 Fan Out ... 285

5.8.2 Move Data ... 286

5.9 Math Functions .. 290

5.9.1 Overflow .. 291

5.9.2 Add... 292

5.9.3 Divide ... 293

5.9.4 Modulus .. 294

5.9.5 Multiply.. 295

5.9.6 Negate .. 296

5.9.7 Subtract .. 297

5.10 Program Flow Functions ... 299

5.11 Timers.. 300

5.11.1Built-in Timer Function Blocks ... 300

5.11.2Standard Timer Function Blocks.. 301

5.12 Type Conversion Functions ... 302

5.12.1Convert WORD to INT ... 304

5.12.2Convert WORD to UINT ... 304

5.12.3Convert DWORD to DINT... 305

5.12.4Convert INT or UINT to WORD ... 306

5.12.5Convert DINT to DWORD... 306

5.13 PACSystems Simulator Function Block Diagram (FBD) 307

5.13.1Math Functions ... 307

5.13.2Control Functions.. 307

5.13.3Data Move Functions... 307

5.13.4Timers... 307

 Refer to Section 4.14.5 Timers. ... 307

CPU Programmer’s Reference Manual Contents
GFK-2950M Dec 2024

Contents vii

5.13.5Communication Blocks .. 307

Section 6 Service Request Function308

6.1 Operation of SVC_REQ Function ... 309

6.1.1 Ladder Diagram.. 309

6.1.2 Function Block Diagram ... 311

6.2 SVC_REQ 1: Change/Read Constant Sweep Timer 311

6.2.1 To disable Constant Sweep mode: .. 312

6.2.2 To enable Constant Sweep mode and use the old timer value: 312

6.2.3 To enable Constant Sweep mode and use a new timer value:.......... 313

6.2.4 To change the timer value without changing the selection for sweep mode state:

 313

6.2.5 To read the current timer state and value without changing either: 313

6.3 SVC_REQ 2: Read Window Modes and Time Values 314

6.4 SVC_REQ 3: Change Controller Communications Window Mode.............. 316

6.4.1 To disable the controller communications window: 316

6.4.2 To re-enable or change the controller communications window mode:316

6.5 SVC_REQ 4: Change Backplane Communications Window Mode and Timer Value316

6.5.1 To disable the Backplane Communications window:....................... 317

6.5.2 To enable the Backplane Communications window mode:............... 317

6.6 SVC_REQ 5: Change Background Task Window Mode and Timer Value ... 318

6.6.1 To disable the Background Task window: 318

6.6.2 To enable the Background Task window mode: 318

6.7 SVC_REQ 6: Change/Read Number of Words to Checksum 320

6.7.1 To read the word count: ... 320

6.7.2 To set a new word count: ... 320

6.8 SVC_REQ 7: Read or Change the Time-of-Day Clock 322

6.8.1 Parameter Block Formats... 322

6.9 SVC_REQ 8: Reset Watchdog Timer .. 330

6.10 SVC_REQ 9: Read Sweep Time f rom Beginning of Sweep 330

6.11 SVC_REQ 10: Read Target Name.. 332

6.12 SVC_REQ 11: Read Controller ID .. 333

6.13 SVC_REQ 12: Read Controller Run State ... 334

6.14 SVC_REQ 13: Shut Down (STOP) CPU .. 335

6.15 SVC_REQ 14: Clear Controller or I/O Fault Table 335

6.16 SVC_REQ 15: Read Last-Logged Fault Table Entry................................ 337

6.17 SVC_REQ 16: Read Elapsed Time Clock .. 340

6.18 SVC_REQ 17: Mask/Unmask I/O Interrupt ... 343

6.18.1Masking/Unmasking Module Interrupts ... 343

6.19 SVC_REQ 18: Read I/O Forced Status ... 345

CPU Programmer’s Reference Manual Contents
GFK-2950M Dec 2024

Contents viii

6.20 SVC_REQ 19: Set Run Enable/Disable ... 345

6.21 SVC_REQ 20: Read Fault Tables... 347

6.21.1Non-Extended Formats .. 347

6.21.2Extended Formats... 351

6.22 SVC_REQ 21: User-Defined Fault Logging .. 356

6.23 SVC_REQ 22: Mask/Unmask Timed Interrupts....................................... 357

6.24 SVC_REQ 23: Read Master Checksum... 359

6.25 SVC_REQ 24: Reset Module ... 361

6.26 SVC_REQ 25: Disable/Enable EXE Block and Standalone C Program Checksums363

6.27 SVC_REQ 29: Read Elapsed Power Down Time 364

6.28 SVC_REQ 32: Suspend/Resume I/O Interrupt.. 365

6.29 SVC_REQ 45: Skip Next I/O Scan.. 367

6.30 SVC_REQ 50: Read Elapsed Time Clock .. 368

6.31 SVC_REQ 51: Read Sweep Time f rom Beginning of Sweep..................... 370

6.32 SVC_REQ 56: Logic Driven Read of Nonvolatile Storage 371

6.32.1Discrete Memory... 371

6.32.2Restoring data values on CPE200 Series 371

6.32.3Storage Disabled Conditions... 372

6.32.4Maximum of One Active Instruction.. 372

6.32.5ENO and Power Flow To The Right ... 372

6.32.6Parameter Block ... 372

6.33 SVC_REQ 57: Logic Driven Write to Nonvolatile Storage 376

6.33.1Length of Data Written ... 377

6.33.2Write Frequency ... 377

6.33.3Nonvolatile Storage Life Span ... 378

6.33.4Discrete Memory... 379

6.33.5Creating a Removable Nonvolatile Storage Backup........................ 379

6.33.6Retentiveness .. 380

6.33.7Maximum of One Active Instruction.. 380

6.33.8Storage Disabled Conditions... 380

6.33.9Error Checking ... 380

6.33.10 Fragmentation... 380

6.33.11 When nonvolatile storage is full.. 381

6.33.12 Equality .. 382

6.33.13 Redundancy ... 382

6.33.14 ENO and Power Flow to the Right .. 382

6.33.15 Parameter Block for SVC_REQ 57 ... 383

6.34 SVC_REQ 63: Logic Driven Write of Reference Memory.......................... 385

6.34.1Write Frequency ... 386

CPU Programmer’s Reference Manual Contents
GFK-2950M Dec 2024

Contents ix

6.34.2Data Deletion ... 386

6.34.3Equality ... 387

6.34.4Function Block Operation ... 387

6.34.5Status Word ... 388

6.34.6SVC_REQ 63 Example .. 388

6.35 PACSystems Simulator Service Request Functions 389

Section 7 PID Built-In Function Block391

7.1 Operands of the PID Function .. 392

7.1.1 Operands for LD Version of PID Function Block............................. 392

7.1.2 Operands for FBD Version of PID Function Block 393

7.2 Reference Array for the PID Function.. 393

7.2.1 Scaling Input and Outputs .. 394

7.2.2 Reference Array Parameters .. 395

7.3 Operation of the PID Function .. 400

7.3.1 Automatic Operation.. 400

7.3.2 Manual Operation ... 400

7.3.3 Time Interval for the PID Function ... 400

7.4 PID Algorithm Selection (PIDISA or PIDIND) and Gain Calculations 401

7.4.1 Derivative Term .. 403

7.4.2 Error Term Mode .. 403

7.4.3 Derivative Action on PV Bit ... 403

7.4.4 Combined Operation of Error Term and Derivative Action Modes 404

7.4.5 CV Bias Term... 404

7.4.6 CV Amplitude and Rate Limits .. 404

7.4.7 Sample Period and PID Function Block Scheduling 405

7.5 Determining the Process Characteristics ... 406

7.6 Setting Tuning Loop Gains .. 408

7.6.1 Basic Iterative Tuning Approach .. 408

7.6.2 Setting Loop Gains Using the Ziegler and Nichols Tuning Approach . 409

7.6.3 Ideal Tuning Method.. 409

7.7 PID Example ... 410

7.7.1 Reference Array Initialization using %M00006 410

Section 8 Structured Text (ST) Programming412

8.1 Language Overview ... 412

8.1.1 Statements .. 412

8.1.2 Expressions ... 412

CPU Programmer’s Reference Manual Contents
GFK-2950M Dec 2024

Contents x

8.1.3 Operators .. 412

8.1.4 Structured Text Syntax .. 413

8.2 Statement Types.. 415

8.2.1 Assignment Statement... 415

8.2.2 Function Call .. 417

8.2.3 RETURN Statement .. 421

8.2.4 IF Statement .. 421

8.2.5 CASE Statement... 423

8.2.6 FOR … DO Statements ... 425

8.2.7 WHILE Statement ... 427

8.2.8 REPEAT Statement... 428

8.2.9 ARG_PRES Statement .. 429

8.2.10Exit Statement .. 430

8.2.11Data_Qual Function Blocks for Structured Text.............................. 431

8.3 PACSystems Simulator Structured Text (ST) Programming 431

8.3.1 Math Functions ... 431

8.3.2 Control Functions.. 431

8.3.3 Data Move Functions... 431

8.3.4 Timers... 432

8.3.5 Communication Blocks .. 432

Section 9 Diagnostics ..433

9.1 Fault Handling Overview ... 434

9.1.1 System Response to Faults .. 434

9.1.2 Fault Tables ... 434

9.1.3 Fault Actions and Fault Action Conf iguration 435

9.2 Using the Fault Tables .. 436

9.2.1 Controller Fault Table .. 436

9.2.2 I/O Fault Table ... 438

9.3 System Handling of Faults... 441

9.3.1 System Fault References ... 441

9.3.2 Using Fault Contacts ... 444

9.3.3 Using Point Faults ... 446

9.3.4 Using Alarm Contacts .. 446

9.4 Controller Fault Descriptions and Corrective Actions 447

9.4.1 Controller Fault Groups.. 447

9.4.2 Loss of or Missing Rack (Group 1)... 447

9.4.3 Loss of Option Module (Group 4)... 448

CPU Programmer’s Reference Manual Contents
GFK-2950M Dec 2024

Contents xi

9.4.4 Addition of, or Extra Rack (Group 5) .. 450

9.4.5 Reset of, Addition of, or Extra Option Module (Group 8) 450

9.4.6 System Configuration Mismatch (Group 11) 451

9.4.7 System Bus Error (Group 12).. 458

9.4.8 CPU Hardware Failure (Group 13)... 459

9.4.9 Module Hardware Failure (Group 14) ... 460

9.4.10Option Module Software Failure (Group 16) 461

9.4.11Program or Block Checksum Failure (Group 17) 462

9.4.12Battery Status (Group 18)... 463

9.4.13Constant Sweep Time Exceeded (Group 19)................................. 464

9.4.14System Fault Table Full (Group 20) ... 464

9.4.15I/O Fault Table Full (Group 21).. 465

9.4.16User Application Fault (Group 22).. 465

9.4.17CPU Over-Temperature (Group 24) ... 467

9.4.18Power Supply Fault (Group 25) ... 468

9.4.19No User Program on Power-Up (Group 129) 468

9.4.20Corrupted User Program on Power-Up (Group 130) 469

9.4.21Window Completion Failure (Group 131) 469

9.4.22Password Access Failure (Group 132) ... 470

9.4.23Null System Configuration for RUN Mode (Group 134) 470

9.4.24CPU System Software Failure (Group 135) 471

9.4.25Communications Failure During Store (Group 137) 472

9.4.26Non-Critical CPU Software Event (Group 140)............................... 474

9.5 I/O Fault Descriptions and Corrective Actions ... 476

9.5.1 Fault Extra Data.. 476

9.5.2 I/O Fault Groups ... 476

9.5.3 I/O Fault Categories .. 476

9.5.4 Circuit Faults (Category 1).. 480

9.5.5 Loss of Block (Category 2) ... 485

9.5.6 Addition of Block (Category 3)... 486

9.5.7 I/O Bus Fault (Category 6).. 486

9.5.8 Module Fault (Category 8) .. 487

9.5.9 Addition of IOC (Category 9)... 489

9.5.10Loss of or Missing IO Controller (Category 10) 490

9.5.11IOC (I/O Controller) Software Fault (Category 11) 491

9.5.12Forced and Unforced Circuit (Categories 12 and 13) 491

9.5.13Loss of or Missing I/O Module (Category 14) 492

CPU Programmer’s Reference Manual Contents
GFK-2950M Dec 2024

Contents xii

9.5.14Addition of I/O Module (Category 15) ... 492

9.5.15Extra I/O Module (Category 16)... 493

9.5.16Extra Block (Category 17) .. 493

9.5.17IOC Hardware Failure (Category 18) .. 493

9.5.18GBC Stopped Reporting Faults (Category 19) 493

9.5.19GBC Software Exception (Category 21).. 494

9.5.20Block Switch (Category 22) .. 494

9.5.21Reset of IOC (Category 27) .. 495

9.6 Diagnostic Logic Blocks (DLBs).. 496

9.6.1 DLB Operation ... 497

9.6.2 Executing DLBs .. 500

9.6.3 Diagnostic Logic Block (DLB) Example... 503

9.6.4 PACSystems Simulator Diagnostic Logic Blocks (DLBs) 507

CPU Programmer’s Reference Manual Warnings and Cautions
GFK-2950MM Dec 20244

xiii

Warnings and Caution Notes as Used in this Publication

 WARNING

Warning notices are used in this publication to emphasize that hazardous voltages, currents, temperatures,

or other conditions that could cause personal injury exist in this equipment or may be associated with its use.

In situations where inattention could cause either personal injury or damage to equipment, a Warning notice

is used.

 CAUTION

Caution notices are used where equipment might be damaged if care is not taken.

Note: Notes merely call attention to information that is especially significant to understanding and

operating the equipment.

These instructions do not purport to cover all details or variations in equipment, nor to provide for
every possible contingency to be met during installation, operation, and maintenance. The information
is supplied for informational purposes only, and Emerson makes no warranty as to the accuracy of
the information included herein. Changes, modif ications, and/or improvements to equipment and
specifications are made periodically and these changes may or may not be ref lected herein. It is
understood that Emerson may make changes, modif ications, or improvements to the equipment
referenced herein or to the document itself at any time. This document is intended for trained
personnel familiar with the Emerson products referenced herein.

Emerson may have patents or pending patent applications covering subject matter in this document.
The furnishing of this document does not provide any license whatsoever to any of these patents.

Emerson provides the following document and the information included therein as -is and without
warranty of any kind, expressed or implied, including but not limited to any implied statutory warranty
of merchantability or f itness for particular purpose.

CPU Programmer’s Reference Manual Section 1
GFK-2950M Dec 2024

Introduction 1

Section 1 Introduction
This manual contains general information about programming a PACSystems CPU. It

also provides detailed descriptions of specif ic programming requirements.

For a general introduction to the PACSystems family of products, including new features,

product overviews, and specifications, see PACSystems RX3i and RSTi-EP CPU

Reference Manual, GFK-2222.

Programming Features

• Program Organization

• Program Data

• Ladder Diagram (LD) Programming

• Function Block Diagram (FBD)

• Service Request Function

• PID Built-In Function Block

• Structured Text (ST) Programming

Diagnostics

• Diagnostics

CPU Programmer’s Reference Manual Section 1
GFK-2950M Dec 2024

Introduction 2

1.1 Revisions in this Manual
Rev Date Description

M Nov 2024 Added PACSystems Simulator

L May 2023 Added CPE400/CPL410 to Section 6.34 covering SVC_REQ 63.

K Feb 2023

Updates to Section 6.33.3 to resolve issue with outdated data and recommended

SVC_REQ 57 usage.

Updates to Section 4.1.3 to fix the exponent values associated with the Trig

functions input value ranges.

Added Section 6.34.

Updates to Section 3.8.1 to add new %S References.

J Nov 2022

Updates to support the release of RSTi-EP Backplane Controllers (CPE200 Series)

Updated fault entries for Section 9.5.3, I/O Fault Categories.

Updates to %S0002 definition to provide clarity on when #LST_SCN transitions from

one to zero.

G
June

2020

Updates to Section 4.2.3 Bit Sequencer

Updates to Section 6.9, SVC_REQ 8: Reset Watchdog Timer

Updates to Section 6.33.2, Write Frequency

Secure Remote STOP-Halt Restart Mechanism.

F Feb 2020 Updates to the %S reference table, Section 3.8.1.

E Nov 2019

Following Emerson’s acquisition of this product, changes have been made to apply

appropriate branding and registration of the product with required certification

agencies. No changes to material, process, form, fit or functionality.

D Nov 2018 CPE330/CPE400/CPL410 increased block count from 512 to 768 including _Main

C Feb 2018

• Updated for CPE302 throughout.

• Updated SVC_REQ 20 for newly implemented feature that makes it possible to

uniquely identify remote PROFINET IO faults recorded in the IO Fault Table by

Remote Rack, Remote Slot, Remote Sub-Slot, and Device ID. Requires RX3i

firmware version 9.40 or later.

B Oct-2017 Added Redundancy and FA_OK System Bits (%S) Section 3.8.1.

A May-2017
Changed the document Title and the contact information.

Updated the Titles of the GFK’s wherever applicable.

- May-2015

PACSystems RX7i and RX3i CPU Reference Manual GFK-2222U Chapters 5-11 &

Chapter 14 form the content of this new manual, the PACSystems RX7i and RX3i

CPU Programmer’s Reference Manual, GFK-2950.

GFK-2222V and later versions defer to GFK-2950 for CPU programming content.

CPU Programmer’s Reference Manual Section 1
GFK-2950M Dec 2024

Introduction 3

1.2 PACSystems Programming and

Configuration
PACTM Machine Edition programming software provides a universal engineering

development environment for all programming, configuration and diagnostics of

PACSystems. A PACSystems CPU is programmed and configured using the

programming sof tware to perform process and discrete automation for various

applications. The supported programming languages are documented in this manual.

1.3 Migrating Series 90 Applications to

PACSystems
The PACSystems control system provides cost-effective expansion of existing systems.

Support for existing Series 90 modules, expansion racks and remote racks protects your

hardware investment. You can upgrade on your timetable without disturbing panel wiring.

• The RX3i supports most Series 90-30 modules, expansion racks, and remote racks.

For a list of supported I/O, Communications, Motion, and Intelligent modules, see the

PACSystems RX3i System Manual, GFK-2314.

• The RX7i supports most existing Series 90-70 modules, expansion racks and Genius

networks. For a list of supported I/O, Communications, and Intelligent modules, see

the PACSystems RX7i Installation Manual, GFK-2223.

• Conversion of Series 90-70 and Series 90-30 programs preserves existing

development ef fort.

• Conversion of VersaPro and Logicmaster applications to Machine Edition allows

smooth transition to PACSystems.

1.4 VersaMax SafetyNet Safety System
The VersaMax SafetyNet Safety system programming follows the general program

organization and structured as described here, but has a reduced set of logic functions

and restrictions, please refer to the following documentation when programming

IC695CPS400:

• GFK-3277 VersaMax SafetyNet Safety Manual

• GFK-3279 VersaMax SafetyNet Safety Function Blocks

1.5 PACSystems Simulator
The PACSystems Simulator provides end users with the ability to modify, validate, and
test logic for a PACSystems CPU without requiring controller hardware. The
PACSystems Simulator supports the following models:

• RX3i IC695CPE302/305/310/330

• RX3i Rackless IC695CPE400/CPL410

• RSTi-EP EPXCPE205/210/215/220/240

The PACSystems Simulator is a feature included with PAC Machine Edition 10.6 or later.

CPU Programmer’s Reference Manual Section 1
GFK-2950M Dec 2024

Introduction 4

For a list of supported and unsupported features on the PACSystems Simulator, refer to

GFK-2222 PACSystems CPU Reference Manual, Section 2.1.12 PACSystems Simulator

Features.

1.6 PACSystems Documentation

1.6.1 PACSystems Manuals
PACSystems RX3i and RSTi-EP CPU Reference Manual GFK-2222

PACSystems RX3i and RSTi-EP CPU Programmer’s

Reference Manual GFK-2950

PACSystems RX3i and RSTi-EP TCP/IP Ethernet Communications

User Manual GFK-2224

PACSystems TCP/IP Ethernet Communications Station Manager User

Manual GFK-2225

C Programmer’s Toolkit for PACSystems GFK-2259

PACSystems Memory Xchange Modules User’s Manual GFK-2300

PACSystems Hot Standby CPU Redundancy User Manual GFK-2308

PACSystems Battery and Energy Pack Manual GFK-2741

PAC Machine Edition Logic Developer Getting Started GFK-1918

Proficy Process Systems Getting Started Guide GFK-2487

PACSystems RXi, RX3i, RX7i and RSTi-EP Controller Secure

Deployment Guide GFK-2830

PACSystems RX3i & RSTi-EP PROFINET I/O Controller Manual GFK-2571

PACSystems VersaMax SafetyNet Safety Manual GFK-3277

PACSystems VersaMax SafetyNet Safety Function Blocks GFK-3279
1.6.2 RSTi-EP Manuals

PACSystems RX3i & RSTi-EP PROFINET I/O Controller Manual GFK-2571

PACSystems™ RSTi-EP EPSCPE100 Standalone CPU Quick Start Guide GFK-3012

PACSystems™ RSTi-EP EPSCPE115 Standalone CPU Quick Start Guide GFK-3039

PACSystems™ RSTi-EP Controllers Performance Evaluation Manual GFK-3086

1.6.3 RX3i Manuals
PACSystems RX3i System Manual GFK-2314

DSM324i Motion Controller for PACSystems RX3i and Series 90-30

User’s Manual GFK-2347

PACSystems RX3i PROFIBUS Modules User’s Manual GFK-2301

PACSystems RX3i Max-On Hot Standby Redundancy User’s Manual GFK-2409

PACSystems RX3i Ethernet Network Interface Unit User’s Manual GFK-2439

PACMotion Multi-Axis Motion Controller User’s Manual GFK 2448

PACSystems RX3i PROFINET Scanner Manual GFK-2737

PACSystems RX3i CEP PROFINET Scanner User Manual GFK-2883

PACSystems RX3i Serial Communications Modules User’s Manual GFK-2460

CPU Programmer’s Reference Manual Section 1
GFK-2950M Dec 2024

Introduction 5

PACSystems RX3i Genius Communications Gateway User Manual GFK-2892

PACSystems RX3i DNP3 Outstation Module IC695EDS001 User’s

Manual GFK-2911

PACSystems RX3i IEC 104 Server Module IC695EIS001User’s Manual GFK-2949

1.6.4 Series 90 Manuals
Series 90-30 Genius Bus Controller User’s Manual GFK-1034

In addition to these manuals, datasheets and product update documents describe

individual modules and product revisions. The most recent PACSystems

documentation is available on the Emerson support website

https://www.emerson.com/Industrial-Automation-Controls/support.

https://www.emerson.com/Industrial-Automation-Controls/support

CPU Programmer’s Reference Manual Section 2
GFK-2950M Dec 2024

Program Organization 6

Section 2 Program Organization
This chapter provides information about the operation of application programs in a

PACSystems CPU.

• Structure of a PACSystems Application Program

• Controlling Program Execution

• Interrupt-Driven Blocks

2.1 Structure of a PACSystems Application

Program
A PACSystems application consists of one block-structured application program. The

application program contains all the logic needed to control the operations of the CPU

and the modules in the system. Application programs are created using the programming

sof tware and transferred to the CPU. Programs are stored in the CPU’s non-volatile

memory.

During the CPU Sweep, the CPU reads input data from the modules in the system and

stores the data in its conf igured input memory locations. The CPU then executes the

entire application program once, using this f resh input data. Executing the application

program creates new output data that is placed in the configured output memory

locations.

Af ter the application program completes its execution, the CPU writes the output data to

modules in the system. This completes the CPU Sweep.

A block-structured program always includes a _MAIN block. Program execution begins

with the _MAIN block. Counting the _MAIN block, the CPE330, CPE400, CPL410, and

CPS400 support up to 768 blocks with f irmware release 9.70 or later. All other CPU

models support up to 512 blocks. Note that PAC Machine Edition 9.50 SIM 13 or later

is also required for supporting a block count of up to 768.

2.1.1 Blocks
A block is a named section of executable logic that can be downloaded to and run on the

target controller. The logic in a block can include functions, function blocks and calls to

other blocks.

CPU Programmer’s Reference Manual Section 2
GFK-2950M Dec 2024

Program Organization 7

2.1.2 Functions and Function Blocks
A function is a type of instruction that has no internal storage (instance data). Therefore,

it produces the same result for the same set of input values every time it executes.

A function block defines data as a set of inputs and output parameters that can be used

as sof tware connections to other blocks and internal variables. It has an algorithm that

runs every time the function block is executed. Because a function block has instance

data, that is it can store values, it has a def ined state.

The following table describes the types of instructions that make up the PACSystems

instruction set.

Instruction Type Instance Data Examples

Functions None BIT_SEQ, ADD, RANGE

Built-in function blocks WORD array. TMR, PID_IND, PID_ISA

Standard function blocks Structure variable. Refer to Instance Data

Structures

TP, TOF, TON

Note: A user def ined function block (UDFB) is a block of logic that can be called in your

program logic to create multiple instances of the block, allowing you to create a block of

logic once and reuse it as if it was a standard function block instruction. For additional

information, refer to .
Types of Blocks and User-Defined Function Blocks (UDFBs)

2.1.3 How Blocks Are Called
A block executes when called f rom the program logic in the _MAIN block or another

block. In this example, LD_BLK1 is always called. Conditional logic can be used to

control calling a block. For LD_BLK2 to be called, input %I00500 and output %Q00100

must be ON. For details on using the Call function, refer to Section 4 (LD programming),

Section 5 (FBD programming) or Section 8 (ST programming).

Figure 1

CPU Programmer’s Reference Manual Section 2
GFK-2950M Dec 2024

Program Organization 8

2.1.4 Nested Calls
The CPU allows nested block calls as long as there is enough execution stack space to

support the call. If there is not enough stack space to support a given block call, an

Application Stack Overflow fault is logged. In these circumstances, the CPU cannot

execute the block. Instead, it sets all of the block’s Boolean outputs to FALSE and

resumes execution at the point af ter the block call instruction.

Note: To halt the CPU when there is not enough stack space to execute a block, there are two

choices. The best method is to add logic to detect the occurrence of any User Application

Fault by testing the diagnostic bit %SA38, and then call SVC_REQ 13 to halt the CPU.

An alternative method is to add logic that tests for a negative OK value coming out of the

block and then call SVC_REQ 13 to halt the CPU.

A call depth of eight levels or more can be expected, except in rare cases where several

of the called blocks have very large numbers of parameters. The actual call depth

achieved depends on several factors, including the amount of data (non-Boolean) flow

used in the blocks, the functions called by the blocks, and the number and types of

parameters defined for the blocks. If blocks use less than the maximum amount of stack

resources, more than eight nested calls may be possible. The call level nesting counts

the _MAIN block as level°1.

2.1.5 Types of Blocks
PACSystems supports four types of blocks.

Block Type Local Data
Programming

Languages
Size Limit Parameters

Block Has its own local data

LD

FBD

ST

128 KB
0 inputs

1 output

Parameterized

Block

Inherits local data from

caller

LD

FBD

ST

128 KB
63 inputs

64 outputs

User Defined

Function Block

(UDFB)

Has its own local data

LD

FBD

ST

128 KB

63 inputs

64 outputs

Unlimited internal

member variables

External Block
Inherits local data from

caller
C

user memory size

limit (10 MB)

63 inputs

64 outputs

All PACSystems block types automatically provide an OK output parameter. The name

used to reference the OK parameter within a block is Y0. Logic within the block can read

and write the Y0 parameter. When a block is called, its Y0 parameter is automatically

initialized to TRUE. This will result in a positive power f low out of the block call instruction

when the block completes execution, unless Y0 is set to FALSE within the logic of the

block.

For all block types, the maximum number of input parameters is one less than the

maximum number of output parameters. This is because the EN input to the block call is

not considered to be an input parameter to the block. It is used in LD language to

determine whether or not to call the block but is not passed into the block if the block is

called.

Program Blocks

CPU Programmer’s Reference Manual Section 2
GFK-2950M Dec 2024

Program Organization 9

Any block can be a program block. The _MAIN block is automatically declared when you

create a block-structured program. When you declare any other block, you must assign

it a unique block name. A block is automatically configured with no input parameters and

one output parameter (OK).

When a block-structured program is executed, the _MAIN block is automatically

executed. Other blocks execute when called from the program logic in the _MAIN block,

another block, or itself. In the following example, if %M00001 is ON, the block named

ProcessEGD will be executed:

Figure 2 Conditional Block Call

Program Blocks and Local Data

Program blocks support the use of %P global data. In addition, each block, except

_MAIN, has its own %L local data. Blocks do not inherit %L local data from their callers.

Using Parameters with a Program Block

Every block is automatically defined to have one formal ‘power f low’ (or OK) output

parameter, named Y0. Y0 is a BOOL parameter of LENGTH 1, passed by initial-value

result. It indicates successful execution of the block. It can be read and written to by the

logic within the block.

CPU Programmer’s Reference Manual Section 2
GFK-2950M Dec 2024

Program Organization 10

Parameterized Blocks

Any block except _MAIN can be a parameterized block. When you declare a

parameterized block, you must assign it a unique block name. A parameterized block

can be conf igured with up to 63 input and 64 output parameters.

A parameterized block executes when called from the program logic in the _MAIN block,

another block, or itself. In the following example, if %I00001 is set, the parameterized

block named LOAD_41 will be executed.

Figure 3 Block Call with Parameters

Parameterized Blocks and Local Data

Parameterized blocks support the use of %P global data. Parameterized blocks do not

have their own %L data, but instead inherit the %L data of their calling blocks.

Parameterized blocks also inherit the FST_EXE system reference and time-stamp data

that is used to update timer functions from their calling blocks. If %L references are used

within a parameterized block and the block is called by _MAIN, %L references will be

inherited f rom the %P references wherever encountered in the parameterized block (for

example, %L0005 = %P0005).

Note: It is possible, by using Online Editing in the programming software to cause a

parameterized block to use %L higher than allowed because of the way it inherits data.

Using a word-for-word change to restore this reference to a valid address does not correct

the block because the variable still exists in the variable list. Deleting the variable from the

variable list does not cause an update to the CPU, so the parameterized block still sees

the reference out of range fault. To correct this condition, you must remove the unused

variables from the variable list after deleting them from the logic.

Using Parameters with a Parameterized Block

A parameterized block may be def ined to have between 0 and 63 formal input

parameters, and between 1 and 64 formal output parameters. A ‘power-flow out’ (or OK)

parameter, named Y0, is automatically defined for every parameterized block. It is a

BOOL parameter of LENGTH 1 and indicates the successful execution of the

parameterized block. It can be read and written to by the parameterized block’s logic.

CPU Programmer’s Reference Manual Section 2
GFK-2950M Dec 2024

Program Organization 11

The following table lists the TYPEs, LENGTHs, and parameter-passing mechanisms

allowed for parameterized block parameters. For def initions of the parameter passing

types, refer to Section 2.1.7, Parameter Passing Mechanisms.

Type Length Default Parameter Passing Mechanism

BOOL 1 to 256
INPUTS: by reference

OUTPUTS: by value result; except Y0, which is by initial-value result

BYTE 1 to 1024
INPUTS: by reference

OUTPUTS: by reference

INT, UINT, and

WORD
1 to 512

INPUTS: by reference

OUTPUTS: by reference

DINT, REAL, and

DWORD
1 to 256

INPUTS: by reference

OUTPUTS: by reference

LREAL 1 to 128
INPUTS: by reference

OUTPUTS: by reference

function block
1
 1

INPUTS: by reference

OUTPUTS: not allowed

UDFB
1
 1

INPUTS: by reference

OUTPUTS: not allowed

User Defined Type

(UDT)
1 to 1024

INPUTS: by reference

OUTPUTS: not allowed

The PACSystems default parameter passing mechanisms correspond to the way that

parameterized subroutine block (PSB) parameters are passed on 90-70 controllers. The

parameter passing mechanisms of formal parameters cannot be changed f rom their

default values.

Arguments, or actual parameters, are passed into a parameterized block whenever a

parameterized block call is executed. In general, arguments to formal parameters may

come from any memory type, may be data flow, and may be constants (when the formal

parameter’s LENGTH is 1). The following list contains the restrictions on arguments

relative to this general rule:

• %S memory addresses cannot be used as arguments to any output parameter. This

is because user logic is not allowed to write to %S memory.

• Indirect references used as arguments are resolved immediately before the

parameterized block is called, and the corresponding direct reference is passed into

the block. For example, where %R1 contains the value 10 and @R1 is used as an

argument to a call, immediately before calling the block, @R1 is resolved to be %R10,

and %R10 is passed in as the argument to the block. During execution of the block,

the argument remains as %R10, regardless of whether the value in %R1 changes.

In general, formal parameters within a parameterized block may be used with any

instruction or with any block call, if their TYPE and LENGTH are compatible with what

the instruction, function, or block call requires. The following list contains the restrictions

on formal parameters relative to this general rule:

1
 A maximum of 16 input parameters can be of type function block or UDFB.

CPU Programmer’s Reference Manual Section 2
GFK-2950M Dec 2024

Program Organization 12

• Formal parameters cannot be used on legacy transitional contacts or coils, or on

FAULT, NOFLT, HIALM, or LOALM contacts. However, formal parameters can be

used on IEC transitional contacts and coils.

• Formal BOOL input parameters cannot be used on coils or as output arguments to a

function or to a block call.

• Formal parameters cannot be used with the DO I/O function.

• Formal parameters cannot be used with indirect referencing.

User-Defined Function Blocks (UDFBs)

Users can define their own blocks, which have parameters and instance data, instead of

being limited to the standard and built-in function blocks provided in the PACSystems

instruction set. In many cases, the use of this feature results in a reduction in t otal

program size.

Once def ined, multiple instances of a UDFB can be created by calling it within the

program logic. Each instance has its own unique copy of the function block’s instance

data, which consists of the function block’s internal member variables and all of its input

and output parameters except those that are passed by reference. When a UDFB is

called on a given instance, the UDFB’s logic operates on that instance’s copy of the

instance data. The values of the instance data persist from one execution of the UDFB

to the next.

Note: A member variable is not passed into or out of a UDFB as a parameter. A member

variable is used only within the logic of that function block.

A UDFB cannot be triggered by an interrupt.

UDFB logic is created using FBD, LD or ST. UDFB logic can make calls to all the other

types of PACSystems blocks (blocks, parameterized blocks, external blocks and other

UDFBs). Blocks, parameterized blocks, and other UDFBs can make calls to UDFBs.

Unless otherwise stated, the PACSystems implementation of UDFBs meets the IEC

61131-3 requirements for user def ined function blocks.

CPU Programmer’s Reference Manual Section 2
GFK-2950M Dec 2024

Program Organization 13

Defining a UDFB

To create a UDFB in the programming software, create an LD, FBD or ST block in the

Program Blocks folder. In the Properties for the block, select Function Block.

To def ine instance data for a UDFB, select Parameters in the block’s properties. Input

and output parameters are defined in the same way as for parameterized blocks. In the

following example, three internal member variables are def ined: temp, speed, and

modelno.

Figure 4 Defining Member Variables for a User-Defined Function Block

Creating UDFB Instances

You create an instance of a UDFB by calling it in your logic and assigning an instance

name in the function properties.

Figure 5 Creating a User-Defined Function Block

In the following LD example, the f irst rung creates two instances of the UDFB, Motors.

The instance variables associated with the Motors instances are motor1 and motor2. The

second rung uses the two instances of the internal variable temp in logic.

CPU Programmer’s Reference Manual Section 2
GFK-2950M Dec 2024

Program Organization 14

Figure 6 Use of User-Defined Function Block in Ladder Logic

Instance Data Structures

A variable with the format function_block_name.instance_name is automatically

created for each instance of a UDFB. The instance data makes up a single composite

variable that is of a structure type. The example to the right shows the variable structures

associated with two instances of the UDFB named Motors. Each instance variable has

elements corresponding to parameters In1, Out1, and Y0, and internal variables model

no, speed, and temp.

Instances are created as symbolic variables, never as mapped variables. This ensures

that instance data is only referenced by the instance name and not by a memory address,

which means that no aliases can be created for the UDFB data elements. The indirect

reference operator cannot be used on an instance variable because indirect references

are not permitted on symbolic variables.

Figure 7: Display of Instance Data Structures

CPU Programmer’s Reference Manual Section 2
GFK-2950M Dec 2024

Program Organization 15

UDFBs and Scope

Unlike a parameterized subroutine, a UDFB has its own %L memory.

By default, internal variables of a UDFB have local scope, making them visible only to

the logic inside the UDFB. They cannot be read or written by any external logic or by the

hardware conf iguration. An internal variable can be made visible outside the UDFB by

changing its scope to global. Logic outside the UDFB can read but cannot write to internal

variables whose scope is global.

Note: If you give internal variables global scope, your application will not conform to IEC

requirements.

Using Parameters with UDFBs

UDFBs support up to 63 inputs and up to 64 outputs.

Each UDFB has a predefined Boolean output parameter, Y0, which the CPU sets to true

upon each invocation of the block. Y0 can be controlled by logic within the block and

provides the output status of the block.

The following table lists the TYPEs, LENGTHs, and parameter-passing mechanisms

allowed for UDFB parameters. For definitions of the parameter passing types, refer to

Section 2.1.7, Parameter Passing Mechanisms..

Type Length Parameter Passing

Mechanism

Retentiveness of

Instance Data for

Parameters

BOOL 1 to 256 INPUTS: by reference, constant

reference, value, or value result.

(Default: value)

Not Applicable if passed by

reference, since not stored in

instance data.

Can be retentive (default) or non-

retentive for value or value result.

OUTPUTS: by result; except Y0,

which is by initial-value result

Retentive (default) or

Non-retentive

BYTE 1 to 1024 INPUTS: by reference, constant

reference, value, or value result.

(Default: value)

Retentive for value or value result.

Not applicable for reference

OUTPUTS: by result

INT, UINT, and

WORD

1 to 512 INPUTS: by reference, constant

reference, value, or value result.

(Default: value)

Retentive for value or value result.

Not applicable for reference

OUTPUTS: by result

DINT, REAL, and

DWORD

1 to 256 INPUTS: by reference, constant

reference, value, or value result.

(Default: value)

Retentive for value or value result.

Not applicable for reference

OUTPUTS: by result

LREAL 1 to 128 INPUTS: by reference, constant

reference, value, or value result.

(Default: value)

Retentive for value or value result.

Not applicable for reference

OUTPUTS: by result

1 INPUTS: by reference, constant

reference, (Default: reference)

Not applicable since passed by

reference

CPU Programmer’s Reference Manual Section 2
GFK-2950M Dec 2024

Program Organization 16

Type Length Parameter Passing

Mechanism

Retentiveness of

Instance Data for

Parameters

Function block

(standard or

PACMotion)

OUTPUTS: by result

UDFB
2
 1 INPUTS: by reference, constant

reference, friend

Not applicable since passed by

reference

OUTPUTS: not allowed

UDT 1 to 1024 INPUTS: by reference, constant

reference

Not applicable since passed by

reference

OUTPUTS: not allowed

If an input parameter is passed by reference or by value result, it requires an argument.

All other parameters of a UDFB are optional. That is, they do not have to be given

arguments on each instance of the UDFB. If no argument is given for an optional

parameter, the variable element associated with the parameter retains the value it

previously had.

UDFB outputs cannot be passed as arguments to input parameters that are passed by

reference or passed by value result. This restriction prevents modification of a UDFB

output.

Using Internal Member Variables with UDFBs

A UDFB can have any number of internal member variables. The values of internal

variables are not passed via the input and output parameters. An internal variable cannot

have the same name as a parameter of the UDFB it is def ined in.

An internal variable can be:

• Any basic type supported by PACSystems (BOOL, INT, UINT, DINT, REAL, LREAL,

BYTE, WORD, and DWORD).

• A UDFB type. Such member variables are known as nested instances. For example,

the function block Motor can have an internal variable of type Valve, where Valve is

a UDFB type. Note that defining a member variable as a UDFB type does not create

an instance.

A nested instance cannot be of the same type as the UDFB being defined because

this would set up an inf initely recursive definition. Nor can any level of a nested

instance be of the same type as the parent UDFB being defined. For example, the

UDFB Motor cannot have an internal variable of type Valve, if the Valve UDFB

contains an internal variable of type Motor.

• A UDT: a structured, user-defined data type consisting of elements of other selected

data types.

• A one-dimensional array.

Internal variables of TYPE BOOL can be retentive (default) or non-retentive. All other

TYPEs must be retentive.

2
A maximum of 16 input parameters can be of type UDFB.

CPU Programmer’s Reference Manual Section 2
GFK-2950M Dec 2024

Program Organization 17

Member variables corresponding to a UDFB’s input parameters cannot be read or written

outside of the UDFB (This is more restrictive than the IEC 61131-3 requirements for user

def ined function blocks.). Member variables corresponding to the UDFB’s output

parameters can be read but not written outside the UDFB.

Internal member variables that have basic types may be given initial values. The same

initial values apply to all instances of a UDFB. If an initial value isn’t given, the internal

member variable is set to zero when the application transitions to RUN mode for the first

time.

An internal member variable that is a nested instance has initial values as specified by

its UDFB type def inition.

Initial values are not stored during a RUN mode store. They will not take ef fect until a

STOP Mode Store is performed.

UDFB Logic

An instance of a BOOL parameter or internal variable can be forced ON or OFF, or used

with transition-detecting instructions. The exception to this is that BOOL input parameters

passed by reference cannot be forced or used with the Series 90-70 legacy transition-

detecting instructions (POSCOIL, NEGCOIL, POSCON and NEGCON) because their

values are not stored in instance data.

All input parameters to a UDFB, and their corresponding instance data elements, can be

read by the logic of that particular UDFB.

Input parameters that are passed by reference or passed by value result to a UDFB can

be written to by their UDFB’s logic. Input parameters passed by value cannot be written

to by their UDFB logic. Note that the restriction on writing to input parameters passed by

value does not apply to other types of blocks.

All UDFB output parameters can be both read and written to by their logic.

UDFB Operation with Other Blocks

A UDFB instance that is of global scope can be invoked by another UDFB’s logic or any

other block’s logic.

A UDFB instance that is passed (by reference) as an argument to a UDFB can be invoked

by the UDFB’s logic.

A UDFB instance that is passed (by reference) as an argument to a parameterized block

can be invoked by the parameterized block’s logic.

The output parameters, and their corresponding instance data elements, of a UDFB

instance that is passed as an argument can be read but not modified by the receiving

block’s logic. The input parameters of a UDFB instance that is passed as an argument

cannot be read or modified by the receiving block’s logic. The internal variables of a

UDFB instance that are passed as arguments cannot be modified by the receiving block’s

logic. They can be read if their scope is global, but not if their scope is local.

External Blocks

CPU Programmer’s Reference Manual Section 2
GFK-2950M Dec 2024

Program Organization 18

External blocks are developed using external development tools as well as the C

Programmer’s Toolkit for PACSystems. Refer to the C Programmer’s Toolkit for

PACSystems, GFK-2259 for detailed information regarding external blocks.

Any block except _MAIN can be an external block. When you declare an external block,

you must assign it a unique block name. It can be configured with up to 63 input

parameters and 64 output parameters.

An external block executes when called f rom the program logic in the _MAIN block or

f rom the logic in another block, parameterized block, or UDFB. External blocks

themselves cannot call any other block. In the following example, if %I00001 is set, the

external block named EXT_11 is executed.

CPU Programmer’s Reference Manual Section 2
GFK-2950M Dec 2024

Program Organization 19

Figure 8: Calling an External Block in Ladder Logic

Note: Unlike other block types, external blocks cannot call other blocks.

External Blocks and Local Data
External blocks support the use of %P global data. External blocks do not have their own

%L data, but instead inherit the %L data of their calling blocks. They also inherit the

FST_EXE system reference and the time-stamp data that is used to update timer function

blocks f rom their calling blocks. If %L references are used within an external block and

the block is called by _MAIN, %L references will be inherited f rom the %P references

wherever encountered in the external block (for example, %L0005 = %P0005).

Initialization of C Variables

When an external block is stored to the CPU, a copy of the initial values for its global and

static variables is saved. However, if static variables are declared without an initial value,

the initial value is undefined and must be initialized by the C application (Refer to Global

Variable Initialization and Static Variable in the C Programmer’s Toolkit for PACSystems,

GFK-2259). The saved initial values are used to re-initialize the block’s global and static

variables whenever the CPU transitions f rom STOP Mode to RUN Mode.

Using Parameters with an External Block

An external block may be defined to have between zero and 63 formal input parameters

and between one and 64 formal output parameters. A ‘power-flow out’ (or OK) parameter,

named Y0, is automatically defined for every external block. Y0 is a BOOL parameter of

LENGTH 1 and indicates the successful execution of the block. It can be read and written

to by the external block’s logic.

The following table gives the TYPEs, LENGTHs, and parameter-passing mechanisms

allowed for external block parameters.

CPU Programmer’s Reference Manual Section 2
GFK-2950M Dec 2024

Program Organization 20

Type Length Default Parameter Passing Mechanism

BOOL 1 to 256 INPUTS: by reference

OUTPUTS: by reference; except Y0, which is by initial-value result

BYTE 1 to 1024 INPUTS: by reference

OUTPUTS: by reference

INT, UINT, and

WORD

1 to 512 INPUTS: by reference

OUTPUTS: by reference

DINT, REAL, and

DWORD

1 to 256 INPUTS: by reference

OUTPUTS: by reference

LREAL 1 to 128 INPUTS: by reference

OUTPUTS: by reference

UDT
3
 1 to 128 INPUTS: by reference

OUTPUTS: not allowed

The PACSystems default parameter passing mechanisms correspond to the way that

external block parameters are passed on 90-70 controllers. The parameter passing

mechanisms of formal parameters cannot be changed f rom their default values.

You must def ine a name for each formal input and output parameter.

Arguments, or actual parameters, are passed into an external block whenever an

external block call is executed.

Arguments may be any valid reference address including an indirect reference, may be

f low, or may be a constant if the corresponding parameter’s LENGTH is 1.

2.1.6 Local Data
Each block or UDFB in a block-structured program has an associated local data block.

_MAIN’s data block memory is referenced by %P; all other data block memories are

referenced by %L.

The size of the data block is dependent on the highest reference in its block for %L and

in all blocks for %P.

3
 To use a UDT, you must include the UDT definition as a C structure in the external block. For details, refer to Using a UDT a s a C

block input parameter data type in the online help.

CPU Programmer’s Reference Manual Section 2
GFK-2950M Dec 2024

Program Organization 21

Figure 9: Relationship of %L & %P to Program Blocks

All blocks within the program can use data associated with the _MAIN block (%P). Blocks

and UDFBs can use their own %L data as well as the %P data that is available to all

blocks. The _MAIN block cannot use %L.

External blocks and parameterized blocks can use the Local Data (%L) of their calling

block as well as the %P data of the _MAIN block. If a parameterized block or external

block is called by MAIN, all %L references in the parameterized block or external block

will be references to corresponding %P references (for example, %L0005 = %P0005). In

addition to inheriting the Local Data of their calling blocks, parameterized blocks and

external blocks inherit the FST_EXE status of their calling blocks.

Figure 10: Local Data (%L) Usage by Program Blocks

CPU Programmer’s Reference Manual Section 2
GFK-2950M Dec 2024

Program Organization 22

2.1.7 Parameter Passing Mechanisms
All blocks (except _MAIN) have at least one parameter and thus are af fected by

parameter passing mechanisms. A parameter passing mechanism describes the way

that data is passed f rom an argument in a calling block to a parameter in the called block,

and f rom the parameter in the called block back to the argument in the calling block.

PACSystems supports the following parameter-passing mechanisms: pass by reference,

pass by constant reference, pass by value, pass by value result, pass by result and pass

by initial-value result. An additional type, pass by friend, is available when the input Data

Type is a UDFB. A parameter is defined by its TYPE, LENGTH, and parameter passing

mechanism.

• When a parameter is passed by reference, the address of its argument is passed

into the function block instance or parameterized block. All logic within the called

block that reads or writes to the parameter directly reads or writes to the actual

argument.

• When a parameter is passed by constant reference, the CPU passes a reference

address pointer, symbolic variable pointer, or I/O variable pointer into the function

block instance or parameterized block. The instance or block can only read the

reference address or variable.

• When a parameter is passed by friend (UDFB inputs only), the CPU passes a UDFB

instance variable pointer into the function block instance or parameterized block. The

instance or block can write to any output or member, whether public or private, of the

UDFB instance variable passed as a f riend.

Tip

In the logic of a UDFB, when you want to pass the UDFB as a friend, assign the pseudo -variable

#This to the input that expects an instance variable of that UDFB type. In the following example,

the In2 input of the LDPSB parameterized block expects a UDFB instance variable friend of the

ABC data type. Inside the logic of ABC, assign #This to In2 in the call to LDPSB.

CPU Programmer’s Reference Manual Section 2
GFK-2950M Dec 2024

Program Organization 23

Figure 11: Parameter Passing Example

• When a parameter is passed by value (UDFB inputs only), the value of its argument

is copied into a local stack memory associated with the called block. All logic within

the called block that reads or writes to the parameter is reading or writing to this stack

memory. Thus, no changes are ever made to the actual argument.

• When a parameter is passed by value result (UDFB inputs only), the value of its

argument is copied into a local stack memory associated with the called block, and

the address of its argument is saved. All logic within the called block that reads or

writes to the parameter is reading or writing to this stack memory. When the called

block completes its execution, the value in the stack memory is copied back to the

actual argument’s address. Thus, no changes are made to the actual argument while

the called block is executing, but when it completes execution, the actual argument

is updated.

CPU Programmer’s Reference Manual Section 2
GFK-2950M Dec 2024

Program Organization 24

2.1.8 Languages

Ladder Diagram (LD)

Logic written in Ladder Diagram language consists of a sequence of rungs that execute

f rom top to bottom. The logic execution is thought of as power flow, which proceeds down

along the left rail of the ladder, and f rom lef t to right along each rung in sequence.

Figure 12: Explanation of Ladder Diagram Rung

The f low of logical power through each rung is controlled by a set of simple program

instructions that work like mechanical relays and output coils. Whether or not a relay

passes logical power flow along the rung depends on the content of a memory location

with which the relay has been associated in the program. For instance, a relay might

pass positive power f low if its associated memory location contains the value 1. The

same relay passes negative power flow if the memory location contains the value 0.

Usually an instruction that receives negative power f low does not execute and

propagates the negative power f low on to the next instruction in the rung. However, some

instructions such as timers and counters execute even when they receive negative power

f low and may even pass positive power flow out. Once a rung completes execution, with

either positive or negative power f low, power f lows down along the lef t rail to the next

rung.

Within a rung, there are many complex functions that are part of the standard function

library and can be used for operations like moving data stored in memory, performing

math operations, and controlling communications between the CPU and other devices

in the system. Some program functions, such as the Jump function and Master Control

Relay, can be used to control the execution of the program itself. Together, this large

group of Ladder Diagram instructions and standard library functions makes up the

instruction set of the CPU.

CPU Programmer’s Reference Manual Section 2
GFK-2950M Dec 2024

Program Organization 25

Function Block Diagram

Function Block Diagram (FBD) is an IEC 61131-3 graphical programming language that

represents the behavior of functions, function blocks and programs as a set of

interconnected graphical blocks.

FBD depicts a system in terms of the flow of signals between processing elements, in a

manner very similar to signal flows depicted in electronic circuit diagrams. Instructions

are shown with inputs entering f rom the lef t and outputs exiting on the right. A function

block type name is always shown within the element and the name of the function block

instance is shown above the element.

Figure 13: Illustration of Function Block Diagram

The order of execution of instructions in an FBD is determined by the following:

a. The display position of the instruction in the FBD editor

b. Whether the inputs to the FBD instruction are resolved.

To determine the order of execution of FBD instructions in the FBD editor, the FBD

compiler performs the following steps:

1. The FBD compiler scans the instructions in the FBD editor, beginning from lef t

to right, and top to bottom. When an instruction is encountered, the compiler

attempts to resolve the instruction, that is, the inputs are known. If the inputs

are known, the instruction is solved, and scanning continues for the next

instruction.

2. If the current instruction cannot be resolved, that is, the inputs are not known,

then the compiler scans for the previous instruction, using the wire connecting

the output of the previous instruction to the input of the current instruction.

3. If the previous instruction can be resolved, the compiler calculates the output.

The output of the previous instruction then becomes the input to the current

instruction, the current instruction is resolved, and scanning continues for the

next instruction.

4. If the previous instruction cannot be resolved, that is, the inputs are not known,

then step 2 is repeated until an instruction is encountered, which can be

resolved.

CPU Programmer’s Reference Manual Section 2
GFK-2950M Dec 2024

Program Organization 26

Structured Text

The Structured Text (ST) programming language is an IEC 1131-3 textual programming

language. A structured text program consists of a series of statements, which are

constructed from expressions and language keywords. A statement directs the PLC to

perform a specified action. Statements provide variable assignments, conditional

evaluations, iteration, and the ability to call other blocks. For details on ST statements,

parameters, keywords, and operators supported by PACSystems, refer to Structured

Text (ST) Programming in Section 8.

Blocks, parameterized blocks, and UDFBs can be programmed in ST. The _MAIN

program block can also be programmed in ST.

A block programmed in ST can call blocks, parameterized blocks, and UDFBs.

2.2 Controlling Program Execution
There are many ways in which program execution can be controlled to meet the system’s

timing requirements. The PACSystems CPU instruction set contains several powerful

control functions that can be included in an application program to limit or change the

way the CPU executes the program and scans I/O. For details on using these functions,

refer to Section 4.

The following is a partial list of the commonly used methods:

• The Jump (JUMPN) function can be used to cause program execution to move either

forward or backward in the logic. When a JUMPN function is active, the coils in the

part of the program that is skipped are left in their previous states (not executed with

negative power f low, as they are with a Master Control Relay). Jumps cannot span

blocks.

• The nested Master Control Relay (MCRN) function can be used to execute a portion

of the program logic with negative power flow. Logic is executed in a forward direction

and coils in that part of the program are executed with negative power f low. Master

Control Relay functions can be nested to 255 levels deep.

• The Suspend I/O function can be used to stop both the input scan and output scan

for one sweep. I/O can be updated, as necessary, during the logic execution using

DO I/O instructions.

• The Service Request function can be used to suspend or change the time allotted to

the window portions of the sweep.

• Program logic can be structured so that blocks are called f requently, depending on

their importance and on timing constraints. The CALL function can be used to cause

program execution to go to a specific block. Conditional logic placed before the Call

function controls the circumstances under which the CPU executes the block logic.

Af ter the block execution is finished, program execution resumes at the point in the

logic directly af ter the CALL instruction.

2.3 Interrupt-Driven Blocks
Three types of interrupts can be used to start a block’s execution:

CPU Programmer’s Reference Manual Section 2
GFK-2950M Dec 2024

Program Organization 27

• Timed Interrupts are generated by the CPU based on a user-specified time interval

with an initial delay (if specified) applied on STOP Mode to RUN Mode transition of

the CPU.

• I/O Interrupts are generated by I/O modules to indicate discrete input state changes

(rising/falling edge), analog range limits (low/high alarms), and high-speed signal

counting events.

• Module Interrupts are generated by VME modules. A single interrupt is supported per

module.

CAUTION

Interrupt-driven block execution can interrupt the execution of non -interrupt-driven logic.

Unexpected results may occur if the interrupting logic and interrupted logic access the same data.

If necessary, Service Request #17 or Service Request #32 can be used to temporarily mask I/O

and Timed Interrupt-driven logic from executing when shared data is being accessed.

2.3.1 Interrupt Handling
An I/O, Module, or Timed interrupt can be associated with any block except _MAIN, as

long as the block has no parameters other than an OK output. After an interrupt has been

associated with a block, that block executes each time the interrupt SVC occurs. A given

block can have multiple timed, I/O, and module interrupt triggers associated with it. It is

executed each time any one of its associated interrupts triggers. For details on how

interrupt blocks are prioritized, refer to

CPU Programmer’s Reference Manual Section 2
GFK-2950M Dec 2024

Program Organization 28

Interrupt Block Scheduling.

If a parameterized block or external block is triggered by an interrupt, it inherits %P data

as its %L local data. For example, a %L00005 reference in the parameterized block or C

block actually references %P00005. Interrupt blocks (C, LD, FDB or ST) inherit FST_EXE

f rom the _MAIN block.

Note: Timer function blocks do not accumulate time if used in a block that is executed as a

result of an interrupt.

Blocks that are triggered by interrupts can make calls to other blocks. The application

stack used during interrupt-driven execution is dif ferent f rom the stack used during

normal block-structured program execution. In particular, the nested call limit is different

f rom the limit described for calls f rom the _MAIN block. If a call results in insufficient stack

space to complete the call, the CPU logs an Application Stack Overf low fault.

Note: We strongly recommend that interrupt-driven blocks not be called from the _MAIN block

or other non-interrupt driven blocks because the interrupt and non-interrupt driven blocks

could be reading and writing the same global memories at indeterminate times relative

to each other. In the following example (Figure 14) INT1, INT2, BLOCK5, and PB1

should not be called from _MAIN, BLOCK2, BLOCK3, or BLOCK4.

Figure 14: Conflict Avoidance when using Interrupt-Driven Blocks

CPU Programmer’s Reference Manual Section 2
GFK-2950M Dec 2024

Program Organization 29

2.3.2 Timed Interrupts
A block can be configured to execute on a specified time interval with an initial delay (if

specif ied) applied on a STOP Mode to RUN Mode transition of the CPU.

To conf igure a timed interrupt block, specify the following parameters in the scheduling

properties for the block:

Time Base The smallest unit of time that you can specify for Interval and Delay. The time base can be 1.0

second, 0.10 second, or 0.01 second, or 0.001 second.

Interval Specifies how frequently the block executes in multiples of the time base.

Delay (Optional) Specifies an additional delay for the first execution of the block in multiples of the

time base.

The f irst execution of a Timed Interrupt block will occur at

((delay * time base) + (interval * time base)) af ter the CPU is placed in RUN Mode.

2.3.3 I/O Interrupts
A block can be triggered by an interrupt input f rom certain hardware modules. For

example, on the 32-Circuit 24 Vdc Input Module (IC697MDL650), the f irst input can be

conf igured to generate an interrupt on either the rising or falling edge of the input signal.

If the interrupt is enabled in the module configuration, that input can serve as a trigger to

cause the execution of a block.

To conf igure an I/O interrupt, specify a trigger in the scheduling properties for the block.

The trigger must be a global variable in %I, %AI or %AQ memory, or an I/O variable (An

I/O variable is a form of symbolic variable that is mapped to a module I/O p oint in

hardware conf iguration.).

PACSystems modules that can trigger user interrupt logic always send the interrupt to

the CPU when conf igured to do so. If the CPU is in STOP mode when it receives the

interrupt, it does not run the user interrupt block. The CPU does not run the user interrupt

block when it transitions f rom STOP Mode to RUN Mode.

2.3.4 Module Interrupts
A block can be triggered by an interrupt from a module that supports I/O interrupts if the

Interrupt parameter is enabled in the module’s hardware conf iguration.

To conf igure a module interrupt, specify the module by rack/slot/interrupt ID as the

Trigger in the scheduling properties for the block.

CPU Programmer’s Reference Manual Section 2
GFK-2950M Dec 2024

Program Organization 30

2.3.5 Interrupt Block Scheduling
You can select one of two types of interrupt block scheduling at the target level:

• Normal block scheduling allows you to associate a maximum of 64 I/O and Module

Interrupts and 16 Timed Interrupts. With normal block scheduling, all interrupt-

triggered blocks have equal priority. This is the default scheduling mode.

• Preemptive block scheduling allows you to associate a maximum of 32 interrupt

triggers. With preemptive block scheduling, each trigger can be assigned a relative

priority.

Normal Block Scheduling

Interrupt-driven logic has the highest priority of any user logic in the system. The

execution of a block triggered f rom an interrupt preempts the execution of the normal

CPU sweep activities. Execution of the normal CPU sweep activities is resumed af ter the

interrupt-driven block execution completes.

If the CPU receives one or more interrupts while executing an interrupt block, it places

the incoming interrupts into the queue while it f inishes executing the current interrupt

block. Timed interrupt driven blocks are queued ahead of I/O or Module driven blocks.

I/O or Module interrupt driven blocks are queued in the order in which the interrupts are

received. If an interrupt driven block is already in the queue, additional interrupts that

occur for this block are ignored.

Preemptive Block Scheduling

Preemptive scheduling allows you to assign a priority to each interrupt trigger. The

priority values range from 1 to 16, with 1 being the highest. A single block can have

multiple interrupts with dif ferent priorities or the same priorities.

An incoming interrupt is handled according to its priority compared to that of the currently

executing block as follows:

• If an incoming interrupt has a higher priority than the interrupt associated with the

block that is currently executing, the currently executing block is stopped and put in

the interrupt queue. The block associated with the incoming interrupt begins

executing.

• If an incoming interrupt has the same priority as the interrupt trigger associated with

the block that is currently executing, that block continues to execute, and the incoming

interrupt is placed in the queue.

• If an incoming interrupt has a lower priority than the interrupt associated with the block
that is currently executing, the incoming interrupt is placed in the queue.

When the CPU completes the execution of an interrupt block, the block associated with

the interrupt trigger that has the highest priority in the queue begins execution — or

resumes execution if the block's execution was preempted by another interrupt block and

was placed in the queue.

If multiple blocks in the queue have the same interrupt priority, their execution order is

not deterministic.

CPU Programmer’s Reference Manual Section 2
GFK-2950M Dec 2024

Program Organization 31

Note: Certain functions, such as DOIO, BUS_RD, BUS_WRT, COMMREQ, SCAN_SET_IO,

and some SVC_REQs may cause a block to yield to another queued block that has the

same priority.

2.3.6 PACSystems Simulator Interrupt-Driven Blocks
The PACSystems Simulator does not support I/O Interrupts or Module Interrupts at this

time. Timed Interrupts are not fully qualified on the PACSystems Simulator, but they can

still be triggered in logic. However, the timing of Timed Interrupts run on a PACSystems

Simulator may dif fer f rom a PACSystems CPU.

CPU Programmer’s Reference Manual Section 3
GFK-2950M Dec 2024

Program Data 32

Section 3 Program Data
This chapter describes the types of data that can be used in an application program and

explains how that data is stored in the PACSystems CPU’s memory.

• Variables

• Reference Memory

• User Reference Size and Default

• Genius Global Data

• Transitions and Overrides

• Retentiveness of Logic and Data

• Data Scope

• System Status References

• How Program Functions Handle Numerical Data

• User Def ined Types (UDTs)

• Operands for Instructions

• Word-for-Word Changes

CPU Programmer’s Reference Manual Section 3
GFK-2950M Dec 2024

Program Data 33

3.1 Variables
A variable is a named storage space for data values. It represents a memory location in

the target PACSystems CPU.

A variable can be mapped to a reference address (for example, %R00001). If you do not

map a variable to a specific reference address, it is considered a symbolic variable. The

programming software handles the mapping for symbolic variables in a special portion

of PACSystems user space memory.

The kinds of values a variable can store depend on its data type. For example, variables

with a UINT data type store unsigned whole numbers with no fractional part. Data types

are described in Section 3.9, How Program Functions Handle Numerical Data.

In the programming software, all variables in a project are displayed in the Variables tab

of the Navigator. You create, edit, and delete variables in the Variables tab. Some

variables are also created automatically by certain components (such as TIMER

variables when you add a Timer instruction to ladder logic). The data type and other

properties of a variable, such as reference address are conf igured in the Inspector.

For more information about system variables, which are created when you create a target

in the programming sof tware, refer to Section 3.8, System Status References.

3.1.1 Mapped Variables
Mapped (manually located) variables are assigned a specific reference address. For

details on the types of Reference Memory and their uses, refer to Reference Memory.

3.1.2 Symbolic Variables
Symbolic variables are variables for which you do not specify a reference address

(similar to a variable in a typical high-level language). Except as noted in this section,

you can use these in the same ways that you use mapped variables.

In the programming software, a symbolic variable is displayed with a blank address. You

can change a mapped variable to a symbolic variable by removing the reference address

f rom the variable’s properties. Similarly, you can change a symbolic variable into a

mapped variable by specifying a reference address for the variable in its properties.

The memory required to support symbolic variables counts against user space. The

amount of space reserved for these variables is configured on the Memory tab in the

CPU hardware conf iguration.

Restrictions on the Use of Symbolic Variables

• Symbolic variables cannot be used with indirect references (for example, @Name).

For a full description, refer to Indirect References.

• Only global scope Symbolic variables can be used in EGD pages.

• A variable must be globally scoped and published (internal or external) to be used in

a C block.

• Symbolic variables cannot be used in the COMMREQ status word.

• Use of symbolic variables is not supported on web pages.

• Symbolic Boolean variables are not allowed on non-BOOL parameters.

CPU Programmer’s Reference Manual Section 3
GFK-2950M Dec 2024

Program Data 34

• Symbolic non-discrete variables cannot be used on Series 90-70 style Transition

contacts and coils (Symbolic discrete variables are supported.).

• Overrides and Forces cannot be used on symbolic non-discrete variables (Symbolic

discrete variables are supported.).

• Arrays of the following data types are not supported:

— Arrays of user def ined function block (UDFB) instance variables.

— Arrays of PAC Motion function block instance variables.

— Arrays of TON, TOF, or TP instance variables.

— Arrays of reference ID variables (RIVs) that contain one or more linked RIV

elements.

Note: An RIV array is supported when none of its elements is linked.

CPU Programmer’s Reference Manual Section 3
GFK-2950M Dec 2024

Program Data 35

3.1.3 I/O Variables
An I/O variable is a symbolic variable that is mapped to a terminal in the hardware

conf iguration. A terminal can be one of the following: Physical discrete or analog I/O point

on a PACSystems module or on a Genius device, a discrete or analog status returned

f rom a PACSystems module, or Global Data. The use of I/O variables allows you to

conf igure hardware modules without having to specify the reference addresses to use

when scanning their inputs and outputs. Instead, you can directly associate variable

names with a module’s inputs and outputs.

As with symbolic variables, memory required to support I/O variables counts against user

space. You can configure the space available for I/O variables in the Memory tab of the

PACSystems CPU.

For a given module or Genius bus, you must use either I/O variables or manually located

mapped variables: you cannot use both in combination. It is not necessary to map all

points on a module. Points that are disconnected or unused can be skipped. When points

are skipped, space is reserved in user memory for that point (that is, a 32-point discrete

module will always use 32 bits of memory).

The hardware conf iguration (HWC) and logic become coupled in a PACSystems target

on your computer as soon as you do one of the following: Enable I/O variables for a

module or Genius bus (even if you don't create any I/O variables), use one or more

symbolic variables in the Ethernet Global Data (EGD) component, or upload a coupled

HWC and logic from a PACSystems PLC. The HWC and logic become coupled in a

PACSystems controller when coupled HWC and logic are downloaded to it.

Ef fects of coupled HWC and logic:

• Whether the HWC and logic are coupled in the PACSystems target on your computer

or in the PACSystems controller, you cannot download or upload the HWC and logic

independently.

• When the HWC and logic are coupled in the PACSystems controller, you cannot clear

the HWC and the logic independently.

• As for any download, you cannot RUN Mode Store (RMS) the HWC and logic

independently.

• The HWC must be completely equal for you to make word-for-word changes, launch

the Online Test mode of Test Edit, or accept the edits of Test Edit.

I/O variables can be used any place that other symbolic variables are supported, such

as in logic as parameters to built-in function blocks, user def ined function blocks,

parameterized function blocks, C blocks, bit-in-word references, and transition contacts

and coils.

Restrictions on the Use of I/O Variables

• Since I/O variables are a form of symbolic variable, the same restrictions that apply to other

symbolic variables of the same data type and array bounds apply to I/O variables.

• Only a global variable can become an I/O variable. A local variable cannot become an I/O

variable.

• You can map only a discrete variable to a discrete terminal.

• You can map only a non-discrete variable to an analog terminal.

CPU Programmer’s Reference Manual Section 3
GFK-2950M Dec 2024

Program Data 36

• Arrays and UDT variables must fit on the number of terminals in the reference address node

counting from and including the terminal where you enter the array head or UDT variable. For

example, if you have 32 analog terminals and you have a WORD array of 12 elements, you

can map it to terminal 21 or any terminal before it (1 through 20).

• You can map a discrete array only to a terminal 8n+1, where n = 0, 1, 2, and so on. The "+1"

is included because the terminals are numbered beginning with 1. If you map it to a terminal

other than 8n+1, an error occurs upon validation.

• An I/O variable cannot be mapped to more than one location in hardware configuration.

• For the DO_IO function block, if an I/O variable is assigned to the ST parameter, then the same

I/O variable must also be assigned to the END parameter, and the entire module is scanned.

• Some I/O modules do not support the use of I/O variables. For a list of modules that support

I/O variables, please refer to the Important Product Information for Logic Developer – PLC

programming software.

I/O Variable Format

To map an I/O variable, use the format %vdr.s.[z.]g.t:

v = I (input) or Q (output)

d = data type: X (discrete) or W (analog).

r = rack number

s = slot number

[z] = sub-slot number. This element and the period that follows it appear only if there is

a sub-slot, for example, the SBA number of a Genius device. For an Ethernet

daughterboard, set this value to 0.

g = segment number or number of the reference address node. Set to 0 for the first

reference address node on the Terminals tab, 1 for the second reference node, and so

on.

t = terminal number. One-based, that is, the numbering begins at 1.

CPU Programmer’s Reference Manual Section 3
GFK-2950M Dec 2024

Program Data 37

Supported I/O Variable Types

Data Type

Mnemonic
Supported Data Types

Number of Consecutive Terminals

Required

X

BOOL variable 1

BOOL array Number of elements in array.

BYTE variable 8

BYTE array 8n, where n is the number of array elements.

W

DINT variable 2

DINT array Number of elements in array times 2

DWORD variable 2

DWORD array Number of elements in array times 2

INT variable 1

INT array Number of elements in array

LREAL variable 4

LREAL array Number of elements in array times 4

REAL variable 2

REAL array Number of elements in array times 2

UINT variable 1

UINT array Number of elements in array

WORD variable 1

WORD array Number of elements in array

I/O Variable Examples

Figure 15

The I/O variable, Sample_IO_Variable is mapped to a non-discrete (W) output point (Q)

on the module located in rack 0, slot 8. The variable is mapped to the f irst point in the

f irst group of non-discrete output reference addresses.

Figure 16

The I/O variable, IO_VAR_EXAMPLE, is mapped to a discrete (X) input point (I) on the

module located in rack 0, slot 5. The point is in the module’s third group of discrete input

points and is point 2 in that group.

3.1.4 Arrays
An array is a complex data type composed of a series of variable elements with identical

data types. Any variable can become an array, except for another array, a variable

CPU Programmer’s Reference Manual Section 3
GFK-2950M Dec 2024

Program Data 38

element, or a UDFB. In Machine Edition, you can create single-dimensional arrays and

two-dimensional arrays.

In the controller CPU, each element of an array is treated as a separate variable with a

separate, read-only reference address. The root node of the array variable also has a

reference address that is editable. When you set or change the reference address of the

root node of an array variable, the reference addresses of its elements are f illed in with

a range of addresses starting at that reference address and incremented for each

element to create contiguous non-overlapping memory.

3.1.5 Variable Indexes and Arrays
PACSystems CPUs with f irmware version 6.00 or later support variable indexes

for arrays. With a variable index, when logic is executed, the value of the variable is

evaluated, and the corresponding array element is accessed.

Note: The numbering of array elements is zero-based.

For example, to access an element of the array named ABC, you could write ABC[DEF]

in logic. When logic is executed, if the value of DEF is 5, then ABC[DEF] is equivalent to

ABC [5], and the sixth element of array ABC is accessed.

If the value of the variable index exceeds the array boundary, a non-fatal fault is logged

to the CPU fault table. In LD, the instruction for which this occurred does not pass power

to the right.

Requirements and Support

An index variable must be of the INT, UINT, or DINT data type.

The valid range of values for an index variable is 0 through Y, where Y = [the number of

array elements in the array] - 1. Refer to Ensuring that a Variable Index does not Exceed

the Upper Boundary of an Array

An index variable can be one of the following:

• Symbolic variable

• I/O variable

• Variable mapped to % memory areas such as %R

• Structure element

• Array element with a constant index

• Array element with a variable index

• Alias variable

• In the logic of a UDFB or parameterized block: formal parameter

The following support a variable index:

• Array elements of any data type except STRING

• Parameter array elements of any data type

• Alias variables

Dimensional support:

CPU Programmer’s Reference Manual Section 3
GFK-2950M Dec 2024

Program Data 39

• One-dimensional (1D) formal parameter arrays in the logic of a UDFB or

parameterized block

• 2D support for the top level of an array of structures and 1D support for a structure

element that is an array. For example:

PQR[a, b].STRU[y].Zed,

where Zed is an element of the array of structures STRU, which itself is an

element of the 2D array of structures PQR.

• 1D and 2D arrays for other variables

Other features:

• An array with a variable index supports a bit reference, for example

MyArray[nIndex].X[4],

where .X[4] is the f if th bit of the value stored in MyArray[nIndex]. The bit

reference itself , [4] in the example, must be a constant.

• In LD, the following word-for-word changes are supported for array elements with

variable indexes:

Replacing an index variable with another index variable

Replacing an index variable with a constant

Replacing a constant with an index variable

In LD, Diagnostic Logic Blocks support the use of array elements with variable indexes.

CPU Programmer’s Reference Manual Section 3
GFK-2950M Dec 2024

Program Data 40

Where Array Elements with Variable Indexes are Not

Supported:

The following do not support array elements with variable indexes:

• Indirect references

• EGD variables

• Reference ID variables (RIVs) and I/O variables when accessed in the Hardware

Conf iguration

Note: In logic, RIVs and I/O variables support variable indexes.

• STRING variables

A variable index cannot be one of the following:

• A math expression. For example, ABC[GH+1] is not supported.

• An indirect reference. For example, W[@XYZ] is not supported.

• A bit references. For example, ABC [DEF.X[3]] is not supported.

Note You can use a bit reference on an array element designated by a variable index.

For example, ABC[DEF].X[3] is supported.

• An array head. For example, if MNP and QRS are arrays, MNP[QRS] is not

supported, but MNP[QRS[3]] and MNP[QRS[TUV]] are, where TUV is an index

variable.

• A negative index. This generates a run-time non-fatal CPU fault.

• A value greater than Y, where Y = [number of array elements] - 1. This generates a

run-time non-fatal CPU fault.

CPU Programmer’s Reference Manual Section 3
GFK-2950M Dec 2024

Program Data 41

Ensuring that a Variable Index does not Exceed the Upper

Boundary of an Array

One-Dimensional Array

1. Once per scan, execute ARRAY_SIZE_DIM1 to count the number of elements

in the array.

Note: The array size of a variable can be changed in a RUN Mode Store but it will not be

changed while logic is executing.

ARRAY_SIZE_DIM1 places the count value in the variable associated with its output Q.

2. Before executing an instruction that uses a variable index, compare the value

of the index variable with the number of elements in the array.

Tip

In LD, use a RANGE instruction.

Notes Checking before executing each instruction that uses an indexed variable is

recommended in case logic has modified the index value beyond the array size or in

case the array size has been reduced before the scan to less than the value of an index

variable that has not been reduced accordingly since.

Valid range of an index variable: 0 through (n–1), where n is the number of array

elements. Array indexes are zero-based.

Two-Dimensional Array

• Execute both ARRAY_SIZE_DIM1 and ARRAY_SIZE_DIM2 to count the number of

elements in respectively the f irst and second dimensions of the array.

CPU Programmer’s Reference Manual Section 3
GFK-2950M Dec 2024

Program Data 42

3.2 Reference Memory
The CPU stores program data in bit memory and word memory. Both types of memory

are divided into different types with specific characteristics. By convention, each type is

normally used for a specific type of data, as explained below. However, there is great

f lexibility in actual memory assignment.

Memory locations are indexed using alphanumeric identifiers called references. The

reference’s letter prefix identifies the memory area. The numerical value is the offset

within that memory area, for example %AQ0056.

3.2.1 Word (Register) References

Type Description

%AI The prefix %AI represents an analog input register. An analog input register holds the value of one

analog input or other non-discrete value.

%AQ The prefix %AQ represents an analog output register. An analog output register holds the value of

one analog output or other non-discrete value.

%R Use the prefix %R to assign system register references that will store program data such as the

results of calculations.

%W Retentive Bulk Memory Area, which is referenced as %W (WORD memory).

%P Use the prefix %P to assign program register references that will store program data with the

_MAIN block. This data can be accessed from all program blocks. The size of the %P data block

is based on the highest %P reference in all blocks. %P addresses are available only to the LD

program they are used in, including C blocks called from LD blocks; they are not system-wide.

Note: All register references are retained across a power cycle to the CPU.

Indirect References

An indirect reference allows you to treat the contents of a variable assigned to an LD

instruction operand as a pointer to other data, rather than as actual data. Indirect

references are used only with word memory areas (%R, %W, %AI, %AQ, %P, and %L).

An indirect reference in %W requires two %W locations as a DWORD indirect index

value. For example, @%W0001 would use the %W2:W1 as a DWORD index into the

%W memory range. The DWORD index is required because the %W size is greater than

65K.

Indirect references cannot be used with symbolic variables.

To assign an indirect reference, type the @ character followed by a valid reference

address or variable name. For example, if %R00101 contains the value 1000, @R00101

instructs the CPU to use the data location of %R01000.

Indirect references can be useful when you want to perform the same operation to many

word registers. Use of indirect references can also be used to avoid repetitious logic

within the application program. They can be used in loop situations where each register

is incremented by a constant or by a value specif ied until a maximum is reached.

Bit in Word References

Bit in word referencing allows you to specify individual bits in a word reference type as

inputs and outputs of Boolean expressions, functions, and calls that accept bit

parameters (such as parameterized blocks). This feature is restricted to word references

in retentive memory. The bit number in the bit within word construct must be a constant.

CPU Programmer’s Reference Manual Section 3
GFK-2950M Dec 2024

Program Data 43

You can use the programmer or an HMI to set an individual bit on or off within a word or

monitor a bit within a word. Also, C blocks can read, modify, and write a bit within a word.

Bit in Word references can be used in the following situations:

• In retentive 16-bit memory (AI, AQ, R, W, P, and L) and symbolics.

• On all contacts and coils except legacy transition contacts (POSCON/NEGCON) and

transition coils (POSCOIL/NEGCOIL).

• On all functions and call parameters that accept single or unaligned bit parameters.

Functions that accept unaligned discrete references Parameters

ARRAY MOVE (BIT) SR and DS

ARRAY RANGE (BIT) Q

MOVE (BIT) IN and Q

SHFR (BIT) IN, ST and Q

Restrictions

The use of Bit in Word references has the following restrictions:

• Bit in Word references cannot be used on legacy transition contacts

(POSCON/NEGCON) and transition coils (POSCON/NEGCON).

• The bit number (index) must be a constant; it cannot be a variable.

• Bit addressing is not supported for a constant.

• Indirect references cannot be used to address bits in 16-bit memory.

• You cannot force a bit within 16-bit memory.

CPU Programmer’s Reference Manual Section 3
GFK-2950M Dec 2024

Program Data 44

Examples:

%R2.X [0] addresses the f irst (least signif icant) bit of %R2

%R2.X [1] addresses the second bit of %R2. In the examples

In the examples [0] and [1] are the bit indexes. Valid bit indexes for the different variable

types are:

BYTE variable [0] through [7]

WORD, INT, or UINT variable [0] through [15]

DWORD or DINT variable [0] through [31]

CPU Programmer’s Reference Manual Section 3
GFK-2950M Dec 2024

Program Data 45

3.2.2 Bit (Discrete) References

Type Description

%I Represents input references. %I reference are located in the input status table, which stores the

state of all inputs received from input modules during the last input scan. A reference address is

assigned to discrete input modules using your programming software. Until a reference address is

assigned, no data will be received from the module. %I memory is always retentive.

%Q Represents physical output references. The coil check function checks for multiple uses of %Q

references with relay coils or outputs on functions. You can select the level of coil checking desired

(Single, Warn Multiple, or Multiple).

%Q references are located in the output status table, which stores the state of the output references

as last set by the application program. This output status table’s values are sent to output modules

at the end of the program scan. A reference address is assigned to discrete output modules using

your programming software. Until a reference address is assigned, no data is sent to the module.

A particular %Q reference may be either retentive or non-retentive.

%M Represents internal references. The coil check function of your programming software checks for

multiple uses of %M references with relay coils or outputs on functions. A particular %M reference

may be either retentive or non-retentive.

%T Represents temporary references. These references are never checked for multiple coil use and

can, therefore, be used many times in the same program even when coil use checking is enabled—

this is not a recommended practice because it makes subsequent troub le-shooting more difficult.

%T may be used to prevent coil use conflicts while using the cut/paste and file write/include

functions. Because this memory is intended for temporary use, it is cleared on STOP Mode to RUN

Mode transitions and cannot be used with retentive coils.

%S

%SA

%SB

%SC

Represent system status references. These references are used to access special CPU data such

as timers, scan information, and fault information. For example, the %SC0012 bit can be used to

check the status of the CPU fault table. Once the bit is set on by an error, it will not be reset until

after the sweep. %S, %SA, %SB, and %SC can be used on any contacts.

• %SA, %SB, and %SC can be used on retentive coils -(M)-.

Note: Although the programming software forces the logic to use retentive coils

with %SA, %SB, and %SC references, most of these references are not

preserved across power cycles regardless of the state of the battery or

Energy Pack.

%S can be used as word or bit-string input arguments to functions or function blocks.

%SA, %SB, and %SC can be used as word or bit-string input or output arguments to functions and

function blocks.

For a description of the behavior of each bit, refer to System Status References.

%G Represents global data references. These references are used to access data shared among

several control systems.

Note: For details on retentiveness, refer to Retentiveness of Logic and Data.

CPU Programmer’s Reference Manual Section 3
GFK-2950M Dec 2024

Program Data 46

3.3 User Reference Size and Default
Maximum user references and default reference sizes are listed in the table below.

Item Range Default

 EPXCPE205 EPXCPE210 EPXCPE215 EPXCPE220 EPXCPE240

Reference Points

%I reference 1024 2048 2048 4096 4096

Same as range per

model

%Q reference 1024 2048 2048 4096 4096

%M reference 2048 4096 4096 8192 8192

%S total (S, SA, SB, SC) 512 bits (128 each)

%T reference 256 bits

%G 1280 points

Total Reference Points 6144 14336 14336 18432 18432

Reference Words

%AI reference

0—16,320 words 0—32,640 words

64 words (same for all

models) %AQ reference

%R, 1K word increments 1,024 words (same for

all models)

%W
0—maximum available user RAM

0 words (same for all

models)

Total Reference Words 1152 words

%L (per block) 8,192 words

8,192 words (same for

all models) %P (per program)

Managed Memory

Symbolic Discrete 0—3,670,016

(bits)

0—7,864,320

(bits)

0—12,058,624

(bits)

0—16,252,928

(bits)

0—3,3030,144

(bits)

32,768 (same for all

models)

Symbolic Non-Discrete 0—229,376

(words)

0—491,520

(words)

0—753,664

(words)

0—1,015,808

(words)

0—2,064,384

(words)

65,536 (same for all

models)

I/O Discrete 0 through

3,670,016

0 through

7,864,320

0 through

12,058,624

0 through

16,252,928

0 through

33,030,144
0 (same for all models)

I/O Non-Discrete 0 through

229,376

0 through

491,520

0 through

753,664

0 through

1,015,808

0 through

2,064,384

Total Symbolic (Total

Managed Memory). (This is

the total memory available

for the combined total of

symbolic memory. This also

includes other user memory

use, program etc.)

0—4,587,520

bytes

0—9,830,400

bytes

0—15,073,280

bytes

0—20,316,160

bytes

0—41,287,680

bytes
147,456

3.3.1 %G User References and CPU Memory Locations
The CPU contains one data space for all the global data references (%G). The internal

CPU memory for this data is 7680 bits long. For Series 90-70 systems, the programming

sof tware subdivides this range using %G, %GA, %GB, %GC, %GD, and %GE prefixes—

allowing each of these prefixes to be used with bit offsets in the range 1–1280. For

PACSystems, these ranges are converted to %G.

3.4 Genius Global Data

CPU Programmer’s Reference Manual Section 3
GFK-2950M Dec 2024

Program Data 47

PACSystems supports the sharing of data among multiple control systems that share a

common Genius I/O bus. This mechanism provides a means for the automatic and

repeated transfer of %G, %I, %Q, %AI, %AQ, and %R data. No special application

programming is required to use global data since it is integrated into the I/O scan. All

devices that have Genius I/O capability can send and receive global data f rom a

PACSystems CPU.

Using I/O Variables, you can directly associate variable names to a module’s Genius

global data that is scanned as part of an input/output scan.

3.5 Transitions and Overrides
The %I, %Q, %M, and %G user references, and symbolic variables of type BOOL, have

associated transition and override bits. %T, %S, %SA, %SB, and %SC references have

transition bits but not override bits. The CPU uses transition bits for counters, transition

contacts, and transitional coils. Note that counters do not use the same kind of transition

bits as contacts and coils. Transition bits for counters are stored within the locating

reference.

The transition bit for a reference tells whether the most recent value (ON, OFF) written

to the reference is the same as the previous value of the reference. Therefore, when a

reference is written and its new value is the same as its previous value, its transition bit

is turned OFF. When its new value is different from its previous value, its transition bit is

turned ON. The transition bit for a reference is affected every time the reference is written

to. The source of the write is immaterial; it can result from a coil execution, an executed

function’s output, the updating of reference memory af ter an input scan, etc.

When override bits are set, the associated references cannot be changed f rom the

program or the input device; they can only be changed on command f rom the

programmer. Overrides do not protect transition bits. If an attempted write occurs to an

overridden memory location, the corresponding transition bit is cleared.

CPU Programmer’s Reference Manual Section 3
GFK-2950M Dec 2024

Program Data 48

3.6 Retentiveness of Logic and Data
Data is def ined as retentive if it is saved by the CPU when the CPU transitions from

STOP Mode to RUN Mode.

The following items are retentive:

• program logic

• fault tables and diagnostics

• checksums for program logic

• overrides and output forces

• word data (%R, %W, %L, %P, %AI, %AQ)

• bit data (%I, %G, fault locating references, and reserved bits)

• %Q and %M variables that are configured as retentive (%T data is non-retentive and

therefore not saved on STOP Mode to RUN Mode transitions).

• symbolic variables that have a data type other than BOOL

• symbolic variables of BOOL type that are conf igured as retentive

• Retentive data is also preserved during power-cycles of the CPU with battery backup

or Energy Pack backup. Exceptions to this rule include the fault locating references

and most of the %S, %SA, %SB, and %SC references. These references are

initialized to zero at power-up regardless of the state of the battery or Energy Pack

(For a description of the behavior of each, refer to System Status References).

When %Q or %M variables are configured as retentive, the contents are retained through

power loss and Run-to-Stop-to-Run transitions.

CPU Programmer’s Reference Manual Section 3
GFK-2950M Dec 2024

Program Data 49

3.7 Data Scope
Each of the user references has scope; that is, it may be available throughout the system,

available to all programs, restricted to a single program, or restricted to local use within

a block.

User Reference Type Range Scope

%I, %Q, %M, %T, %S, %SA,

%SB, %SC, %G, %R, %W, %AI,

%AQ, convenience references,

fault locating references

Global From any program, block, or host computer. Variables

defined in these registers have system (global) scope by

default. However, variables with local scope can also be

assigned in these registers.

Symbolic variable Global From any program, block, or host computer. Symbolic

variables have system (global) scope by default. However,

symbolic variables with local scope can be created using

the naming conventions for local variables.

I/O variable Global From any program, block, or host computer.

%P Program From any block, but not from other programs (also available

to a host computer).

%L Local From within a block only (also available to a host

computer).

In an LD block:

• %P should be used for program references that are shared with other blocks.

• %L are local references that can be used to restrict the use of register data to that

block. These local references are not available to other parts of the program.

• %I, %Q, %M, %T, %S, %SA, %SB, %SC, %G, %R, %W, %AI, and %AQ references

are available throughout the system.

CPU Programmer’s Reference Manual Section 3
GFK-2950M Dec 2024

Program Data 50

3.8 System Status References
System status references in the CPU are assigned to %S, %SA, %SB, and %SC

memory. The four timed contacts (time tick references) include #T_10MS, #T_100MS,

#T_SEC, and #T_MIN. Examples of other system status references include #FST_SCN,

#ALW_ON, and #ALW_OFF

Note: %S bits are read-only bits; do not write to these bits. However, you can write to %SA,

%SB, and %SC bits.

Listed below are available system status references that can be used in an application

program. When entering logic, either the reference or the nickname can be used. Refer

to Section 9 for detailed fault descriptions and information on correcting faults.

3.8.1 %S References

Reference System Variable Definition

%S0001 #FST_SCN Current sweep is the first sweep in which the LD executed. Set the

first time the user program is executed after a STOP Mode to RUN

Mode transition and cleared upon completion of its execution.

%S0002 #LST_SCN Set when the CPU transitions to RUN Mode; cleared when the CPU

is performing its final sweep. The CPU clears this bit and then

performs one more complete sweep before transitioning to STOP

or STOP Faulted mode. If the number of last scans set to 0,

%S0002 will be cleared after the CPU is stopped and user logic will

not see this bit cleared.

Note: The #LST_SCN system bit transitions from one to zero during

a PLC run to stop transition.

%S0003 #T_10MS 0.01 second timed contact.

%S0004 #T_100MS 0.1 second timed contact.

%S0005 #T_SEC 1.0 second timed contact.

%S0006 #T_MIN 1.0-minute timed contact.

%S0007 #ALW_ON Always ON.

%S0008 #ALW_OFF Always OFF.

%S0009 #SY_FULL Set when the CPU fault table fills up (size configurable with a default

of 16 entries). Cleared when an entry is removed from the CPU fault

table and when the CPU fault table is cleared.

%S0010 #IO_FULL Set when the I/O Fault Table fills up (size configurable with a default

of 32 entries). Cleared when an entry is removed from the I/O Fault

Table and when the I/O Fault Table is cleared.

%S0011 #OVR_PRE Set when an override exists in %I, %Q, %M, or %G, or symbolic

BOOL memory.

%S0012 #FRC_PRE Set when force exists on a Genius point.

%S0013 #PRG_CHK Set when background program check is active.

CPU Programmer’s Reference Manual Section 3
GFK-2950M Dec 2024

Program Data 51

Reference System Variable Definition

%S0014 #PLC_BAT CPUs with batteries, including CPU310, CPU315, CPU/CRU320

and NIU001

• If the battery is disconnected, this contact is set to 1.

• Whenever a Smart Battery fails during operation, this contact

is set to 1. If used in conjunction with a legacy (non-smart)

battery, this indication is not reliable.

Battery-less CPUs, including CPE302, CPE305, CPE310 and

CPE330:

• Energy Pack is connected and functioning = 0

• Energy Pack is not connected or has failed = 1

%S0033 #PRI_UNT

Set to 1 if the local unit is configured as the Primary CPU: otherwise

it is cleared. For any given local unit, if PRI_UNT is set, SEC_UNT

cannot be set.

%S0034 #SEC_UNT

Set to 1 if the local unit is configured as the Secondary CPU:

otherwise it is cleared. For any given local unit, if SEC_UNT is set,

PRI_ UNT cannot be set.

%S0035 #LOC_RDY
Set to 1 if local unit is in Run mode with outputs enabled. Otherwise

set to 0.

%S0036 #LOC_ACT

Set to 1 if local unit is currently the Active unit; otherwise it is

cleared. For any given local unit, if LOC_ACT is set, REM_ACT

cannot be set.

%S0037 #REM_RDY
Set to 1 if remote unit is in Run mode with outputs enabled.

Otherwise set to 0.

%S0038 #REM_ACT

Set to 1 if remote unit is currently the Active unit; otherwise it is

cleared. For any given local unit, if REM_ACT is set, LOC_ACT

cannot be set.

%S0039 #LOGICEQ
Set to 1 if the application logic for both units in the redundant system

is the same. Otherwise set to 0.

%S0041 #RDN_COMM_AVAIL Redundancy Communication Link Available: 1 indicates that the two

CPUs can communicate with each other and will be able to

synchronize when required.

%S0042 #RDN_P1_LINK_UP Redundancy Ethernet Port 1 on LAN3 has link on its PHY.

%S0043 #RDN_P2_LINK_UP Redundancy Ethernet Port 2 on LAN3 has link on its PHY.

%S0049 #FA_OK Field Agent OK: 1 indicates Field Agent running and connected to

cloud.

%S0050 #LG_CFG_SRC

(R9.98 and later)

Set to 1 if the CPU logic and hardware configuration is retrieved

from Flash memory during last powerup. If set to 0, the CPU logic

and hardware configuration was retrieved from RAM or was not

retrieved.

%S0051 #DATA_SRC

(R9.98 and later)

Set to 1 if the CPU reference data is retrieved from Flash memory

during last powerup. If set to 0, the CPU reference data was

retrieved from RAM or was not retrieved.

Initial Values are stored in User Flash.

%S0052 #DSPOVTMP

(CPx4x0 R9.99 and

later)

Set to 1 if the OLED display is in an over temperature state and has

turned itself off. The bit is self clearing when the CPU cools and the

OLED is able to turn itself back on. If set to 0, the OLED display is

not in an over temperature state.

%S0053 #LG_CFG_SRC_RAM Set to 1 if the CPU logic and hardware configuration is retrieved

from User RAM memory during last powerup (i.e. Energy Pack). If

set to 0, the CPU logic and hardware configuration was NOT

retrieved from User RAM.

CPU Programmer’s Reference Manual Section 3
GFK-2950M Dec 2024

Program Data 52

Reference System Variable Definition

%S0054 #DATA_SRC_RAM Set to 1 if the CPU reference data is retrieved from User RAM

memory during last powerup (i.e. Energy Pack). If set to 0, the CPU

reference data was NOT retrieved from User RAM.

%S0055 #DATA_SRC_NV Set to 1 if the CPU reference data is retrieved from any of the NV

Storage locations (in regard to SVC_REQ 63) during last powerup.

If set to 0, the CPU reference data was NOT retrieved from the NV

Storage locations.

%S0056 #SIM Set to 1 if running on a PACSystems Simulator. Set to 0 on all other

platforms.

Note: The #FST_EXE name is not associated with a %S address, it must be referenced by the

name #FST_EXE only. This bit is set when transitioning from STOP Mode to RUN Mode

and indicates that the current sweep is the first time this block has been called.

3.8.2 %SA, %SB, and %SC References

Note: %SA, %SB, and %SC contacts are not set or reset until the input scan phase of the sweep

following the occurrence of the fault or a clearing of the fault table(s). %SA, %SB, and

%SC contacts can also be set or reset by user logic and CPU monitoring devices.

Reference System

Variable

Definition

%SA0001 #PB_SUM Set when a checksum calculated on the application program does not match

the reference checksum. If the fault was due to a temporary failure, the

condition can be cleared by again storing the program to the CPU. If the

fault was due to a hard RAM failure, then the CPU must be replaced.

To clear this bit, clear the CPU fault table or power cycle the CPU.

%SA0002 #OV_SWP Set when the CPU detects that the previous sweep took longer than the time

specified by the user. To clear this bit, clear the CPU fault table or power

cycle the CPU. Only occurs if the CPU is in Constant Sweep mode.

%SA0003 #APL_FLT #SA0003 | #APL_FLT | Set when an application fault (Fault Group 22)

occurs. To clear this bit, clear the CPU fault table or power cycle the CPU.

%SA0009 #CFG_MM Set when a configuration mismatch fault is logged in the fault tables. To

clear this bit, clear the CPU fault table or power cycle the CPU.

%SA0008 #OVR_TMP Set when the operating temperature of the CPU exceeds the normal

operating temperature, 58ºC. To clear this bit, clear the CPU fault table or

power cycle the CPU.

%SA0010 #HRD_CPU Set when the diagnostics detects a problem with the CPU hardware. To

clear this bit, clear the CPU fault table or power cycle the CPU.

%SA0011 #LOW_BAT The low battery indication is not supported for all CPU modules. For details,

refer to Section 9.4.12, Battery Status (Group 18).

The CPU may set this contact when an I/O module or special-purpose

module has reported a low battery. In this case, a fault will be reported in the

I/O Fault Table.

To clear this bit, clear the CPU fault table or power cycle the CPU.

%SA0012 #LOS_RCK Set when an expansion rack stops communicating with the CPU. To clear

this bit, clear the CPU fault table or power cycle the CPU.

%SA0013 #LOS_IOC Set when a Bus Controller stops communicating with the CPU.

To clear this bit, clear the I/O Fault Table or power cycle the CPU.

%SA0014 #LOS_IOM Set when an I/O module stops communicating with the CPU.

To clear this bit, clear the I/O Fault Table or power cycle the CPU.

CPU Programmer’s Reference Manual Section 3
GFK-2950M Dec 2024

Program Data 53

Reference System

Variable

Definition

%SA0015 #LOS_SIO Set when an option module stops communicating with the CPU.

To clear this bit, clear the CPU fault table or power cycle the CPU.

%SA0017 #ADD_RCK Set when an expansion rack is added to the system.

To clear this bit, clear the CPU fault table or power cycle the CPU.

%SA0018 #ADD_IOC Set when a Bus Controller is added to a rack.

To clear this bit, clear the I/O Fault Table or power cycle the CPU.

%SA0019 #ADD_IOM Set when an I/O module is added to a rack.

To clear this bit, clear the I/O Fault Table or power cycle the CPU.

%SA0020 #ADD_SIO Set when an intelligent option module is added to a rack.

To clear this bit, clear the I/O Fault Table or power cycle the CPU.

%SA0022 #IOC_FLT Set when a Bus Controller reports a bus fault, a global memory fault, or an

IOC hardware fault. To clear this bit, clear the I/O Fault Table or power cycle

the CPU.

%SA0023 #IOM_FLT Set when an I/O module reports a circuit or module fault.

To clear this bit, clear the I/O Fault Table or power cycle the CPU.

%SA0027 #HRD_SIO Set when a hardware failure is detected in an option module.

To clear this bit, clear the I/O Fault Table or power cycle the CPU.

%SA0029 #SFT_IOC Set when there is a software failure in the I/O Controller.

To clear this bit, clear the I/O Fault Table or power cycle the CPU.

%SA0030 #PNIO_ALARM A PROFINET alarm has been received and an I/O fault has been logged in

group 28. To clear this bit, clear the I/O Fault Table or power cycle the CPU.

%SA0031 #SFT_SIO Set when an option module detects an internal software error.

To clear this bit, clear the I/O Fault Table or power cycle the CPU.

%SA0032 #SBUS_ER Set when a bus error occurs on the VME bus backplane.

To clear this bit, clear the I/O Fault Table or power cycle the CPU.

%SA0081 –

%SA0112

 Set when a user-defined fault is logged in the CPU fault table.

To clear these bits, clear the CPU fault table or power cycle the CPU. For

more information, see discussion of

SVC_REQ 21: User-Defined Fault Logging in Section 7.

%SB0001 #WIND_ER Set when there is not enough time to start the Programmer Window in

Constant Sweep mode.

To clear this bit, clear the CPU fault table or power cycle the CPU.

%SB0009 #NO_PROG Set when the CPU powers up with memory preserved, but no user program

is present. Cleared when the CPU powers up with a program present or by

clearing the CPU fault table.

%SB0010 #BAD_RAM Set when the CPU detects corrupted RAM memory at power-up. Cleared

when the CPU detects that RAM memory is valid at power-up or by clearing

the CPU fault table.

%SB0011 #BAD_PWD Set when a password access violation occurs. Cleared when

the CPU fault table is cleared or when the CPU is power cycled.

%SB0012 #NUL_CFG Set when an attempt is made to put the CPU in RUN Mode when there is no

configuration data present.

To clear this bit, clear the CPU fault table or power cycle the CPU.

%SB0013 #SFT_CPU Set when the CPU detects an error in the CPU operating system software.

To clear this bit, clear the CPU fault table or power cycle the CPU.

%SB0014 #STOR_ER Set when an error occurs during a programmer store operation.

To clear this bit, clear the CPU fault table or power cycle the CPU.

CPU Programmer’s Reference Manual Section 3
GFK-2950M Dec 2024

Program Data 54

Reference System

Variable

Definition

%SB0016 #MAX_IOC Set when more than 32 IOCs are configured for the system.

To clear this bit, clear the CPU fault table or power cycle the CPU.

%SB0017 #SBUS_FL Set when the CPU fails to gain access to the bus.

To clear this bit, clear the CPU fault table or power cycle the CPU.

%SC0009 #ANY_FLT Set when any fault occurs that causes an entry to be placed in the CPU or

I/O Fault Table. Cleared when both fault tables are cleared or when the CPU

is power cycled.

%SC0010 #SY_FLT Set when any fault occurs that causes an entry to be placed in the CPU fault

table. Cleared when the CPU fault table is cleared or when the CPU is

power cycled.

%SC0011 #IO_FLT Set when any fault occurs that causes an entry to be placed in the I/O Fault

Table. Cleared when the I/O Fault Table is cleared or when the CPU is

power cycled.

%SC0012 #SY_PRES Set as long as there is at least one entry in the CPU fault table. Cleared

when the CPU fault table is cleared.

%SC0013 #IO_PRES Set if there is at least one entry in the I/O Fault Table. Cleared when the I/O

Fault Table is cleared.

%SC0014 #HRD_FLT Set when a hardware fault occurs. Cleared when both fault tables are

cleared or when the CPU is power cycled.

%SC0015 #SFT_FLT Set when a software fault occurs. Cleared when both fault tables are cleared

or when the CPU is power cycled.

3.8.3 Fault References
The fault references are discussed in Section 9 of this manual but are also listed here for

your convenience.

System Fault References

System Fault Ref Description

#ANY_FLT Any new fault in either table since the last power-up or clearing of the fault tables

#SY_FLT Any new system fault in the CPU fault table since the last power-up or clearing of

the fault tables

#IO_FLT Any new fault in the I/O Fault Table since the last power-up or clearing of fault tables

#SY_PRES Indicates that there is at least one entry in the CPU fault table

#IO_PRES Indicates that there is at least one entry in the I/O Fault Table

#HRD_FLT Any hardware fault

#SFT_FLT Any software fault

Configurable Fault References

Configurable Faults

(Default Action)

Description

#SBUS_ER (diagnostic) System bus error. (The BSERR signal was generated on the VME system bus.)

#SFT_IOC (diagnostic) Non-recoverable software error in a Genius Bus Controller.

#LOS_RCK (diagnostic) Loss of rack (BRM failure, loss of power) or missing a configured rack.

#LOS_IOC (diagnostic) Loss of Bus Controller missing a configured Bus Controller.

#LOS_IOM (diagnostic) Loss of I/O module (does not respond) or missing a configured I/O module.

CPU Programmer’s Reference Manual Section 3
GFK-2950M Dec 2024

Program Data 55

Configurable Faults

(Default Action)

Description

#LOS_SIO (diagnostic) Loss of intelligent option module (does not respond) or missing a configured

module.

#IOC_FLT (diagnostic) Non-fatal bus or Bus Controller error—more than 10 bus errors in 10 seconds

(error rate is configurable).

#CFG_MM (fatal) Wrong module type detected during power-up, store of configuration, or RUN

Mode. The CPU does not check the configuration parameters set up for

individual modules such as Genius I/O blocks.

Non-Configurable Faults

Non-Configurable Faults

(Action)
Description

#SBUS_FL (fatal) System bus failure. The CPU was not able to access the VME bus. BUSGRT-NMI error.

#HRD_CPU (fatal) CPU hardware fault, such as failed memory device or failed serial port.

#HRD_SIO (diagnostic) Non-fatal hardware fault on any module in the system.

#SFT_SIO (diagnostic) Non-recoverable software error in a LAN interface module.

#PB_SUM (fatal) Program or block checksum failure during power-up or in RUN Mode.

#LOW_BAT (diagnostic) The low battery indication is not supported for all CPU modules. For details, refer to

Battery Status (Group 18) in Section 9.

The CPU may set this contact when an I/O module or special-purpose module has reported

a low battery. In this case, a fault will be reported in the I/O Fault Table.

To clear this bit, clear the CPU fault table or power cycle the CPU.

#OV_SWP (diagnostic) Constant sweep time exceeded.

#SY_FULL, IO_FULL

(diagnostic)

CPU fault table full

I/O Fault Table full

#IOM_FLT (diagnostic) Point or channel on an I/O module—a partial failure of the module.

#APL_FLT (diagnostic) Application Fault (Fault Group 22)

#ADD_RCK (diagnostic) New rack added, extra, or previously faulted rack has returned.

#ADD_IOC (diagnostic) Extra I/O Bus Controller or reset of I/O Bus Controller.

#ADD_IOM (diagnostic) Previously faulted I/O module is no longer faulted or extra I/O module.

#ADD_SIO (diagnostic) New intelligent option module is added, extra, or reset.

#NO_PROG (information) No application program is present at power-up. Should only occur the first time the CPU

is powered up or if the user memory is not retained.

#BAD_RAM (fatal) Corrupted program memory at power-up. Program could not be read and/or did not pass

checksum tests.

#WIND_ER (information) Window completion error. Servicing of Programmer or Logic Window was skipped.

Occurs in Constant Sweep mode.

#BAD_PWD (information) Change of privilege level request to a protection level was denied; bad password.

#NUL_CFG (fatal) No configuration present upon transition to RUN Mode. Running without a configuration

is similar to suspending the I/O scans.

#SFT_CPU (fatal) CPU software fault. A non-recoverable error has been detected in the CPU. May be

caused by Watchdog Timer expiring.

#MAX_IOC (fatal) The maximum number of bus controllers has been exceeded. The CPU supports 32 bus

controllers.

#STOR_ER (fatal) Download of data to CPU from the programmer failed; some data in CPU may be corrupted.

CPU Programmer’s Reference Manual Section 3
GFK-2950M Dec 2024

Program Data 56

3.9 How Program Functions Handle Numerical

Data
Regardless of where data is stored in memory – in one of the bit memories or one of the

word memories – the application program can handle it as dif ferent data types.

3.9.1 Data Types

Type Name Description Data Format

BOOL Boolean The smallest unit of memory. It has two

states: 1 or 0. A BOOL array may have

length N.

BYTE Byte Has an 8-bit value. Has 256 values (0–

255). A BYTE array may have length

N.

WORD Word Uses 16 consecutive bits of data

memory. The valid range of word

values is 0000 hex to FFFF hex.

Register
1 (16 bit states)

16 1

DWORD Double Word Has the same characteristics as a

single word data type, except that it

uses 32 consecutive bits in data

memory instead of only 16 bits.

Register 2

32

Register 1

1617 1
(32 bit states)

UINT Unsigned

Integer

Uses 16-bit memory data locations.

They have a valid range of 0 to +65535

(FFFF hex).

Register
1 (Binary value)

16 1

INT Signed Integer Uses 16-bit memory data locations,

and are represented in 2’s complement

notation. The valid range of an INT

data type is –32768 to +32767.

 Register 1 (Two’s
Complement
value) 16 1

S

s=sign bit

(0=positive, 1=negative)

DINT Double

Precision

Integer

Stored in 32-bit data memory locations

(two consecutive 16-bit memory

locations). Always signed values (bit 32

is the sign bit). The valid range of a

DINT data type is -2147483648 to

+2147483647

s=sign bit

(0=positive, 1=negative)

REAL Floating Point Uses 32 consecutive bits (two

consecutive 16-bit memory locations).

The range of numbers that can be

stored in this format is from

±1.401298E-45 to ±3.402823E+38.

For the IEEE format, refer to

Floating Point Numbers.

 Register 2

32

Register 1

16 17 1
(IEEE format)

LREAL Double

Precision

Floating Point

Uses 64 consecutive bits (four

consecutive 16-bit memory locations).

The range of numbers that can be

stored in this format is from

±2.2250738585072020E-308 to

±1.7976931348623157E+308.

For the IEEE format, refer to

Floating Point Numbers.

 Register 2

32

Register 1

16 17 1

(IEEE format)

Register 4

64

Register 3

48 49 33

s

Register 2

32

Register 1

1617 1
(Binary value)

CPU Programmer’s Reference Manual Section 3
GFK-2950M Dec 2024

Program Data 57

Type Name Description Data Format

BCD-4 Four-Digit BCD Uses 16-bit data memory locations.

Each binary coded decimal (BCD) digit

uses four bits and can represent

numbers between 0 and 9. This BCD

coding of the 16 bits has a legal value

range of 0 to 9999.

Register 1
(4 BCD digits)

13 159

4 3 2 1

BCD-8 Eight-Digit BCD Uses two consecutive 16-bit data

memory locations (32 consecutive

bits). Each BCD digit uses 4 bits per

digit to represent numbers from 0 to 9.

The complete valid range of the 8-digit

BCD data type is 0 to 99999999.

MIXED Mixed Available only with the MUL and DIV

functions. The MUL function takes two

integer inputs and produces a double

integer result. The DIV function takes a

double integer dividend and an integer

divisor to product an integer result.

ASCII ASCII Eight-bit encoded characters. A single

word reference is required to make two

(packed) ASCII characters. The first

character of the pair corresponds to the

low byte of the reference word. The

remaining 7 bits in each section are

converted.

Note: Using functions that are not explicitly bit-typed will affect transitions for all bits in the

written byte/word/dword. For information about using floating point numbers, refer

to Section 3.9.2, Floating Point Numbers.

3.9.2 Floating Point Numbers
Floating point numbers are stored in one of two IEEE 754 standard formats that uses

adjacent 16-bit words: 32-bit single precision or 64-bit double precision.

The REAL data type represents single precision f loating point numbers. The LREAL data

type represents double precision f loating point numbers. REAL and LREAL variables are

typically used to store data from analog I/O devices, calculated values, and constants.

Types of Floating-Point Variables

Data Type Precision and Range

REAL Limited to 6 or 7 significant digits, with a range of approximately ±1.401298x10
-45

through ±3.402823x10
38

.

LREAL Limited to 17 significant digits, with a range of approximately

±2.2250738585072020x10
-308

 to ±1.7976931348623157x10
308

.

Note: The programming software allows 32-bit and 64-bit arguments (DWORD, DINT, REAL,

and LREAL) to be placed in discrete memories such as %I, %M, and %R in the

PACSystems target. This is not allowed on Series 90-70 targets. (Note that any bit

reference address that is passed to a non-bit parameter must be byte-aligned. This is the

same as the Series 90-70 CPU.)

Internal Format of REAL Numbers

Figure 17

13

Register 2

(8 BCD digits)

32 162529

8 7 6 5

Register 1

159

4 3 8 1

21 17

16

16 16 32

32 16

=

=

CPU Programmer’s Reference Manual Section 3
GFK-2950M Dec 2024

Program Data 58

Register use by a single floating-point number is diagrammed below. For example, if the

f loating-point number occupies registers R5 and R6, R5 is the least significant register

and R6 is the most signif icant register.

Figure 18

Internal Format of LREAL Numbers

Figure 19

Errors in Floating Point Numbers and Operations

Overf low occurs when a REAL or LREAL function generates a number outside the

allowed range. When this occurs, the Enable Out output of the function is set Off, and

the result is set to positive infinity (for a number greater than the upper limit) or negative

inf inity (for a number less than the lower limit). You can determine where this occurs by

testing the sense of the Enable Out output.

Binary representations of Infinity and NaN values have exponents that contain all 1s.

IEEE 754 Infinity Representations

 REAL LREAL

POS_INF (positive infinity) = 7F800000h = 7FF0000000000000h

NEG_INF (negative infinity) = FF800000h = 7FF0000000000001h

If the inf inities produced by overflow are used as operands to other REAL or LREAL

functions, they may cause an undefined result. This undefined result is referred to as an

NaN (Not a Number). For example, the result of adding positive infinity to negative infinity

is undefined. When the ADD_REAL function is invoked with positive infinity and negative

CPU Programmer’s Reference Manual Section 3
GFK-2950M Dec 2024

Program Data 59

inf inity as its operands, it produces an NaN. If any operand of a function is a NaN, the

result will be some NaN.

Note: For NaN, the Enable Out output is Off (not energized).

IEEE 754 Representations of NaN values:

REAL LREAL

7F800001 through 7FFFFFFF 7FF8000000000001 through 7FFFFFFFFFFFFFFF

FF800001 through FFFFFFFF FFF0000000000001 through FFFFFFFFFFFFFFFF

Note: For releases 5.0 and greater, the CPU may return slightly different values for NaN

compared to previous releases. In some cases, the result is a special type of NaN

displayed as #IND in Machine Edition. In these cases, for example, EXP(-infinity), power

flow out of the function is identical to that in previous releases.

3.10 User Defined Types (UDTs)
A UDT is a structured data type consisting of elements of other selected data types. Each

top-level UDT element can be one of the following:

Top-level UDT Element Example

Simple data type, except STRING INT

Another UDT, except any in which the current UDT

is nested at any level.

Note: A UDT cannot be nested within itself.

A UDT named UDT_ABC has a top-level element

whose data type is another UDT, named UDT_2.

Array of a simple data type LREAL array of length 8.

Array of UDTs

Note: A UDT cannot be nested within itself.

A UDT named UDT_ABC has a top-level element that

is an array whose data type is another UDT, named

UDT_row.

3.10.1 Working with UDTs

Figure 20

1. In Machine Edition, add a UDT as a node under a target in the Project tab of

the Navigator. A UDT will be saved with the target in which it is used.

2. Edit the UDT properties and def ine the elements in the UDT’s structure.

3. Create a variable whose data type is the UDT. By default, the variable resides

in symbolic memory. You can convert the symbolic variable to an I/O variable

by assigning it to an I/O terminal.

4. Use the variable in logic.

CPU Programmer’s Reference Manual Section 3
GFK-2950M Dec 2024

Program Data 60

3.10.2 UDT Properties
Name: The UDT’s name. Maximum length: 32 characters.

Description: The user-def ined description of the UDT.

Memory Type: The type of symbolic or I/O variable memory in which a variable of this

UDT resides.

Non-Discrete: (Default) Word-oriented memory organized in groups of 16

contiguous bits.

Discrete: Bit-oriented memory.

Notes: You cannot nest a UDT of one memory type in a UDT of a different memory type.

Changing the memory type propagates to existing variables of this UDT only after target

validation.

Is Fixed Size: If set to True, you can increase the Size (Bytes) value to a maximum of

65,535 bytes to create a buffer at the end of the UDT. The buf fer is included in the

memory allocated to every downloaded variable of that UDT data type. Use of a buffer

may allow RUN Mode store of a UDT when the size of the UDT definition has changed.

For details, refer to RUN Mode Store of UDTs.

If set to False (default), the Size (Bytes) value is read-only and does not include a buffer

at the end of the UDT.

Size (bytes): (Read-only when Is Fixed Size is set to False.) The total number of bytes

required to store a structure variable of the user-def ined data type (UDT).

Bytes Remaining: (Read-only; displayed if Is Fixed Size is set to True.) The UDT's buffer

size; the number of bytes available before the actual size of the UDT reaches the value

of the Size (bytes) property.

CPU Programmer’s Reference Manual Section 3
GFK-2950M Dec 2024

Program Data 61

3.10.3 UDT Limits
• Maximum number of UDTs per target: 2048

• Maximum UDT size: 65,535 bytes

Note: Bit spares created to line up the end of a section of BOOL variables or arrays with the

end of a byte will count toward the maximum size.

• Maximum number of top-level UDT elements: 1024

• Maximum array size of a top-level UDT element: 1024 array elements

• UDTs do not support the following:

— Two-dimensional arrays

— Function block data types

— Enumerated data types

• You cannot nest a UDT of one memory type in a UDT of a dif ferent memory type.

• You cannot alias a variable to a UDT variable or UDT variable element.

• A FAULT contact supports a BOOL element of a UDT I/O variable, but not a BOOL

element of a UDT parameter in a UDFB or parameterized block.

• POSCON and NEGCON do not support BOOL elements of UDT parameters in

parameterized blocks or UDFBs.

3.10.4 RUN Mode Store of UDTs
An RMS can be performed on a target that contains a variable of a UDT, unless:

• An operation in the UDT editor modifies the offset or bit mask of an element that has

the same name before and af ter the operation.

• The size of the UDT def inition increases.

• Array length increases.

• The memory type of the UDT def inition changes.

• There is a data type change in the UDT def inition, except for the following

interchangeable data types:

— WORD, INT, UINT

— DWORD, DINT

• The UDT def inition is renamed.

CPU Programmer’s Reference Manual Section 3
GFK-2950M Dec 2024

Program Data 62

3.10.5 UDT Operational Notes
• By default, a UDT variable resides in symbolic memory. You can convert the symbolic

variable to an I/O variable.

• All UDT elements are public and, therefore, readable and writeable.

• Properties of elements of UDT variables:

The Input Transfer List and Output Transfer List properties are read -only and set to

False.

The Retentive property is editable only for BOOLs and only if the UDT Memory Type is

discrete. For UDTs whose Memory Type is non-discrete, a BOOL variable has its

Retentive property set to True during validation.

• UDT variables are supported in LD, FBD, and ST blocks, as well as in Diagnostic

Logic Blocks.

For additional operational notes, refer to the programmer Help.

Example

You want to set up six COMMREQ commands to send values to a series of six identical

intelligent modules that require individualized data of the same data types in the same

format, specified by the manual for the intelligent module. This data contains header

information and several words of data. You could proceed as follows:

1. Add a UDT named COMMREQ6 and edit it to contain the data in the required

data types and sequence.

2. Create an array of length 6, named ABC, of the COMMREQ6 data type.

3. The array resides in symbolic memory. You can convert the symbolic variable

to an I/O variable.

4. Populate the variable. If the value of an element needs to be the same for all

six COMMREQ6 elements, you can set up an ST for loop that uses a variable

index to populate each element with the same data, for example:

for i = 1 to 6 do

ABC[i].WaitFlag := 0;

end_for;

5. Just before issuing one or more COMMREQs, use the Move to Flat instruction

to f latten the COMMREQ6 array or one or more of its top-level elements from a

structure to a f lat series of contiguous registers in an area of % memory

supported by COMMREQ.

6. Issue the COMMREQs based on the % memory registers that you just

populated with the Move to Flat instruction.

Although you can populate the memory registers directly without a UDT and Move to

Flat, there are advantages when working with UDT variables:

• UDT variables reside in symbolic or I/O variable memory, which protects them from

memory overlaps and offers more protection against overwriting, whereas reference

memory areas offer no such protection. It is best to use reference memory just before

issuing a COMMREQ.

CPU Programmer’s Reference Manual Section 3
GFK-2950M Dec 2024

Program Data 63

• You can work with meaningful structure variable names and structure element

names.

• You can set up loops with variable indexes to populate some of the values.

3.11 Operands for Instructions
The operands for PACSystems instructions can be in the following forms:

• Constants

• Variables that are located in any of the PACSystems memory areas (%I, %Q, %M,

%T, %G, %S, %SA, %SB, %SC, %R, %W, %L, %P, %AI, %AQ)

• Symbolic variables, including I/O variables

• Parameters of a Parameterized block or C block

• Power f low

• Data f low

• Computed references such as indirect references or bit -in-word references

• BOOL arrays

An operand’s type and length must be compatible with that of the parameter it is being

passed into. PACSystems instructions and functions have the following operand

restrictions:

• Constants cannot be used as operands to output parameters because output values

cannot be written to constants.

• Variables located in %S memory cannot be used as operands to output parameters

because %S memory is read-only.

• Variables located in %S, %SA, %SB, and %SC memories cannot be used as

operands to numerical parameters such as INTs, DINTs, REALs, LREALs, etc.

• Data f low is prohibited on some input parameters of some functions. This occurs

when the function, during the course of its execution, actually writes a value to the

input parameter. Data flow is prohibited in these cases because data flow is stored in

a temporary memory and any updated value assigned to it would be inaccessible to

the user application.

• The arguments to EN, OK, and many other BOOLEAN input and output parameters

are restricted to be power f low.

• Restrictions on using Parameterized block or External block parameters as operands

to instructions or functions are documented in Section 2.

• References in discrete memory (I, Q, M, and T) must be byte-aligned.

Note the following:

• Indirect references, which are available for all WORD-oriented memories (%R, %W,

%P, %L, %AI, %AQ), can be used as arguments to instructions wherever located

variables in the corresponding WORD-oriented memory are allowed. Note that

indirect references are converted into their corresponding direct references

immediately before they are passed into an instruction or function.

CPU Programmer’s Reference Manual Section 3
GFK-2950M Dec 2024

Program Data 64

• Bit-in-word references are generally allowed on contact and coil instructions other

than legacy transition contacts and coils (POSCON, NEGCON, POSCOIL and

NEGCOIL). They are also allowed as arguments to function parameters that accept

single or unaligned bits.

BOOL arrays can be used as parameters to an instruction instead of variables of other

data types. The array must be of enough length to replace the given data type. For

example, instead of using a 16-bit INT variable, you could use a BOOL array of length 16

or more.

The following conditions must be met:

• The BOOL array must be byte-aligned, that is, the reference address of the f irst

element of the BOOL array must be 8n + 1, where n = 0, 1, 2, 3, and so on. For

example, %M00033 is byte-aligned, because 33 = (8 × 4) + 1.

• The parameter in question must support discrete memory reference addresses.

• The instruction in question must not have a Length parameter. (The Length parameter

is displayed as ?? in the LD editor until a value has been assigned.)

• The data type to be replaced with a BOOL array must be one of the following:

Data Type Minimum Length

BYTE 8

INT, UINT, WORD 16

DINT, DWORD, REAL 32

REAL 64

• Excess bits are ignored. For example, if you use a BOOL array of length 12 instead

of an 8-bit BYTE, the last four bits of the BOOL array are ignored.

3.12 Word-for-Word Changes
Many changes to the program that do not modify the size of the program are considered

word-for-word changes. Examples include changing the type of contact or coil or

changing a reference address used for an existing function block.

The following are word-for-word changes:

• Switching between two symbolic variables

• Switching between a symbolic variable and a mapped variable

• Switching between a constant and a symbolic variable

3.12.1 Exception: Symbolic Variables
Creating, deleting, or modifying a symbolic variable definition is not a word -for-word

change.

3.13 PACSystems Simulator Program Data
The following sections outline Program Data differences for the PACSystems Simulator.

CPU Programmer’s Reference Manual Section 3
GFK-2950M Dec 2024

Program Data 65

3.13.1 Variables
The PACSystems Simulator does not support I/O or backplane modules. Therefore, I/O

symbolic variables, I/O reference addresses, and EGD exchange variables will not be

updated on an input or output scan on a PACSystems Simulator.

For information on using simulated inputs with the PACSystems Simulator, refer to

GFK-2222 PACSystems CPU Reference Manual, Section 4.12 PACSystems Simulator

CPU Operation.

3.13.2 Reference Memory
Reference memory constraints on a PACSystems Simulator are equal to reference

memory constraints on a corresponding PACSystems CPU.

3.13.3 System Status References
This section details differences for system status references when utilized in logic on the

PACSystems Simulator.

%S References

Reference System Variable Definition

%S0014 #PLC_BAT Batteries do not exist for the PACSystems Simulator. Therefore, this

value is always 0 when used in logic run on a given PACSystems

Simulator.

%S0052 #DSPOVTMP

(CPx4x0 R9.99 and

later)

Displays do not exist for the PACSystems Simulator. Therefore, this

value is always 0 when used in logic run on a given PACSystems

Simulator.

%SA, %SB, and %SC References

Reference System

Variable

Definition

%SA0008 #OVR_TMP The PACSystems Simulator does not control hardware, so the CPU over

temperature bit is not applicable and is always 0.

%SA0010 #HRD_CPU The PACSystems Simulator does not control hardware, so the CPU

hardware problem bit is not applicable and is always 0.

%SA0011 #LOW_BAT Batteries do not exist for the PACSystems Simulator. Therefore, this value is

always 0 when used in logic run on a given PACSystems Simulator.

%SA0012 #LOS_RCK

The PACSystems Simulator does not support I/O or backplane modules, so

these values are always 0.

%SA0013 #LOS_IOC

%SA0014 #LOS_IOM

%SA0015 #LOS_SIO

%SA0017 #ADD_RCK

%SA0018 #ADD_IOC

%SA0019 #ADD_IOM

%SA0020 #ADD_SIO

%SA0022 #IOC_FLT

%SA0023 #IOM_FLT

CPU Programmer’s Reference Manual Section 3
GFK-2950M Dec 2024

Program Data 66

Reference System

Variable

Definition

%SA0027 #HRD_SIO

%SA0029 #SFT_IOC

%SA0030 #PNIO_ALARM

%SA0031 #SFT_SIO

%SA0032 #SBUS_ER

%SB0010 #BAD_RAM The PACSystems Simulator does not monitor RAM, so the bad RAM bit is

not applicable and is always 0.

%SB0016 #MAX_IOC The PACSystems Simulator does not support I/O or backplane modules, so

this value is always 0.

%SC0014 #HRD_FLT The PACSystems Simulator does not control hardware, so the hardware

fault bit is not applicable and is always 0.

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 67

Section 4 Ladder Diagram (LD)

Programming
This chapter describes the programming instructions that can be used to create ladder

logic programs for the PACSystems control system.

For an overview of the types of operands that can be used with instructions, refer to

Operands for Instructions in Section 3.

For CPS400 programming refer to GFK-3279 VersaMax SafetyNet Function Block

Manual for the list of allowed instructions.

The ladder logic implementation of the PACSystems instruction set includes the following

categories:

• Advanced Math Functions

• Bit Operation Functions

• Coils

• Contacts

• Control Functions

• Conversion Functions

• Data Move Functions

• Data Table Functions

• Math Functions

• Program Flow Functions

• Relational Functions

• Timers

• Motion Functions and Function Blocks

o RX3i CPUs support PLCopen compliant motion functions and function

blocks. Details of these function blocks can be found in the PACMotion

Multi-Axis Motion Controller User’s Manual, GFK-2448.

• PROFINET I/O Communication

o Consists of the PNIO_DEV_COMM function. For details, refer to the

PACSystems RX3i & RSTi-EP PROFINET I/O Controller Manual, GFK-

2571.

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 68

4.1 Advanced Math Functions
The Advanced Math functions perform logarithmic, exponential, square root,

trigonometric, and inverse trigonometric operations.

Function Mnemonic Description

Exponential EXP_REAL

EXP_LREAL

Raises e to the value specified in IN (e
IN

). Calculates the inverse natural

logarithm of the IN operand.

EXPT_REAL

EXPT_LREAL

Calculates IN1 to the IN2 power (IN1
IN2

).

Inverse Trig ACOS_REAL

ACOS_LREAL

Calculates the inverse cosine of the IN operand and expresses the

result in radians.

ASIN_REAL

ASIN_LREAL

Calculates the inverse sine of the IN operand and expresses the result

in radians.

ATAN_REAL

ATAN_LREAL

Calculates the inverse tangent of the IN operand and expresses the

result in radians.

Logarithmic LN_REAL

LN_LREAL

Calculates the natural logarithm of the operand IN.

LOG_REAL

LOG_LREAL

Calculates the base 10 logarithm of the operand IN.

Square Root SQRT_DINT Calculates the square root of the operand IN, a double-precision integer,

and stores in Q the double-precision integer portion of the square root

of the input IN.

SQRT_INT Calculates the square root of the operand IN, a single-precision integer,

and stores in Q the single-precision integer portion of the square root of

the input IN.

SQRT_REAL Calculates the square root of the operand IN, a real number, and stores

the real-number result in Q SQRT_LREAL

Trig COS_REAL

COS_LREAL

Calculates the cosine of the operand IN, where IN is expressed in

radians.

 SIN_REAL

SIN_LREAL

Calculates the sine of the operand IN, where IN is expressed in radians.

 TAN_REAL

TAN_LREAL

Calculates the tangent of the operand IN, where IN is expressed in

radians.

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 69

4.1.1 Exponential/Logarithmic Functions
When an exponential or logarithmic function receives power f low, it performs the

appropriate operation on the REAL or LREAL input value(s) and places the result in

output Q.

The inverse natural log (EXP) function

raises e to the power specified by IN.

The Power of X (EXPT) function raises

the value of input IN1 to the power

specified by the value IN2.

The Base 10 Logarithm (LOG) function

calculates the base 10 logarithm of IN.

The Natural Logarithm (LN) function

calculates the logarithm of IN.

The power f low output is energized when the function is performed, unless or one of the

following invalid conditions occurs:

• IN < 0, for LOG or LN

• IN1 < 0, for EXPT

• IN is negative inf inity, for EXP

• IN, IN1, or IN2 is a NaN (Not a Number)

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 70

Operands of the Exponential/Logarithmic Functions

Parameter Description Allowed Operands Optional

IN or IN1 For EXP, LOG, and LN, IN contains the REAL or

LREAL value to be operated on.

The EXPT function has two inputs, IN1 and IN2. For

EXPT, IN1 is the base value and IN2 is the

exponent.

All except variables

located in %S—%SC

No

IN2 (EXPT) The REAL or LREAL exponent for EXPT. All except variables

located in %S—%SC

No

Q Contains the REAL or LREAL

logarithmic/exponential value of IN or of IN1 and

IN2.

All except constants and

variables located in %S—

%SC

No

4.1.2 Square Root

Mnemonics:

SQRT_DINT

SQRT_INT

SQRT_REAL

SQRT_LREAL

When the Square Root function receives power flow, it finds the square root of IN and
stores the result in Q. The output Q must be the same data type as IN.

The power f low output is energized when the function is performed without

Overf lowOverf low unless one of these invalid REAL operations occurs:

If IN < 0, Q is set to 0 and ENO is set FALSE.

If IN is a NaN (Not a Number), Q will also be a NaN value and ENO will be set false.

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 71

Example

The square root of the integer number located at %AI0001 is placed into %R00003 when

%I00001 is ON.

Figure 21

Operands for the Square Root Function

Parameter Description Allowed Operands Optional

IN The value to calculate the square root of.

If IN < 0, the function does not pass power

flow.

All except variables located in %S -

%SC

No

Q The calculated square root. All except constants and variables

located in %S - %SC

No

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 72

4.1.3 Trig Functions

Mnemonics:

SIN_REAL

SIN_LREAL

COS_REAL

COS_LREAL

TAN_REAL

TAN_LREAL

The SIN, COS, and TAN functions are used to f ind the trigonometric sine, cosine, and

tangent, respectively, of an input whose units are radians. When one of these functions

receives power f low, it computes the sine (or cosine or tangent) of IN and stores the

result in output Q.

While these trig functions will accept as input the full range of REAL or LREAL, the

outputs lose accuracy as the input value’s magnitude approaches the type’s value

precision range. For REAL, the value precision range is –224 < IN < 224, (224 is

approximately 107). For LREAL, the value precision range is –253 < IN < 253, (253 is

approximately 1015). As input values approach and exceed this range, the inaccurate

values in the output may differ between PACSystems CPU models. The power flow

output is energized unless the following invalid condition occurs:

• IN or Q is a NaN (Not a Number)

Operands of Trig Functions

Parameter Description Allowed Operands Optional

IN

Number of radians.

REAL: –224 < IN < 224

LREAL: –253 < IN < 253

All except variables located in %S—%SC No

Q
Trigonometric value of IN

(REAL or LREAL)

All except constants and variables

located in %S—%SC
No

Example

The COS of the value in V_R00001 is placed in V_R00033.

Figure 22

4.1.4 Inverse Trig – ASIN, ACOS, and ATAN

Mnemonics:

ASIN_REAL

ASIN_LREAL

ACOS_REAL

ACOS_LREAL

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 73

ATAN_REAL

ATAN_LREAL

When an Inverse Sine (ASIN), Inverse Cosine (ACOS), or Inverse Tangent (ATAN)

function receives power f low, it respectively computes the inverse sine, inverse cosine

or inverse tangent of IN and stores the result in radians in output Q.

The ASIN and ACOS functions accept a narrow range of input values, where –1 ≤ IN ≤

1. Given a valid value for the IN parameter, the ASIN function produces a result Q such

that:

2

π
Q

2

π
ASIN(IN) −=

The ACOS function produces a result Q such that:

πQ0ACOS(IN) −=

The ATAN function accepts the broadest range of input values, where –∞ ≤ IN ≤ +∞.

Given a valid value for the IN parameter, the ATAN function produces a result Q such

that:

2

π
Q

2

π
ATAN(IN) −=

The power flow output is energized unless one of the following invalid conditions occurs:

• IN is outside the valid range for ASIN, ACOS, or ATAN

• IN is a NaN (Not a Number)

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 74

Operands of Inverse Trig Functions

Parameter Description Allowed Operands Optional

IN The REAL or LREAL value to process.

ASIN and ACOS: -1  IN  1

ATAN: –∞ ≤ IN ≤ +∞

All except variables located in

%S - %SC

No

Q Trigonometric value of IN. REAL or LREAL

value expressed in radians.

ASIN: (-/2)  Q  (/2)

ACOS: 0  Q  

ATAN: (-/2)  Q  (/2)

All except constants and

variables located in %S - %SC

No

4.2 Bit Operation Functions
The Bit Operation functions perform comparison, logical, and move operations on bit

strings.

Function Mnemonics Description

Bit Position BIT_POS_DWORD

BIT_POS_WORD

Bit Position. Locates a bit set to 1 in a bit string.

Bit Sequencer BIT_SEQ Bit Sequencer. Sequences a string of bit values, starting at ST.

Performs a bit sequence shift through an array of bits. The

maximum length allowed is 256 words.

Bit Set, Clear BIT_SET_DWORD

BIT_SET_WORD

Bit Set. Sets a bit in a bit string to 1.

BIT_CLR_DWORD

BIT_CLR_WORD

Bit Clear. Clear a bit within a string by setting that bit to 0.

Bit Test BIT_TEST_DWORD

BIT_TEST_WORD

Bit Test. Tests a bit within a bit string to determine whether that bit

is currently 1 or 0.

Logical AND AND_DWORD

AND_WORD

Compares the bit strings IN1 and IN2 bit by bit. When a pair of

corresponding bits are both 1, places a 1 in the corresponding

location in output string Q; otherwise, places a 0 in the

corresponding location in Q.

Logical NOT NOT_DWORD

NOT_WORD

Logical invert. Sets the state of each bit in output bit string Q to the

opposite state of the corresponding bit in bit string IN1.

Logical OR OR_DWORD

OR_WORD

Compares the bit strings IN1 and IN2 bit by bit. When a pair of

corresponding bits are both 0, places a 0 in the corresponding

location in output string Q; otherwise, places a 1 in the

corresponding location in Q.

Logical XOR XOR_DWORD

XOR_WORD

Compares the bit strings IN1 and IN2 bit by bit. When a pair of

corresponding bits are different, places a 1 in the corresponding

location in the output bit string Q; when a pair of corresponding

bits are the same, places a 0 in Q.

Masked

Compare

MASK_COMP_DWORD

MASK_COMP_WORD

Masked Compare. Compares the contents of two separate bit

strings with the ability to mask selected bits.

Rotate Bits ROL_DWORD

ROL_WORD

Rotate Left. Rotates all the bits in a string a specified number of

places to the left.

ROR_DWORD

ROR_WORD

Rotate Right. Rotates all the bits in a string a specified number of

places to the right.

Shift Bits SHIFTL_DWORD

SHIFTL_WORD

Shift Left. Shifts all the bits in a word or string of words to the left

by a specified number of places.

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 75

Function Mnemonics Description

SHIFTR_DWORD

SHIFTR_WORD

Shift Right. Shifts all the bits in a word or string of words to the

right by a specified number of places.

4.2.1 Data Lengths for the Bit Operation Functions
The Bit Operation functions operate on a single WORD or DWORD of data or up to 256

WORDs or DWORDs that occupy adjacent memory locations.

Bit Operation functions treat the WORD or DWORD data as a continuous string of bits,

with bit 1 of the first WORD or DWORD being the Least Significant Bit (LSB). The last bit

of the last WORD or DWORD is the Most Significant Bit (MSB). For example, if you

specify three WORDs of data beginning at reference %R0100, they are treated as 48

contiguous bits.

Figure 23

 WARNING

Overlapping input and output reference address ranges in multiword functions is not

recommended, as it can produce unexpected results

Note that for all functions (Bit Test, Bit Set, Bit Clear, and Bit Position) that return a bit

position indicator as an output parameter (POS), bit position numbering starts at 1, not

0, as shown in the diagram above.

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 76

4.2.2 Bit Position

Figure 24

The Bit Position function locates a bit set to 1 in a bit string.

Each scan that power is received, the function scans the bit string starting at IN. When

the function stops scanning, either a bit equal to 1 has been found or the entire length of

the string has been scanned.

POS is set to the position within the bit string of the first non-zero bit; POS is set to zero

if no non-zero bit is found.

A string length of 1 to 256 WORDs or DWORDs can be selected. The function passes

power f low to the right whenever it receives power.

Operands of Bit Position

Parameter Description Allowed Operands Optional

Length (displayed

as ??)

The number of WORDs or DWORDs in the

bit string. 1  Length  256.

Constants No

IN The data to operate on All. Constants may only be

used when Length is 1.

No

Q Energized if a bit set to 1 is found Flow Yes

POS An unsigned integer giving the position of

the first nonzero bit found, or zero if no

non-zero bit is found

All except constants and

variables located in %S -

%SC

No

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 77

Examples

When V_I00001 is set, the bit string starting at V_M00001 is searched until a bit equal

to 1 is found, or 6 words have been searched. Coil V_Q00001 is turned on. If a bit equal

to 1 is found, its location within the bit string is written to V_AQ0001 and V_Q00002 is

turned on. For example, if V_00001 is set, bit V_M00001 is 0, and bit V_M0002 is 1, the

value written to V_AQ0001 is 2.

Figure 25

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 78

4.2.3 Bit Sequencer
The Bit Sequencer (BIT_SEQ) function performs a bit sequence shift through a series of

contiguous bits.

The operation of BIT_SEQ depends on the value of the reset input (R), and both the

current value and previous value of the enabling power f low input (EN):

Figure 26

R Current

Execution

EN Previous

Execution

EN Current

Execution

Bit Sequencer Execution

ON ON/OFF ON/OFF Bit sequencer resets

OFF OFF ON Bit sequencer increments/decrements by 1

OFF Bit sequencer does not execute

ON ON/OFF Bit sequencer does not execute

The reset input (R) overrides the enabling power f low (EN) and always resets the

sequencer. When R is active, the current step number is set to the value of the optional

N operand. If you did not specify N, the step number is set to 1. All bits in the bit

sequencer, ST, are set to 0, except for the bit pointed to by the current step, which is set

to 1.

When EN is active and R is not active, and the previous EN was OFF, the bit pointed to

by the current step number is cleared. The current step number is incremented or

decremented, based on the direction (DIR) operand. Then the bit pointed to by the new

step number is set to 1.

• When the step number is being incremented and it goes outside the range of

(1  step number  Length), it is set back to 1.

• When the step number is being decremented and it goes outside the range of

(1  step number  Length), it is set to Length.

The parameter ST is optional. If it is not used, BIT_SEQ operates as described above,

except that no bits are set or cleared. The function just cycles the current step number

through its allowed range.

BIT_SEQ passes power to the right whenever it receives power.

Note:

• Before using the BIT_SEQUENCER function block, the current step number (Word 1 in

the control block) must be set to an integer value between 1 and the length, as defined in

the function block properties. Failure to properly initialize the step number in the

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 79

BIT_SEQUENCER function block may result in the CPU stopping and going to an error

state.

• Asserting the Reset parameter (R), before using the BIT SEQUENCER function block

assures that the current step number is set to a valid value.

Memory Required for Bit Sequencer

Each bit sequencer uses a three-word array of control block information. The control

block can be a symbolic variable, or it can be located in %R, %W, %L, or %P memory:

Word 1 current step number

Word 2 length of sequence (in bits)

Word 3 control word

Note: Do not write to the control block memory registers from other functions.

Word 3 (the control word) stores the state of the Boolean inputs and outputs of its

associated function in the following format:

Figure 27

Note:

• Bits 0 through 13 are not used.

• In the N operand, bits are entered as 1 through 16, not 0 through 15.

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 80

Operands for Bit Sequencer

 WARNING

Do not write to the Control Block memory with other instructions. Overlapping references may

cause erratic operation of BIT_SEQ.

Parameter Description Allowed

Operands

Optional

Address (????) Beginning address of the Control Block, which is a

three-word array:

Word 1: current step number

Word 2: length of sequence in bits

Word 3: control word, which tracks the status of the

last enabling power flow and the status of the

power flow to the right.

Symbolic variables,

variables located in

%R, %W, %P, or %L

No

Length (??) The number of bits in the bit sequencer, ST, that

BIT_SEQ will step through. 1  Length  256.

Constants No

R When R is energized, the step number of BIT_SEQ

is set to the value in N (default = 1), and the bit

sequencer, ST, is filled with zeroes, except for the

current step number bit.

Flow No

DIR (Direction) When DIR is energized, the step

number of BIT_SEQ is incremented prior to the

shift. Otherwise, it is decremented.

Flow No

N The value that the step number is set to when R is

energized. Default value is 1. 1  N  Length. If N

< 1, the step number will be reset to 1 when R is

energized. If N > Length, the step number will be

reset to Length. Must be an integer variable or

constant.

All except variables

located in %S - %SC

Yes

ST Contains the first word of the bit sequencer.

If ST is not used, the Bit Sequencer function

operates as described above, except that no bits

are set or cleared. The function just cycles the

current step number (in word 1 of the control block)

through its allowed range.

If ST is in %M memory and the Length is 3, the bit

sequencer occupies 3 bits; the other 5 bits of the

byte are not used. If ST is in %R memory, and the

Length is 17, the bit sequencer uses 4 bytes, all of

%R1 and %R2.

All except constants,

flow, and variables

located in %S

Yes

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 81

Example

In the following example, a #FST_SCN system variable is used to set CLEAR to ON for

one scan. This sets the step number in Word 1 of the Bit Sequencer’s control block to an

initial value of 3.

The Bit Sequencer operates on register memory %R00001. Its control block is stored in

registers %R0010, %R0011, and %R0012. When CLEAR is active, the sequencer is

reset and the current step is set to step number 3, as specified in N. The third bit of

%R0001 is set to one and the other seven bits are set to zero.

When NXT_CYC is active and CLEAR is not active, the bit for step number 3 is cleared

and the bit for step number 2 or 4 (depending on whether DIRECTION is energized) is

set.

Figure 28

4.2.4 Bit Set, Bit Clear

Mnemonics

BIT_SET_DWORD BIT_SET_WORD

BIT_CLR_DWORD

BIT_CLR_WORD

The Bit Set (BIT_SET_DWORD and BIT_SET_WORD) function sets a bit in a bit string

to 1. The Bit Clear (BIT_CLR_DWORD and BIT_CLR_WORD) function clears a bit in a

string by setting the bit to 0.

Each scan that power is received, the function sets or clears the specified bit. If a variable

rather than a constant is used to specify the bit number, the same function can set or

clear different bits on successive scans. Only one bit is set or cleared, and the transition

information for that bit is updated. The transition status of all the other bits in the bit string

is not af fected.

The function passes power f low to the right, unless the value for BIT is outside the

specif ied range.

Operands for Bit Set, Bit Clear

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 82

Parameter Description Allowed Operands Optional

Length (??) The number of WORDs or DWORDs in the

bit string. 1  Length  256.

Constants No

IN The first WORD or DWORD of the data to

process

All except constants, flow, and

variables located in %S

No

BIT The number of the bit to set or clear in IN. 1

 BIT  (16 × Length) for WORD.

1  BIT  (32 × length) for DWORD

All except variables located in %S -

%SC

No

Example 1

Figure 29

Whenever input V_I0001 is set, bit 12 of the string beginning at reference %R00040 (as

specif ied by variable V_R0040) is set to 1.

Example 2

Figure 30

Whenever V_I00001 is set, %M00043, the third bit of the string beginning at %M00041,

is set to 1. Note that neither the status nor the transition value of any of the other bits in

the same byte as %M00043 (e.g., %M00041, %M00042, %M00044, etc.) is affected by

the BIT_SET function

4.2.5 Bit Test

Figure 31

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 83

When the Bit Test function receives power f low, it tests a bit within a bit string to

determine whether that bit is currently 1 or 0. The result of the test is placed in output Q.

Each scan that power is received, the Bit Test function sets its output Q to the same state

as the specified bit. If a register rather than a constant is used to specify the bit number,

the same function can test dif ferent bits on successive sweeps. If the value of BIT is

outside the range (1  BIT  (16 × length) for a WORD and 1  BIT  (32 × length) for a

DWORD), then Q is set OFF.

You can specify a string length of 1 to 256 WORDs or DWORDs.

Note: When using the Bit Test function, the bits are numbered 1 through 16 for a WORD, not 0

through 15. They are numbered 1 through 32 for a DWORD.

Operands for Bit Test

Parameter Description Allowed

Operands

Optional

Length (??) The number of WORDs or DWORDs in the data string

to test. 1  Length  256.

Constant No

IN The first WORD or DWORD in the data to test All No

BIT The number of the bit to test in IN. 1  BIT 

(16×Length).

All except variables

located in %S - %SC

No

Q The state of the specific bit tested; Q is energized if

the bit tested is a 1.

Flow No

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 84

Example 1

Figure 32

When input V_I0001 is set, the bit at the location contained in reference PICKBIT is

tested. The bit is part of string PRD_CDE.

If it is 1, output Q passes power f low to the ADD function, causing 1 to be added to the

current value of the ADD function input IN1.

Example 2

Figure 33

When input V_I0001 is set, the bit at the location contained in reference PICKBIT is

tested. The bit is part of string PRD_CDE.

If it is 1, output Q passes power f low and the coil V_Q0001 is turned on.

4.2.6 Logical AND, Logical OR, and Logical XOR

Figure 34

Each scan that power is received, the Logical function examines each bit in bit string IN1

and the corresponding bit in bit string IN2, beginning with the least significant bit in each.

You can specify a string length of 1 to 256 WORDs or DWORDs. The IN1 and IN2 bit

strings specif ied may overlap.

Logical AND

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 85

If both bits examined by the Logical AND function are 1, AND places a 1 in the

corresponding location in output string Q. If either bit is 0 or both bits are 0, AND places

a 0 in string Q in that location.

AND passes power f low to the right whenever it receives power.

Tip

You can use the Logical AND function to build masks or screens, where only certain bits are

passed (the bits opposite a 1 in the mask), and all other bits are set to 0.

Logical OR

If either bit examined by the Logical OR function is 1, OR places a 1 in the corresponding

location in output string Q. If both bits are 0, Logical OR places a 0 in string Q in that

location. The function passes power f low to the right whenever it receives power.

Tip

• You can use the Logical OR function to combine strings or to control many outputs with

one simple logical structure. The Logical OR function is the equivalent of two relay

contacts in parallel multiplied by the number of bits in the string.

• You can use the Logical OR function to drive indicator lamps directly from input states or

to superimpose blinking conditions on status lights.

Logical XOR

When the Exclusive OR (XOR) function receives power f low, it compares each bit in bit

string IN1 with the corresponding bit in string IN2. If the bits are different, a 1 is placed in

the corresponding position in the output bit string.

For each pair of bits examined, if only one bit is 1, then XOR places a 1 in the

corresponding location in bit string Q. XOR passes power f low to the right whenever it

receives power.

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 86

Tip for Logical XOR

• If string IN2 and output string Q begin at the same reference, a 1 placed in string IN1 will

cause the corresponding bit in string IN2 to alternate between 0 and 1, changing state

with each scan if power is received.

• You can program longer cycles by pulsing the power flow to the function at twice the

desired rate of flashing. The power flow pulse should be one scan long (one-shot type

coil or self-resetting timer).

• You can use XOR to quickly compare two bit strings, or to blink a group of bits at the rate

of one ON state per two scans.

• XOR is useful for transparency masks.

Operands for Logical AND, OR, and XOR

Parameter Description Allowed Operands Optional

Length (??) The number of words in the bit string on

which to perform the logical operation.

1  Length  256.

Constant No

IN1 The first WORD or DWORD of the first

string operate on.

All No

IN2 (Must be the same

data type as IN1.)

The first WORD or DWORD of the

second string to operate on.

All No

Q (Must be the same

data type as IN1.)

The first WORD or DWORD of the

operation’s result.

All except constants and

variables located in %S

memory

No

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 87

Example: Logical AND

When input v_I0001 is set, the 16-bit strings represented by variables WORD1 and

WORD2 are examined. The logical AND places the results in output string RESULT.

Figure 35

Example: Logical XOR

Whenever V_I0001 is set, the bit string represented by the variable WORD3 is cleared

(set to all zeroes).

Figure 36

4.2.7 Logical NOT

Figure 37

When the Logical Not or Logical Invert (NOT) function receives power f low, it sets the

state of each bit in the output bit string Q to the opposite of the state of the corresponding

bit in bit string IN1.

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 88

All bits are altered on each scan that power is received, making output string Q the logical

complement of input string IN1. Logical NOT passes power flow to the right whenever it

receives power. You can specify a string length of 1 to 256 WORDs or DWORDs

Operands for Logical NOT
Parameter Description Allowed Operands Optional

Length (??)
The number of WORDs or DWORDs in the bit

string to NOT. 1  Length  256.
Constant No

IN1
The first WORD or DWORD of the input string to

NOT.
All No

Q (Must be the same

data type as IN1)
The first WORD or DWORD of the NOT's result.

All except constants

and variables located in

%S memory

No

Example

When input V_I0001 is set, the bit string represented by the variable A is negated. Logical

NOT stores the resulting inverse bit string in variable B. Variable A retains its original bit

string value.

Figure 38

4.2.8 Masked Compare

Figure 39

The Masked Compare (MASK_COMP_DWORD and MASK_COMP_WORD) function

compares the contents of two-bit strings. It provides the ability to mask selected bits.

Tip

Input string 1 might contain the states of outputs such as solenoids or motor starters. Input string

2 might contain their input state feedback, such as limit switches or contacts.

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 89

When the function receives power flow, it begins comparing the bits in the first string with

the corresponding bits in the second string. Comparison continues until a miscompare is

found or until the end of the string is reached.

The BIT input stores the bit number where the next comparison should start. Ordinarily,

this is the same as the number where the last miscompare occurred. Because the bit

number of the last miscompare is stored in output BN, the same reference can be used

for both BIT and BN. The comparison begins 1bit following BIT; therefore, the initial value

of BIT should be 1 less first bit to be compared (for example, zero (0) to begin comparison

at %I00001). Using the same reference for BIT and BN causes the compare to start at

the next bit position after a miscompare; or, if all bits compared successfully upon the

next invocation of the function, the compare starts at the beginning.

Tip

If you want to start the next comparison at some other location in the string, you can enter different

references for BIT and BN. If the value of BIT is a location that is beyond the end of the string, BIT

is reset to 0 before starting the next comparison.

The function passes power f low whenever it receives power. The other outputs of the

function depend on the state of the corresponding mask bit.

If all corresponding bits in strings IN1 and IN2 match, the function sets the

miscompare output MC to 0 and BN to the highest bit number in the input strings. The

comparison then stops. On the next invocation of a Masked Compare, it is reset to 0.

If a Miscompare is found, that is, if the two bits being compared are not the same, the

function checks the correspondingly numbered bit in string M (the mask).

If the mask bit is a 1, the comparison continues until it reaches another miscompare or

the end of the input strings.

If a miscompare is detected and the corresponding mask bit is a 0, the function does the

following:

1. Sets the corresponding mask bit in M to 1.

2. Sets the miscompare (MC) output to 1.

3. Updates the output bit string Q to match the new content of mask string M.

4. Sets the bit number output (BN) to the number of the miscompared bit.

5. Stops the comparison.

Operands for Masked Compare Function

Parameter Description Allowed Operands Optional

Length (??) The number of DWORDs or WORDs in the

two compared strings.

DWORD: 1  Length  2,048

WORD: 1  Length  4,096

Constant No

IN1 The first bit string to be compared All. Constants are legal only when

Length is 1

No

IN2 The second bit string to be compared All. Constants are legal only when

Length is 1

No

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 90

Parameter Description Allowed Operands Optional

M The bit string mask containing the ongoing

status of the compare

All except flow or variables in %S

memory. Constants are legal only

when Length is 1

No

BIT BIT+1=the bit number where the next

comparison starts

All except variables in %S - %SC

memories

No

Q The output copy of the compare mask bit

string

All except constants No

BN The number of the bit where the latest

miscompare occurred, or the highest bit

number in the inputs if no miscompare

occurred

All except constants and variables in

%S memory

No

MC Can be used to determine if a miscompare

has occurred.

flow Yes

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 91

Masked Compare Example 1

Figure 40

When %I00001 is set, MASK_COMP_WORD compares the bits represented by the

reference VALUES against the bits represented by the reference EXPECT. Comparison

begins at BITNUM+1. If an unmasked miscompare is detected, the comparison stops.

The corresponding bit is set in the mask RESULT. BITNUM is updated to contain the bit

number of the miscompared bit. In addition, the output string NEWVALS is updated with

the new value of RESULT, and coil %Q00002 is turned on. Coil %Q00001 is turned on

whenever MASK_COMP_WORD receives power f low.

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 92

Masked Compare Example 2

Figure 41

On the f irst scan, the Masked Compare Word function executes. %M0001 through

%M0016 is compared with %M0017 through %M0032. %M0033 through %M0048

contains the mask value. The value in %R0001 determines the bit position in the two

input strings where the comparison starts.

Before the function is executed, the contents of the above references are:

Figure 42

The #FST_SCN contact forces one and only one execution; otherwise, the function

would repeat with possibly unexpected results.

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 93

4.2.9 Rotate Bits

Mnemonics:

ROL_DWORD

ROL_WORD

ROR_DWORD

ROR_WORD

When receiving power flow, the Rotate Bits Right (ROR_DWORD and ROR_WORD)

and Rotate Bits Left (ROL_DWORD and ROL_WORD) functions rotate all the bits in a

string of WORDs or DWORDs N positions respectively to the right or to the lef t. When

rotation occurs, the specified number of bits is rotated out of the input string respectively

to the right or to the lef t and back into the string on the other side.

The Rotate Bits function passes power f low to the right, unless the number of bits to

rotate is less than 0 or is greater than the total length of the string. The result is placed

in output string Q. If you want the input string to be rotated, the output parameter Q must

use the same memory location as the input parameter IN. The entire rotated string is

written on each scan that power is received.

A string length of 1 to 256 words or double words can be specif ied.

Operands for Rotate Bits

Parameter Description Allowed Operands Optional

Length (??) The number of WORDs or DWORDs

in the string to be rotated. 1  Length 

256.

Constant No

IN The string to rotate All. Constants are legal when Length

is 1

No

N The number of positions to rotate.

0 ≤ N ≤ Length.

All except variables in %S - %SC

memories

No

Q The resulting rotated string All except constants and variables in

%S memory

No

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 94

Example

Figure 43

Whenever input V_I0001 is set, the input bit string in location %R0001 is rotated left 3

bits and the result is placed in %R00002. The actual input bit string %R0001 is left

unchanged. If the same reference had been used for IN and Q, a rotation would have

occurred in place.

Figure 44

4.2.10 Shift Bits

Mnemonics:

SHIFTL_DWORD

SHIFTL_WORD

SHIFTR_DWORD

SHIFTR_WORD

Shift Left

When the Shif t Left (SHIFTL_WORD) function receives power flow, it shifts all the bits in

a word or group of words to the left by a specified number of places, N. When the shift

occurs, the specified number of bits is shifted out of the output string to the left. As bits

are shif ted out of the high end of the string (Most Significant Bit (MSB)), the same number

of bits is shif ted in at the low end (Least Signif icant Bit (LSB)). The SHIFTL_DWORD

function operates in a similar manner on DWORDs instead of WORDs.

Figure 45

Shift Right

When the Shif t Right (SHIFTR_WORD) function receives power flow, it shifts all the bits

in a word or group of words a specified number of places to the right (N). When the shift

occurs, the specified number of bits is shifted out of the output string to the right. As bits

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 95

are shif ted out of the low end of the string (LSB), the same number of bits is shifted in at

the high end (MSB).

Figure 46

Shift Left and Shift Right

A string length (Length) of 1 to 256 words can be specif ied.

The bits being shifted into the beginning of the string are specified via input parameter

B1. If the value of N is greater than 1, each bit is filled with the same value (0 or 1). This

can be:

• The Boolean output of another program function.

• All 1s. To do this, use the #AWL_ON (always on) system bit (in memory location

%S7), as a permissive to input B1.

• All 0s. To do this, use the #ALW_OFF (always off) system bit (in memory location

%S8), as a permissive to input B1.

The Shif t Bits function passes power flow to the right, unless the number of bits specified

to shif t is zero or is greater than the array size.

Output Q is the shifted copy of the input string. If you want the input string to be shifted,

the output parameter Q must use the same memory location as the input parameter IN.

The entire shif ted string is written on each scan that power is received. Output B2 is the

last bit shifted out. For example, if four bits were shifted, B2 would be the fourth bit shifted

out.

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 96

Operands for Shift Left, Shift Right, Shift Left and Shift

Right

Parameter Description Allowed Operands Optional

Length (??) The number of WORDs or DWORDs in the

string. 1  Length  256.

Constants. No

IN The string of WORDs or DWORDs to shift All. Constants are legal

only when Length = 1.

No

N The number of places (bits) to shift the array.

0 ≤ N ≤ Length

If N is 0, no shift occurs, but power flow is

generated.

If N is greater than the number of bits in the

string (Length), all bits in Q are set to the value

B1, OK is set FALSE, and B2 is set to B1.

All except variables in

%S— %SC memories

No

B1 The bit value to shift into the array flow No

B2 The bit value of the last bit shifted out of the

array.

flow Yes

Q

(Must be the

same data type

as IN)

The first WORD or DWORD of the shifted array All except constants and

variables in %S memory.

No

Example

Figure 47

Whenever input V_I0001 is set, the bits in the input string that begins at WORD1 are

copied to the output bit string that starts at WORD2. WORD2 is left-shifted by 8 bits, as

specified by the input N. The resulting open bits at the beginning of the output string are

set to the value of V_I0002.

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 97

4.3 Coils
Coils are used to control the discrete (BOOL) references assigned to them. Conditional

logic must be used to control the flow of power to a coil. Coils cause action directly. They

do not pass power flow to the right. If additional logic in the program should be executed

as a result of the coil condition, you can use an internal reference for the coil or a

continuation coil/contact combination.

A continuation coil does not use an internal reference. It must be followed by a

continuation contact at the beginning of any rung following the continuation coil.

Coils are always located at the rightmost position of a line of logic.

4.3.1 Coil Checking
The level of coil checking is set to Show as error by default. If you want a coil conflict to

result in a warning instead of this error, or if you want no warning at all, edit the Controller

option: Multiple Coil Use Warning in the programming sof tware.

The Show as warning option enables you to use any coil reference with multiple Coils,

Set Coils, and Reset Coils, but you will be warned at validation time every time you do

so. With both the Show as warning and the no warning options, a reference can be set

ON by either a Set Coil or a normal Coil and can be set OFF by a Reset Coil or by a

normal Coil.

4.3.2 Graphical Representation of Coils
The programming software displays the COIL, NCCOIL, SETCOIL, and RESETCOIL

instructions differently depending on the retentive state of the BOOL variables assigned

to them. Examples are provided in the discussion of each type of coil. For a discussion

of retentiveness, refer to Retentiveness of Logic and Data in Section 3.

Coil (Normally Open)

Figure 48

When a COIL receives power flow, it sets its associated BOOL variable ON (1). When it

receives no power flow, it sets the associated BOOL variable OFF (0). COIL can be

assigned a retentive variable or a non-retentive variable.

Valid memory areas: %I, %Q, %M, %T, %SA - %SC, and %G. Symbolic discrete

variables are permitted. Bit-in-word references on any word-oriented memory except

%AI, including symbolic non-discrete memory, are also permitted.

Continuation Coil

Figure 49

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 98

A continuation coil instructs the PLC to continue the present rung's LD logic power flow

value (TRUE or FALSE) at the continuation contact on a following rung.

The f low state of the continuation coil is passed to the continuation contact.

Notes:

• If the flow of logic does not execute a continuation coil before it executes a

continuation contact, the state of the continuation contact is no flow (FALSE).

• The continuation coil and the continuation contact do not use parameters and do

not have associated variables.

• You can have multiple rungs with continuation contacts after a single continuation

coil.

• You can have multiple rungs with continuation coils before one rung with a

continuation contact.

Negated Coil

Figure 50

When it does not receive power flow, a negated coil (NCCOIL) sets a discrete reference

ON. When it does receive power flow, NCCOIL sets a discrete reference OFF. NCCOIL

can be assigned a retentive variable or a non-retentive variable.

Valid memory areas: %I, %Q, %M, %T, %SA - %SC, and %G. Symbolic discrete

variables are permitted. Bit-in-word references on any word-oriented memory except

%AI, including symbolic non-discrete memory, are also permitted.

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 99

4.3.3 Set Coil, Reset Coil

Figure 51

The SET and RESET coils can be used to keep (i.e. latch) the state of a reference either

ON or OFF.

 WARNING

SET / RESET coils write an undefined result to the transition bit for the given reference. This result

differs from that written by Series 90-70 CPUs and could change for future PACSystems CPU

models.

Because they write an undefined result to transition bits, do not use SET or RESET coils with

references used on POSCON or NEGCON transition contacts.

When a SET coil receives power flow, it sets its discrete reference ON. When a SET coil

does not receive power f low, it does not change the value of its discrete reference.

Therefore, whether or not the coil itself continues to receive power f low, the reference

stays ON until the reference is reset by other logic, such as a RESET coil.

When a RESET coil receives power flow, it resets a discrete reference to OFF. When a

RESET coil does not receive power f low, it does not change the value of its discrete

reference. Therefore, its reference remains OFF until it is set ON by other logic, such as

a SET coil.

The last solved SET coil or RESET coil of a pair takes precedence.

The SET and RESET coils can be assigned a retentive variable or a non-retentive

variable.

Valid memory areas: %I, %Q, %M, %T, %SA - %SC, and %G. Symbolic discrete

variables are permitted. Bit-in-word references on any word-oriented memory except

%AI, including symbolic non-discrete memory, are also permitted.

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 100

Example of Set Coil, Reset Coil

Figure 52

The coil represented by E1 is turned ON when reference E2 or E6 is ON and is turned

OFF when reference E5 or E3 is ON

4.3.4 Transition Coils
PACSystems controllers provide four transition coils: PTCOIL, NTCOIL, POSCOIL, and

NEGCOIL.

POSCOIL and NEGCOIL are updated every time they are called.

PTCOIL and NTCOIL are updated once per CPU scan.

For examples showing the differences in the operation of the two types of transition coils,

see Examples Comparing PTCOIL and POSCOIL.

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 101

POSCOIL and NEGCOIL

 WARNING

• These transition coil instructions should not be used in a parameterized block or user -

defined function block (UDFB) with a parameter or member. In these cases, an R_TRIG or

F_TRIG should be used instead.

• Do not override a transition coil by putting a force on its reference bit. If a transition coil is

overridden, the coil has no effect on the bit, and if the override is then removed, the coil

might be set ON for one sweep. This can cause unexpected behavio r in the Controller logic

and in field devices attached to the Controller.

• Do not write to the reference bit of a transition coil using any other instruction or from an

external device. Doing so will destroy the coil’s one-shot nature and the coil may not behave

as described.

• Do not use a transition contact with the same reference address used on a transition coil

because the value of the transition bit, which stores the power flow value into the coil, will

be affected.

Positive Transition Coil (POSCOIL) Negative Transition Coil (NEGCOIL)

If:

• the transition bit is OFF, and

• the input power flow is ON,

the POSCOIL sets the reference bit of its associated

variable ON until the coil is executed again. When

the coil is executed again, it sets its reference bit

OFF.

Note: When the Positive Transition Coil

sets its reference bit ON, it also

sets its transition bit to ON. The

next time the Positive Transition

coil executes, it finds its transition

bit set to ON and sets its reference

bit to OFF.

If:

• the transition bit is OFF, and

• the input power flow input is OFF,

the NEGCOIL sets the reference bit of its associated

variable ON until the coil is executed again. When the

coil is executed again, it sets its reference bit OFF.

Note: When the Negative Transition Coil

sets its reference bit ON, it also sets

its transition bit to ON. The next time

the Negative Transition Coil

executes, it finds the transition bit set

to ON and sets its reference bit to

OFF.

Operands for POSCOIL and NEGCOIL

Parameter Description Allowed Operands Optional

BOOL_V The variable associated

with POSCOIL or

NEGCOIL

BOOL variable: I, Q, M, T, G, SA, SB, SC,

symbolic discrete variables, and I/O variable.

Bit reference in BOOL variable: I, Q, M, T, G, SA,

SB, SC

No

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 102

Example for POSCOIL and NEGCOIL

When reference E1 goes from OFF to ON, coils E2 and E3 receive power flow, turning

E2 ON. When E1 goes from ON to OFF, power flow is removed from E2 and E3, turning

coil E3 ON.

Figure 53

PTCOIL and NTCOIL

Because the behavior of PTCOILs and NTCOILs is determined only by the current power

f low into the coil and the previous power flow into the coil (i.e., the transition bit), it is not

af fected by writes to its associated BOOL variable by other coils or inst ructions in the

logic. Therefore, many of the cautions that apply to POSCOILs and NEGCOILs do not

apply to PTCOILs and NTCOILs.

 WARNING

• PTCOIL and NTCOIL instructions should not be used in a parameterized block or user -

defined function block (UDFB) with a parameter or member. In these cases, an R_TRIG or

F_TRIG should be used instead.

• The transition bit of a given PTCOIL or NTCOIL is changed only once per CPU scan.

Therefore, using a PTCOIL or NTCOIL in a block that can be called multiple times per scan

can have adverse effects on all calls after the first one because the PTCOIL or NTCO IL

cannot detect the transition on the second and subsequent calls.

• Do not override a transition coil by putting a force on its reference bit. If a transition coil is

overridden, the coil has no effect on the bit, and if the override is then removed, the coil

might be set ON for one sweep. This can cause unexpected consequences in the Controller

logic and in field devices attached to the Controller.

• Do not use a transition contact with the same reference address used on a transition coil

because the value of the transition bit, which stores the power flow value into the coil, will

be affected.

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 103

Positive Transition Coil (PTCOIL) Negative Transition Coil (NTCOIL)

If:

• the transition bit is OFF, and

• the input power flow is ON

the PTCOIL sets the reference bit and transition bit

of its associated variable ON.

If:

• the transition bit is OFF, and

• the input power flow is OFF

the NTCOIL sets the reference bit and transition bit of

its associated variable ON.

The transition bit depends on the value of the input power flow the last time the PTCOIL or NTCOIL was

executed.

Notes:

• As soon as a PTCOIL or NTCOIL is set to ON or OFF, it updates its transition bit.

• Multiple instances of PTCOIL and/or NTCOIL can be associated with the same

BOOL variable, but the transition status of each instance of the PTCOIL or NTCOIL

associated with the BOOL variable is unique; that is, it is tracked independently.

• The transition bit is non-retentive; that is, it is cleared to OFF when the CPU

transitions from STOP Mode to RUN Mode. As a result, the first time a PTCOIL

executes with its input power flow set to ON its associated BOOL variable will be

set to ON.

Operands for PTCOIL and NTCOIL

Parameter Description Allowed Operands Optional

BOOL_V The variable associated with

PTCOIL or NTCOIL

Variables in I, Q, M, T, SA, SB, SC, or G

memories as well as symbolic discrete

variables. In addition, bit-in-word references

on any non-discrete memory (e.g., %R) or on

symbolic non-discrete variables are allowed.

No

Examples Comparing PTCOIL and POSCOIL

PTCOIL

In the example below, the power flow into the PTCOIL alternates between OFF and ON.

On the f irst sweep the power flow in is OFF, on the second sweep it is ON, and so forth.

Each time the power flow into the PTCOIL changes from OFF to ON, the value of Xsition

is turned ON. Therefore, on the first sweep, the PTCOIL turns Xsition OFF, on the second

sweep it turns it ON, on the third sweep it turns it OFF, and so forth. Notice that the

behavior of the PTCOIL is not af fected by the presence of the fourth rung, which also

writes to Xsition. PTCOIL behaves the same way when the fourth rung is removed.

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 104

POSCOIL

If a POSCOIL is used in place of the PTCOIL in the example below (keeping the rest of

the logic identical and same alternation of power f low into the POSCOIL), the behavior

of the logic will be different. The behavior of the POSCOIL is affected by the execution

of the fourth rung, which writes to Xsition and changes both its value and its transition

bit. In this example, the POSCOIL never turns Xsition ON. If the fourth rung is removed,

POSCOIL will behave exactly as the PTCOIL behaves, turning Xsition OFF on the first

sweep, ON on the second sweep, and so forth.

Figure 54

4.4 Contacts
A contact is used to monitor the state of a reference address. Whether the contact passes

power f low depends on positive power f low into the contact, the state or status of the

reference address being monitored, and the contact type.

A reference address is ON if its state is 1; it is OFF if its state is 0.

Contact Display Mnemonic Contact Passes Power to Right...

Continuation

Contact
 CONTCON if the preceding continuation coil is set ON

Fault Contact

FAULT if its associated BOOL or WORD variable has a point

fault

High Alarm Contact

HIALR if the high alarm bit associated with the analog

(WORD) reference is ON

Low Alarm Contact

LOALR if the low alarm bit associated with the analog (WORD)

reference is ON

No Fault Contact

NOFLT if its associated BOOL or WORD variable does not

have a point fault

Normally Closed

Contact

NCCON if associated BOOL variable is OFF

Normally Open

Contact

NOCON if associated BOOL variable is ON

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 105

Contact Display Mnemonic Contact Passes Power to Right...

Transition Contacts

NEGCON (negative transition contact) if BOOL reference

transitions from ON to OFF. Updated every time it is

called.

NTCON (negative transition contact) if BOOL reference

transitions from ON to OFF. Updated once per scan.

POSCON (positive transition contact) if BOOL reference

transitions from OFF to ON. Updated every time it is

called.

PTCON (positive transition contact) if BOOL reference

transitions from OFF to ON. Updated once per scan.

4.4.1 Continuation Contact

Figure 55

A continuation contact continues the LD logic f rom the last previously-executed rung in

the block that contained a continuation coil.

The f low state of the continuation contact is the same as the preceding executed

continuation coil. A continuation contact has no associated variable.

Notes:

• If the flow of logic does not execute a continuation coil before it executes a continuation

contact, the state of the continuation contact is no flow.

• The state of the continuation contact is cleared (set to no flow) each time a block begins

execution.

• The continuation coil and the continuation contact do not use parameters and do not

have associated variables.

• You can have multiple rungs with continuation contacts after a single continuation coil.

• You can have multiple rungs with continuation coils before one rung with a continuation

contact.

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 106

4.4.2 Fault Contact

Figure 56

A Fault contact (FAULT) detects faults in discrete or analog reference addresses, or

locates faults (rack, slot, bus, module).

• To guarantee correct indication of module status, use the reference address (%I, %Q,

%AI, %AQ) with the FAULT/NOFLT contacts.

• To locate a fault, use the rack, slot, bus, module fault locating system variable with a

FAULT/NOFLT contact.

Note: The fault indication of a given module is cleared when the associated fault is cleared

from the fault table.

• For I/O point fault reporting, you must enable point fault references in Hardware

Conf iguration.

FAULT passes power f low if its associated variable or location has a point fault.

Operands

Parameter Description Allowed Operands Optional

BWVAR The variable associated

with the FAULT contact

variables in %I, %Q, %AI, and %AQ memories,

and predefined fault-locating references

No

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 107

4.4.3 High and Low Alarm Contacts

Figure 57

The high alarm contact (HIALR) is used to detect a high alarm associated with an

analog reference. Use of this contact and the low alarm contact must be enabled during

CPU conf iguration.

A high alarm contact passes power flow if the high alarm bit associated with the analog

reference is ON.

The low alarm contact (LOALR) detects a low alarm associated with an analog

reference. Use of this contact must be enabled during CPU conf iguration.

A low alarm contact passes power f low if the low alarm bit associated with the analog

reference is ON.

Operands

Parameter Description Allowed Operands Optional

WORDV The variable associated with the

HIALR or LOALR contact

variables in AI and AQ memories No

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 108

4.4.4 No Fault Contact

Figure 58

A No Fault (NOFLT) contact detects faults in discrete or analog reference addresses, or

locates faults (rack, slot, bus, module). NOFLT passes power f low if its associated

variable or location does not have a point fault.

• To guarantee correct indication of module status, use the reference address (%I, %Q,

%AI, %AQ) with the FAULT/NOFLT contacts.

• To locate a fault, use the rack, slot, bus, module fault locating system variables with

a FAULT/NOFLT contact.

• For I/O point fault reporting, you must configure your Hardware Configuration (HWC)

to enable the PLC point faults.

Note: The fault indication of a given module is cleared when the associated fault is cleared from

the fault table.

Operands

Parameter Description Allowed Operands Optional

BWVAR The variable associated with

the NOFLT contact

variables in %I, %Q, %AI, and %AQ memories, and

predefined fault-locating references

No

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 109

4.4.5 Normally Closed and Normally Open Contacts

Figure 59

A normally closed contact (NCCON) acts as a switch that passes power f low if the

BOOLV operand is OFF (false, 0).

A normally open contact (NOCON) acts as a switch that passes power f low if the

BOOLV operand is ON (true, 1).

Operands

Parameter Description Allowed Operands Optional

BOOLV BOOLV may be a predefined system variable

or a user-defined variable.

NCCON:

If BOOLV is ON, the normally closed

contact does not pass power flow.

If BOOLV is OFF, the contact passes

power flow.

NOCON:

If BOOLV is ON, the normally open

contact passes power flow.

If BOOLV is OFF, the contact does not

pass power flow.

discrete variables in I, Q,

M, T, S, SA, SB, SC, and

G memories; symbolic

discrete variables; bit-in-

word references on

variables in any non-

discrete memory (e.g.,

%L) or on symbolic non-

discrete variables.

No

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 110

4.4.6 Transition Contacts
PACSystems controllers provide four transition contacts: POSCON, NEGCON, PTCON

and NTCON.

• The power f low out of the POSCON and NEGCON transition contacts is determined

by the last write to the BOOL variable associated with the contact. The associated

transition bit is updated every time the function is called.

• The power f low out of the PTCON and NTCON transition contacts is determined by

the value that the associated BOOL variable had the last time the contact was

executed. The associated transition bit is updated once per scan.

For an example showing the differences in the operation of the two types of transition

contacts, see Examples Comparing PTCON and POSCON.
POSCON and NEGCON

 WARNING

• These transition contact instructions should not be used in a parameterized block or user-

defined function block (UDFB) with a parameter or member. In these cases, an R_TRIG or

F_TRIG should be used instead.

• Do not use POSCON or NEGCON transition contacts for references used with transition

coils (also called one-shot coils) or with SET and RESET coils.

• If a SETCOIL or RESETCOIL receives positive power flow and its associated variable is not

overridden, the SETCOIL or RESETCOIL writes the expected result to the transition bit for

the associated variable (that is, the transition bit is set if the variable’s value is set from ON

to OFF or is set from OFF to ON, and is cleared when its value remains the same). However,

if the SETCOIL or RESETCOIL receives positive power flow and its associated variable is

overridden, the SETCOIL or RESETCOIL causes the transi tion bit to be cleared.

• Do not use a transition contact with the same reference address used on a transition coil

because the value of the transition bit, which stores the power flow value into the coil, will

be affected.

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 111

Positive Transition Contact POSCON

Negative Transition Contact NEGCON

POSCON starts passing power flow and continues

passing power flow to the right only when all of the

following conditions are met:

• the input power flow to POSCON is ON,

• the value of the associated variable is ON,

and

• the transition bit for the associated variable

is ON

The POSCON’s transition bit is set to ON when the

variable associated with the POSCON transitions

from OFF to ON.

NEGCON starts passing power flow and continues

passing power flow to the right only when all of the

following conditions are met:

• the input power flow to NEGCON is ON

• the value of the associated variable is OFF,

and

• the transition bit for the associated variable is

ON

The NEGCON’s transition bit is set to ON when the

variable associated with the NEGCON transitions from

ON to OFF.

The transition bit is set to OFF when the associated variable is written to while the POSCON or NEGCON

contact is passing power flow, regardless of whether the value written is ON or OFF. Power flow stops when

the transition bit is set to OFF.

Depending on the logic flow, writes to the POSCON’s or NEGCON's associated variable

can occur at dif ferent intervals within the Controller scan:

• multiple times during a Controller scan, resulting in the transition bit being ON for only

a portion of the scan.

• several Controller scans apart, resulting in the transition bit being ON for more than

one scan.

• once per scan, for example if the POSCON or NEGCON's associated variable is a

%I input bit.

The source of the write is immaterial; it can be an output coil, a function block output, the

input scan, an input interrupt, a data change f rom the program, or external

communications. When the variable is written, the transition bit is immediately affected.

The scan does not affect the transition bit. The only way to clear the transition bit is to

write to the associated variable.

Overrides
Overrides do not protect transition bits. If a write is attempted to an overridden point, the

point’s transition bit is cleared. As a result, any associated POSCON or NEGCON

contacts will stop passing power f low.

Transition to RUN Mode

• Variables that are non-retentive and not overridden will have values and transitions

cleared to 0.

• Variables that are non-retentive and overridden will retain their values and transition

bits.

• Variables that are retentive will retain their values and transition bits.

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 112

Operands for POSCON and NEGCON

Parameter Description Allowed Operands Optional

BOOLV The variable associated

with the transition contact

BOOL variable: I, Q, M, T, S, SA, SB, SC, and G,

symbolic discrete variables, I/O variables

Bit reference in BOOL variable: I, Q, M, T, S, SA,

SB, SC.

No

POSCON and NEGCON Example 1

Figure 60

Coil E2 is turned ON when the value of the variable E1 transitions from OFF to ON. It

stays ON until E1 is written to again, causing the POSCON to stop passing power flow.

Coil E4 is turned ON when the value of the variable E3 transitions from ON to OFF. It

stays ON until E3 is written to again, causing the NEGCON to stop passing power f low.

POSCON and NEGCON Example 2

Figure 61

Bit %M00017 is set by a BIT_SET function and then cleared by a BIT_CLR function. The

positive transition contact X1 activates the BIT_SET, and the negative transition X2

activates the BIT_CLR.

The positive transition associated with bit %M00017 will be on until %M00017 is reset by

the BIT_CLR function. This occurs because the bit is only written when contact X1 goes

f rom OFF to ON. Similarly, the negative transition associated with bit %M00017 will be

ON until %M00017 is set by the BIT_SET function.

PTCON and NTCON

 WARNING

PTCON or NTCON instructions should not be used in a parameterized block or user -defined

function block with a parameter or member. In these cases, an R_TRIG or F_TRIG should be used

instead.

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 113

The transition bit of a given PTCON or NTCON is updated only once per CPU scan. Therefore,

using a PTCON or NTCON in a block that can be called multiple times per scan may have adverse

effects on all calls after the first one because the PTCON or NTCON can not detect the transition

on the second and subsequent calls.

Positive Transition Contact PTCON

Negative Transition Contact NTCON

PTCON passes power flow to the right only when all

the following conditions are met:

• The input power flow to PTCON is ON.

• The value of the BOOL variable associated

with PTCON is ON.

• The transition bit associated with the

PTCON is OFF

NTCON passes power flow to the right only when all the

following conditions are met:

• The input power flow to NTCON is ON.

• The value of the BOOL variable associated

with NTCON is OFF.

• The transition bit associated with the NTCON

is ON

The transition bit depends on the value of the BOOL variable associated with this PTCON or NTCON when

it was last executed.

Notes:

• As soon as a PTCON or NTCON is set to ON or OFF, it updates its transition bit.

• Multiple instances of PTCON and/or NTCON can be associated with the same BOOL

variable, but the instance data of each instance of the PTCON or NTCON associated

with the BOOL variable is unique; that is, it is tracked independently.

• Transition data is non-retentive; that is, it is cleared to OFF when the CPU transitions

from STOP Mode to RUN Mode. As a result, the first time a PTCON executes with its

input power flow set to ON and its associated BOOL variable also set to ON, it passes

power flow to the right.

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 114

Operands for PTCON and NTCON

Parameter Description Allowed Operands Optional

BOOL_V The variable associated with

PTCON or NTCON contact

BOOL variable: I, Q, M, T, S, SA, SB, SC,

and G memories, symbolic discrete

variables, I/O variables.

Bit reference in non-BOOL variable: R, AI,

AQ, L, P, W, and on symbolic non-discrete

variables.

No

Examples Comparing PTCON and POSCON

PTCON

The logic in the following example starts execution with all variables set to 0. Before the

second sweep begins, the Xsition variable used on the PTCON instruction is set to 1. It

retains that value for sweeps 2, 3, and 4. Then it is reset back to 0 before sweep 5 begins

and retains its 0 value for sweeps 5, 6, and 7. This pattern repeats. The PTCON

instruction in rung two passes power f low on the 2nd sweep, the 8th sweep, the 14th

sweep, and so on. These are sweeps where the Xsition variable’s value becomes a 1,

af ter having been a 0 on the previous sweep. On all other sweeps, the PTCON instruction

does not pass power f low.

POSCON

If a POSCON is used in place of the PTCON in the following example (keeping the rest

of the logic identical), the same alternation of the Xsition variable’s value occurs. The

POSCON instruction passes power f low on sweeps 2, 3, and 4; then again on sweeps

8, 9, and 10; and so forth. The POSCON’s behavior is dependent on Xsition’s transition

bit. Since Xsition’s value is written once and then simply retained for three sweeps, its

transition bit retains its same value for three sweeps. Thus, the POSCON will pass or not

pass power flow for three sweeps in a row. Note that if Xsition’s value is written on each

sweep, the POSCON and the PTCON behave identically.

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 115

Logic Example Using PTCON

Figure 62

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 116

4.5 Control Functions
The control functions limit program execution and change the way the CPU executes the

application program.

Function Mnemonic Description

Do I/O DO_IO For one scan, immediately services a specified range of inputs or outputs

(All inputs or outputs on a module are serviced if any reference locations

on that module are included in the DO I/O function. Partial I/O module

updates are not performed.). Optionally, a copy of the scanned I/O can

be placed in internal memory, rather than at the real input points.

Drum DRUM Provides predefined On/Off patterns to a set of 16 discrete outputs in the

manner of a mechanical drum sequencer.

Edge Detectors F_TRIG

R_TRIG

Detect the changing state of a Boolean signal.

For Loop FOR_LOOP

EXIT_FOR

END_FOR

For loop. Repeats the logic between the FOR_LOOP instruction and

END_FOR instruction a specified number of times or until EXIT_FOR is

encountered.

Mask I/O Interrupt MASK_IO_INTR Mask or unmask an interrupt from an I/O module when using I/O

variables. If not using I/O variables, use

SVC_REQ 17: Mask/Unmask I/O Interrupt, described in Section 6.

Proportional

Integral Derivative

Control

PID_ISA

PID_IND

Provides two PID (Proportional/Integral/Derivative) closed-loop control

algorithms:

 Standard ISA PID algorithm (PID_ISA)

 Independent term algorithm (PID_IND)

Note: For details, refer to Section 7.

Read Switch

Position

SWITCH_POS Reads position of the Run/Stop switch and the mode for which the switch

is configured.

Scan Set IO SCAN_SET_IO Scans the IO of a specified scan set.

Service Request SVC_REQ
Requests a special PLC service.

Note: For details, refer to Section 6.

Suspend IO SUS_IO Suspends for one sweep all normal I/O updates, except those specified

by DO I/O instructions.

Suspend or

Resume I/O

Interrupt

SUSP_IO_INTR Suspend or resume an I/O interrupt when using I/O variables. If not using

I/O variables, use

SVC_REQ 32: Suspend/Resume I/O Interrupt, described in Section 6.

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 117

4.5.1 Do I/O

Figure 63

When the DO I/O (DO_IO) function receives power flow, it updates inputs or outputs for

one scan while the program is running. You can also use DO_ IO to update selected I/O

during the program in addition to the normal I/O scan.

You can use DO_IO in conjunction with a Suspend IO (SUS_IO) function, which stops

the normal I/O scan. For details, refer to Suspend I/O.

If input references are specified, DO_IO allows the most recent values of inputs to be

obtained for program logic. If output references are specified, DO I/O updates outputs

based on the most current values stored in I/O memory. I/O is serviced in increments of

entire I/O modules; the PLC adjusts the references, if necessary, while DO_IO executes.

DO_IO does not scan I/O modules that are not conf igured.

DO_IO continues to execute until all inputs in the selected range have reported or all

outputs have been serviced on the I/O modules. Program execution then returns to the

function that follows the DO_IO.

If the range of references includes an option module (HSC, APM, etc.), all the input data

(%I and %AI) or all the output data (%Q and %AQ) for that module are scanned. The

ALT parameter is ignored while scanning option modules.

DO_IO passes power to the right whenever it receives power unless:

• Not all references of the type specif ied are present within the selected range.

• The CPU is not able to properly handle the temporary list of I/O created by the

function.

• The range specified includes I/O modules that are associated with a Loss of I/O fault.

 WARNING

If DO_IO is used with timed or I/O interrupts, transition contacts associated with scanned inputs

may not operate as expected.

Note: The Do I/O function skips modules that do not support DO_IO scanning:

IC693BEM331 90-30 Genius Bus Controller

IC694BEM331 RX3i Genius Bus Controller

IC693BEM341 90-30 2.5 GHz FIP Bus Controller

IC693DNM200 90-30 DeviceNet Master

IC695PBM300 RX3i PROFIBUS Master

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 118

IC695PBS301 RX3i PROFIBUS Slave

IC687BEM731 90-70 Genius Bus Controller

IC697BEM731 90-70 Standard Width Genius Bus

Controller

Do I/O for Inputs

When DO_IO receives power f low and input references are specified, the PLC scans

input points f rom the starting reference (ST) to the ending reference (END). If a reference

is specified for ALT, a copy of the new input values is placed in memory beginning at that

reference, and the real input values are not updated. ALT must be the same size as the

reference type scanned. If a discrete reference is used for ST and END, ALT must also

be discrete.

If no reference is specified for ALT, the real input values are updated. This allows inputs

to be scanned one or more times during the program execution portion of the CPU scan.

Do I/O for Outputs

When DO_IO receives power f low and output references are specified, the PLC writes

to the output points. If no value is specified in ALT, the range of outputs written to the

output modules is specified by the starting reference (ST) and the ending reference

(END). If outputs should be written to the output points from internal memory other than

%Q or %AQ, the beginning reference is specified for ALT and the end reference is
automatically calculated f rom the length of the END—ST range.

Note: RSTi-EP CPE205/CPE210/CPE215/CPE220/CPE240 controllers do not have

the ability to enable individual output modules the same way that RX3i controllers are

able to enable individual output modules while leaving others suspended.

In order for DO_IO to work for an RSTi-EP

CPE205/CPE210/CPE215/CPE220/CPE240 controller, all output modules need to be

set to a known state. This can be achieved by allowing the IO scan to run for one

sweep or by initializing the output by writing values to the reference memory associated

with the output modules. The values need to be explicitly written to the reference

memory of ALL output modules.

Operands

Parameter Description Allowed Operands Optional

ST The starting address of the set of input or output points

or words to be serviced. ST and END must be in the

same memory area.

• If ST and END are placed in BOOL memory, ST

must be byte-aligned. That is, its reference

address must start at (8n+1), for example, %I01,

%Q09, %Q49.

• If ST and END are mapped to analog memory,

they can have the same reference address.

• If ST is mapped to an I/O variable, the same I/O

variable must also be assigned to the END

parameter, and the entire module is scanned.

I, Q, AI, AQ, I/O Variable No

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 119

END The address of the end bit of input or output points or

words to be serviced. Must be in the same memory area

as ST.

• If ST and END are placed in BOOL memory,

END's reference address must be 8n, for example,

%I08, %Q16.

• If ST and END are mapped to analog memory,

they can have the same reference address.

• If ST is mapped to an I/O variable, the same I/O

variable must also be assigned to the END

parameter, and the entire module is scanned.

I, Q, AI, AQ, I/O Variable No

ALT For an input scan, ALT specifies the address to store

scanned input point/word values. For an output scan,

ALT specifies the address to get output point/word

values from, to send to the I/O modules.

Note: ALT can be a WORD only if ST and

END are in analog memory.

I, Q, M, T, G, R, AI, AQ Yes

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 120

Example - Do I/O for Inputs

Figure 64

When DO_IO receives power flow, the PLC scans references %I0001—64 and %Q0001

is turned on. A copy of the scanned inputs is placed in internal memory f rom %M0001-

64. Because a reference is specified for ALT, the real inputs are not updated. This allows

the current values of inputs to be compared with their values at the beginning of the scan.

This form of DO_IO allows input points to be scanned one or more times during the

program execution portion of the CPU scan.

Example - Do I/O for Outputs

Figure 65

Because a reference is entered for ALT, the values at %AQ001—004 are not written to

output modules. When DO_IO receives power f low, the PLC writes the values from

references %R0001-0004 to the analog output modules and %Q0001 is turned on.

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 121

4.5.2 Edge Detectors

Figure 66

These function blocks detect the changing state of a Boolean signal and produce a single

pulse when an edge is detected.

When transitional instructions, such as Transition Coils or Transition Contacts, are used

inside a function block, there is a problem when the same function block is called more

than once per scan. The f irst call executes the transition correctly, but subsequent calls

do not because they see the state as adjusted from the f irst call. The rising and falling

edge trigger instructions solve this problem. These instructions have their own instance

data that can be a member or an input of the function b lock so that the transition state

follows that of the function block instance and not the function block.

If an edge detector function block is used within a UDFB, its instance data must be a

member variable of the UDFB.

Operands

Parameter Description Allowed Operands Optional

???? Instance data for function block. This is a

structure variable, described below.

F_TRIG, R_TRIG No

CLK Input to be monitored for a change in

state.

All Yes

Q Edge detection output. Must be flow in LD. In other

languages all types allowed except

S, SA, SB, SC and constants.

Yes

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 122

Instance Data Structure

These elements cannot be published or written to.

Element Name Type Description

CLK BOOL Edge detection input. Not accessible in user logic.

Q BOOL Edge detection output. Accessible in user logic. Read only.

STATE BOOL Internal value. Not accessible in user logic.

ENO BOOL Enable Output. User logic can access as read-only.

F_TRIG Operation

Figure 67

When the CLK input goes f rom true to false, the output Q is true for one function block

instance execution. The output Q then remains false until a new falling edge is detected.

When the Controller transitions f rom STOP Mode to RUN Mode, the CLK input is false

and the instance memory is non-retentive, the output Q is true af ter the function block’s

f irst execution. Af ter the next execution, the output is false.

The F_TRIG output Q will be true for one function block instance execution at a STOP

Mode to RUN Mode transition af ter the f irst download, whether instance memory is

retentive.

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 123

R_TRIG Operation

Figure 68

When the CLK input transitions f rom false to true, the output Q is true for one function

block execution. The output Q then remains false until a new rising edge is detected.

When the Controller transitions f rom STOP Mode to RUN Mode and the CLK input is

true and the instance memory is non-retentive, the output Q is set to true af ter the

function block’s f irst execution. Af ter the second execution, the output is false.

If the CLK input is initialized on, the R_TRIG output Q will be true for one function block

instance execution at a STOP Mode to RUN Mode transition af ter the f irst download,

whether instance memory is retentive.

Example

In the following example, when Input1 transitions from false to true, the coil, Detected, is

set ON for one function block execution. The output Q remains false until a new rising

edge is detected.

Figure 69

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 124

4.5.3 Drum

Figure 70

The Drum function operates like a mechanical drum sequencer, which steps through a

set of potential output bit patterns and selects one based on inputs to the function. The

selected value is copied to a group of 16 discrete output references.

When the Drum function receives power f low, it copies the contents of a selected

reference to the Q reference.

Power f low to the R (Reset) input or to the S (Step) input selects the reference to be

copied.

The function passes power to the right only if it receives power from the left and no error

condition is detected.

The DTO (Dwell Timeout Output) bit is cleared the f irst time the drum is in a new step.

This is true:

• Whether the drum is introduced to a new step by changing the Active Step or by using

the S (Step) Input.

• Regardless of the DT (Dwell Time array) value associated with the step (even if it

is 0).

• During the f irst sweep the Active Step is initialized.

Using Drum in Parameterized Blocks

The Drum dwell and fault timer features use an internal timer that is implemented in the

same manner as for the OFDT, ONDTR, and TMR timers. Therefore, special care must

be taken when programming Drum in parameterized blocks. Drum functions in

parameterized blocks can be programmed to track true real-time if the guidelines and

rules below are followed. If the guidelines and rules described here are not followed, the

operation of the Drum function in parameterized blocks is undef ined.

Note: These rules are not enforced by the programming software. It is your responsibility to

ensure these rules are followed.

The best use of a Drum function is to invoke it with a particular reference address exactly

one time each scan. With parameterized blocks, it is important to use the appropriate

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 125

reference memory with the Drum function and to call the parameterized block an

appropriate number of times.

Finding the Source Block

The source block is either the _MAIN block or the lowest logic block of type Block that

appears above the parameterized block in the call tree. To determine the source block

for a given parameterized block, determine which block invoked that parameterized

block. If the calling block is _MAIN or of type Block, it is the source block. If the calling

block is any other type (parameterized block or function block), apply the same test to

the block that invoked this block. Continue back up the call tree until the _MAIN block or

a block of type Block is found. This is the source block for the parameterized block.

Programming Drum in Parameterized Blocks

Dif ferent guidelines and rules apply depending on whether you want to use the

parameterized block in more than one place in your program logic.

Parameterized block called from one block

If your parameterized block that contains a Drum function will be called f rom only one

logic block, follow these rules:

1. Call the parameterized block exactly one time per execution of its source block.

2. Choose a reference address for the Drum control block that will not be

manipulated anywhere else. The reference address may be %R, %P, %L, %W,

or symbolic.

Note: %L memory is the same %L memory available to the source block of type Block. %L

memory corresponds to %P memory when the source block is _MAIN.

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 126

Parameterized block called from multiple blocks

When calling the parameterized block f rom multiple blocks, it is imperative to separate

the Drum reference memory used by each call to the parameterized block. Follow these

rules and guidelines:

1. Call the parameterized block exactly one time per execution of each source

block that it appears in.

2. Choose a %L reference or parameterized block formal parameter for the Drum

control block. Do not use a %R, %P, %W, or symbolic memory reference.

Notes:

• The strongly recommended choice is a %L location, which is inherited from the
parameterized block’s source block. Each source block has its own %L memory space

except the _MAIN block, which has a %P memory area instead. When the _MAIN block

calls another block, the %P mappings from the _MAIN block are accessed by the called

block as %L mappings.

• If you use a parameterized block formal parameter (word array passed-by-reference),

the actual parameter that corresponds to this formal parameter must be a %L, %R, %P,

%W, or symbolic reference. If the actual parameter is a %R, %P, %W, or symbolic

reference, a unique reference address must be used by each source block.

Recursion

If you use recursion (that is, if you have a block call itself either directly or indirectly) and

your parameterized block contains a Drum function, you must follow two additional rules:

• Program the source block so that it invokes the parameterized block before making

any recursive calls to itself .

• Do not program the parameterized block to call itself directly.

Using Drum in UDFBs

UDFBs are user-defined logic blocks that have parameters and instance data. For details

on these and other types of blocks, refer to Section 2.

When a Drum function is present inside a UDFB, and a member variable is used for the

control block of a Drum function, the behavior of the Drum function may not match your

expectations. If multiple instances of the UDFB are called during a logic sweep, only the

f irst-executed instance will update the timer in the Drum function. If a different instance

is then executed, the timer value will remain unchanged.

In the case of multiple calls to a UDFB during a logic scan, only the f irst call will add

elapsed time to its timer functions. This behavior matches the behavior of the Drum

function timer in a normal program block.

Example

A UDFB is defined that uses a member variable for a Drum function block. Two instances

of the function block are created: Drum_A and Drum_B. During each logic scan, both

Drum_A and Drum_B are executed. However, only the member variable in Drum_A is

updated and the member variable in Drum_B always remains at 0.

Operands for Drum

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 127

Parameter Description Allowed Operands Optional

???? (Control Block) The beginning address of a five-word

array that contains the Drum Sequencer's control

block. The contents of the control block are described

below.

R, P, L, W, Symbolic No

?? (Length) Value between 1 and 128 that specifies the

number of steps.

Constant No

S Step input. Used to go one step forward in the

sequence. When the function receives power flow

and S makes an OFF to ON transition, the Drum

Sequencer moves one step. When R (Reset) is

active, the function ignores S.

flow No

R Reset input. Used to select a specific step in the

sequence. When the DRUM function and Reset both

receive power flow, DRUM copies the Preset Step

value in the Control Block to the Active Step

reference in the Control Block. Then the function

copies the value in the Preset Step reference to the Q

reference bits. When R is active, the function ignores

S.

flow No

PTN (Pattern) The starting address of an array of words.

The number of words is specified by the Length (??)

operand. Each word represents one step of the Drum

Sequencer. The value of each word represents the

desired combination of outputs for a particular value

of the Active Step word in the control block. The first

element corresponds to an Active Step value of 1; the

last element corresponds to an Active Step value of

Length. The programming software does not create

an array for you. You must ensure you have enough

memory for PTN.

All except constant and

S, SA—SC numerical

data.

No

DT (Dwell Time) If you use the DT operand, you must

also use the DTO operand and vice-versa. The DT

operand is the starting address of Length words of

memory, where Length is the number of steps. Each

DT word corresponds to one word of PTN. The value

of each word represents the dwell time for the

corresponding step of the Drum Sequencer in 0.1

second units. When the dwell time expires for a given

step the DTO bit is set.

If a Dwell Time is specified, the drum cannot

sequence into its next step until the Dwell Time has

expired. The programming software does not create

an array for you. You must ensure you allocate

enough memory for DT.

All except S, SA, SB,

SC and constant

Yes

FTT (Fault Timeout) If you use the FTT operand, you must

also use the TFT operand, and vice-versa. The FTT

operand is the starting address of Length words of

memory, where Length is the number of steps. Each

FTT word corresponds to one word of PTN. The

value of each word represents the fault timeout for

the corresponding step of the Drum Sequencer in 0.1

second units.

When the fault timeout has expired the Fault Timeout

bit is set.

The programming software does not create an array

for you. You must ensure you allocate enough

memory for FTT.

All except S, SA, SB,

SC and constant

Yes

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 128

Parameter Description Allowed Operands Optional

Q A word of memory containing the element of the PTN

that corresponds to the current Active Step.

All except S and

constant

No

DRC (Drum Coil) Bit reference that is set whenever the

function is enabled, and Active Step is not equal to

Preset Step.

All except S Yes

DTO (Dwell Timeout) If you use the DTO operand, you

must also use DT and vice-versa. This bit reference is

set if the dwell time for the current step has expired.

All except S and

constant

Yes

TFT (Timeout Fault) If you use the TFT operand, you must

also use the FTT operand and vice-versa. Bit

reference that is set if the drum has been in a

particular step longer than the step’s specified Fault

Timeout.

All except S and

constant

Yes

FF (First Follower) The starting address of (Length/8+1)

bytes of memory, where Length is the number of

steps. If MOD (Length/8+1)>0, FF has (Length/8+1)

bytes. Each bit in the bytes of FF corresponds to one

word of PTN. No more than one bit in the FF bytes is

ON at any time, and that bit corresponds to the value

of the Active Step. The first bit corresponds to an

Active Step value of one. The last used bit

corresponds to an Active Step value of Length.

All except S and

constant

Yes

Control Block for the Drum Sequencer Function

The control block for the Drum Sequencer function contains information needed to

operate the Drum Sequencer.

address Active Step

address + 1 Preset Step

address + 2 Step Control

address + 3 Timer Control

Active Step The active step value specifies the element in the Pattern array to copy to

the output memory location. This is used as the array index into the Pattern, Dwell Time,

Fault Timeout, and First Follower arrays.

Preset Step A word input that is copied to the Active Step output when the Reset is On.

Step Control A word that is used to detect Off to On transitions on both the Step input

and the Enable input. The Step Control word is reserved for use by the function and

must not be written to.

Timer Control Two words of data that hold values needed to run the timer. These

values are reserved for use by the function and must not be written to.

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 129

4.5.4 For Loop

Figure 71

A FOR loop repeats rung logic a specified number of times while varying the value of the

INDEX variable in the loop.

A FOR loop begins with a FOR_LOOP instruction and ends with an END_FOR

instruction.

The logic to be repeated must be placed between the FOR and END_FOR instructions.

The optional EXIT_FOR instruction enables you to exit the loop if a condition is met

before the FOR loop ends normally.

When FOR_LOOP receives power flow, it saves the START, END, and INC (Increment)

operands and uses them to evaluate the number of times the rungs between the

FOR_LOOP and its END_FOR instructions are executed. Changing the START and

END operands while the FOR loop is executing does not af fect its operation.

When an END_FOR receives power f low, the FOR loop is terminated and power flow

jumps directly to the statement following the END_FOR instruction.

There can be nothing af ter the FOR_LOOP instruction in the rung and the FOR_LOOP

instruction must be the last instruction to be executed in the rung. An EXIT_FOR

statement can be placed only between a FOR instruction and an END_FOR instruction.

The END_FOR statement must be the only instruction in its rung.

A FOR_LOOP can assign decreasing values to its index variable by setting the increment

to a negative number. For example, if the START value is 21, the END value is 1, and

the increment value is –5, the statements of the FOR loop are executed five times, and

the index variable is decremented by 5 in each pass. The values of the index variable

will be 21, 16, 11, 6, and 1.

When the START and END values are set equal, the statements of the FOR loop are

executed only once.

When START cannot be incremented or decremented to reach the END, the statements

within the FOR loop are not executed. For example, if the value of START is 10, the

value of END is 5, and the INCREMENT is 1, power f low jumps directly f rom the FOR

statement to the statement af ter the END_FOR statement.

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 130

Note: If the FOR_LOOP instruction has power flow when it is first tested, the rungs between the

FOR and its corresponding END_FOR statement are executed the number of times

initially specified by START, END, and INCREMENT. This repeated execution occurs on

a single sweep of the PLC and may cause the watchdog timer to expire if the loop is long.

Nesting of FOR loops is allowed, but it is restricted to f ive FOR/END_FOR pairs. Each

FOR instruction must have a matching END_FOR statement following it.

Nesting with JUMPs and MCRs is allowed, if they are properly nested. MCRs and

ENDMCRs must be completely within or completely outside the scope of a

FOR_LOOP/END_FOR pair. JUMPs and LABEL instructions must also be completely

within or completely outside the scope of a FOR_LOOP/END_FOR pair. Jumping into or

out of the scope of a FOR/END_FOR is not allowed.

Operands

Only the FOR_LOOP function requires operands.

Parameter Description Allowed Operands Optional

INDEX The index variable. When the loop has

completed, this value is undefined.

Note: Changing the value of the

index variable within the

scope of the FOR loop is

not recommended.

All except constants, flow, and

variables in %S - %SC

No

START The index start value. All except variables in %S - %SC No

END The index end value. All except variables in %S - %SC No

INC The increment values. (Default: 1.) Constants Yes

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 131

For Loop Example 1

Figure 72

The value for %M00001 (START) is 1 and the value for %M00017 (END) is 10. The

INDEX (%R00001) increments by the value of the INC operand (which is assumed to be

1 when omitted) starting at 1 until it reaches the ending value 10. The ADD function of

the loop is executed 10 times, adding the current value of I1 (%R00001), which will vary

f rom 1 to 10, to the value of I2 (%R00002).

For Loop Example 2

Figure 73

The value for %T00001 (START) is -100 and the value for %T00017 (END) is 100. The

INDEX (%R00001) increments by tens, starting at 100 until it reaches it end value of

+100. The EQ function of the loop tries to execute 21 times, with the INDEX (%R00001)

being equal to 100, –90, –80, –70, –60, –50, –40, –30, –20, –10, 0, 10, 20, 30, 40, 50,

60, 70, 80, 90, and 100. However, when the INDEX (%R00001) is 0, the EXIT statement

is enabled, and power f low jumps directly to the statement af ter the END_FOR

statement.

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 132

4.5.5 Mask I/O Interrupt

Figure 74

Mask or unmask an interrupt from an I/O board when using I/O variables. If not using I/O

variables, use SVC_REQ 17.

When the interrupt is masked, the CPU processes the interrupt but does not schedule

the associated logic for execution. When the interrupt is unmasked, the CPU processes

the interrupt and schedules the associated logic for execution.

When the CPU transitions from STOP Mode to RUN Mode, the interrupt is unmasked

Operands

Parameter Description Allowed

Types

Allowed

Operands

Optiona

l

MASK Selects unmask or mask operation.

Unmask=0; Mask=1

BOOL variable

or Bit reference

in non-discrete

memory

data flow, I, Q, M,

T, G, S, SA, SB,

SC, R, P, L, AI,

AQ, W, symbolic,

I/O variable

No

IN1 The interrupt trigger to be masked or

unmasked.

• The I/O board must be a supported

input module.

• The reference address specified

must correspond to a valid interrupt

trigger reference.

• The interrupt for the specified

channel must be enabled in the

configuration.

BOOL or WORD

variable

I, Q, M, T, G, R, P,

L, AI, AQ, W, I/O

variable

No

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 133

Example

In the following example, the variable Mod_Int is mapped to an I/O point on a hardware

module and is configured as an I/O interrupt to a program block. When the BOOL variable

MaskOn_Off transitions f rom OFF to ON and A1 is set to ON, the interrupt Mod_Int is

masked (not executed) for one scan.

Figure 75

4.5.6 Read Switch Position

Figure 76

Read Switch Position (SWITCH_POS) allows the logic to read the current position of the

RUN/STOP switch, as well as the mode for which the switch is conf igured.

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 134

Operands

Parameter Description Allowed Operands Optional

POS Memory location at which to write current switch

position value.

1 - °RUN I/O Enabled

2 - °RUN Outputs Disabled

3 - °STOP Mode

All except S, SA, SB, SC No

MODE Memory location to which switch configuration value

is written.

0 - Switch configuration not supported

1 - Switch controls RUN/STOP mode

2 - Switch not used, or is used by the user application

3 - Switch controls both memory protection and

RUN/STOP mode

4 - Switch controls memory protection

All except S, SA, SB, SC No

4.5.7 Scan Set IO

Figure 77

The Scan_Set_IO function scans the I/O of a specified scan set number (Modules can

be assigned to scan sets in hardware configuration.). You can specify whether the Inputs

and/or Outputs of the associated scan set will be scanned.

Execution of this function block does not af fect the normal scanning process of the

corresponding scan set. If the corresponding scan set is conf igured for non-default

Number of Sweeps or Output Delay settings, they remain in ef fect regardless of how

many executions of the Scan Set IO function occur in any given sweep.

The Scan Set IO function skips those modules that do not support scanning.

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 135

Operands for SCAN_SET_IO

Parameter Description Allowed Types Allowed Operands Optional

IN If true, the inputs will be

scanned.

BOOL variable or bit

reference in a non-

BOOL variable

Power flow No

OUT If true, the outputs will be

scanned.

BOOL variable or bit

reference in a non-

BOOL variable

Power flow No

SET Number of the scan set to be

scanned. Scan sets are

specified in the CPU

hardware configuration and

assigned to modules in the

module hardware

configuration.

UINT All except %S memory

types.

No

ENO Energized when all

arguments to the function

are valid and there are no

errors in scanning.

BOOL variable or bit

reference in a non-

BOOL variable

Power flow. Yes

Example

Figure 78

By using the Scan Set IO function block in an interrupt block, you can create a custom

I/O scan. For example, two Scan Set IO function blocks can be used in an interrupt block

to scan the inputs of a scan set at the beginning of the block and the outputs of the same

scan set at the end of the block.

In the example at right:

• When ScanInputs is ON, input data for all I/O modules assigned to Scan Set 2 is

updated.

• When ScanOutputs is ON, output data for all I/O modules assigned to Scan Set 2 is

updated

4.5.8 Suspend I/O

Figure 79

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 136

The Suspend I/O (SUS_IO) function stops normal I/O scans from occurring for one CPU

sweep. During the next output scan, all outputs are held at their current states. During

the next input scan, the input references are not updated with data from inputs.

However, during the input scan portion of the sweep, the CPU verifies that Genius bus

controllers have completed their previous output updates.

Note: The PACSystems SUS_IO function suspends analog and discrete I/O, whether integrated

I/O or Genius I/O. It does not suspend Ethernet Global Data. For details, refer to

PACSystems RX7i, RX3i and RSTi-EP TCP/IP Ethernet Communications User Manual,

GFK-2224.

When SUS_IO receives power f low, all I/O servicing stops except that provided by

DO_IO functions.

 WARNING

If SUS_IO were placed at the left rail of the ladder, without enabling logic to regulate its execution,

no regular I/O scan would ever be performed.

SUS_IO passes power flow to the right whenever it receives power

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 137

Example

Figure 80

The example at right shows a SUS_IO function and a DO_IO function used to stop I/O

scans, then cause certain I/O to be scanned f rom the program.

Inputs %I00010 and %I00011 form a latch circuit with the contact f rom %M00001. This

keeps the SUS_IO function active on each sweep until %I00011 goes on. If this input

were not scanned by DO_IO after SUS_IO went active, SUS_IO could only be disabled

by powering down the PLC.

Output %Q00002 is set when both DO_IO functions execute successfully. The rung is

constructed so that both DO_IO functions execute even if one does not set its OK output.

With normal I/O suspended, output %Q00002 is not updated until a DO_IO function with

%Q00002 in its range executes. This does not occur until the sweep after the setting of

%Q00002. Outputs that are set af ter a DO_IO function executes are not updated until

another DO_IO function executes, typically in the next sweep. Because of this delay,

most programs that use SUS_IO and DO_IO place the SUS_IO function in the first rung

of the program, the DO_IO function that processes inputs in the next rung, and the

DO_IO function that processes outputs in the last rung.

The range of the DO_IO function doing outputs is %Q00001 through %Q00030. If the

module in this range were a 32-point module, the DO_IO function would actually perform

a scan of the entire module. A DO_IO function will not break the scan in the middle of an

I/O module.

4.5.9 Suspend or Resume I/O Interrupt

Figure 81

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 138

Suspend or resume an I/O interrupt when using I/O variables. If not using I/O variables,

use SVC_REQ 32.

The function executes successfully and passes power to the right unless:

• The I/O module associated with the interrupt trigger specified in IN1 is not supported.

• The reference address specified does not correspond to a valid interrupt trigger

reference.

• The specif ied channel does not have its interrupt enabled in the conf iguration.

Operands
Parameter Description Allowed Types Allowed Operands Optional

SUSP Selects a suspend or resume

operation.

 1 (ON)=suspend

 0 (OFF)=resume

BOOL variable or bit

reference in a non-

BOOL variable

data flow, I, Q, M, T,

G, S, SA, SB, SC, R,

P, L, discrete symbolic,

I/O variable

No

IN1 The interrupt trigger to be

suspended or resumed.

BOOL or WORD

variable

I, Q, M, T, G, R, P, L,

AI, AQ, W, I/O variable

No

Example

In the following example, the variable Mod_Int is mapped to an I/O point on a hardware

module and is configured as an I/O interrupt to a program block. When the BOOL variable

SuspOn_Off is set to ON and A1 is set to ON, interrupts f rom Mod_Int are suspended

until SuspOn_Off is reset.

Figure 82

4.6 Conversion Functions
The Conversion functions change a data item f rom one number format (data type) to

another. Many programming instructions, such as math functions, must be used with

data of one type. As a result, data conversion is of ten required before using those

instructions.

Function Description

Convert Angles

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 139

Function Description

DEG_TO_RAD Converts degrees to radians

RAD_TO_DEG Converts radians to degrees

Convert to BCD4 (4-digit Binary-Coded-Decimal)

UINT_TO_BCD4 Converts UINT (16-bit unsigned integer) to BCD4

INT_TO_BCD4 Converts INT (16-bit signed integer) to BCD4

Convert to BCD8 (8-digit Binary-Coded-Decimal)

DINT_TO_BCD8 Converts DINT (32-bit signed integer) to BCD8

Convert to INT (16-bit signed integer)

BCD4_TO_INT Converts BCD4 to INT

UINT_TO_INT Converts UINT to INT

DINT_TO_INT Converts DINT to INT

REAL_TO_INT Converts REAL to INT

Convert to UINT (16-bit unsigned integer)

BCD4_TO_UINT Converts BCD4 to UINT

INT_TO_UINT Converts INT to UINT

DINT_TO_UINT Converts DINT to UINT

REAL_TO_UINT Converts REAL to UINT

Convert to DINT (32-bit signed integer)

BCD8_TO_DINT Converts 8-digit Binary-Coded-Decimal (BCD8) to DINT

UINT_TO_DINT Converts UINT to DINT

INT_TO_DINT Converts INT to DINT

REAL_TO_DINT Converts REAL (32-bit signed real or floating-point values) to DINT

LREAL_TO_DINT Converts REAL (64-bit signed real or floating-point values) to DINT

Convert to REAL (32-bit signed real or floating-point values)

BCD4_TO_REAL Converts BCD4 to REAL

BCD8_TO_REAL Converts BCD8 to REAL

UINT_TO_REAL Converts UINT to REAL

INT_TO_REAL Converts INT to REAL

DINT_TO_REAL Converts DINT to REAL

LREAL_TO_REAL Converts LREAL to REAL

Convert to LREAL(64-bit signed real or floating-point values)

DINT_TO_LREAL Converts DINT to LREAL

REAL_TO_LREAL Converts REAL to LREAL

Truncate

TRUNC_DINT Rounds a REAL number down to a DINT (32-bit signed integer) number

TRUNC_INT Rounds a REAL number down to an INT (16-bit signed integer) number

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 140

4.6.1 Convert Angles

Mnemonics:

DEG_TO_RAD_REAL

DEG_TO_RAD_LREAL

RAD_TO_DEG_REAL

RAD_TO_DEG_LREAL

When the Degrees to Radians (DEG_TO_RAD) or the Radians to Degrees

(RAD_TO_DEG) function receives power f low, it performs the appropriate angle

conversion on the REAL or LREAL value in input IN and places the result in output Q.

DEG_TO_RAD and RAD_TO_DEG pass power flow to the right when they execute,

unless IN is NaN (Not a Number).

Operands

Parameter Description Allowed Operands Optional

IN The value to convert. All except S, SA, SB, and SC No

Q The converted value. All except S, SA, SB, and SC No

Example

Figure 83

A value of +1500 radians is converted to degrees. The result is placed in %R00001 and

%R00002.

4.6.2 Convert UINT or INT to BCD4

Figure 84

When this function receives power flow, it converts the input unsigned (UINT) or signed

single-precision integer (INT) data into the equivalent 4-digit Binary-Coded-Decimal

(BCD) values, which it outputs to Q.

This function does not change the original input data. The output data can be used

directly as input for another program function.

The function passes power f low when power is received, unless the conversion would

result in a value that is outside the range 0 to 9,999.

Tip

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 141

Data can be converted to BCD format to drive BCD-encoded LED displays or presets to external

devices such as high-speed counters.

Operands

Parameter Description Allowed Operands Optional

IN The UINT or INT value to

convert to BCD4.

All except S, SA, SB, and SC No

Q The BCD4 equivalent value of

the original UINT or INT value in

IN.

All except S, SA, SB, and SC No

Example - UINT to BDC4

Figure 85

Whenever input %I00002 is set and no errors exist, the UINT at input location %I00017

through %I00032 is converted to four BCD digits and the result is stored in memory

locations %Q00033 through %Q00048. Coil %M01432 is used to check for successful

conversion.

Example - INT to BCD4

Figure 86

Whenever input %I0002 is set and no errors exist, the INT values at input locations

%I0017 through %I0032 are converted to four BCD digits, and the result is stored in

memory locations %Q0033 through %Q0048. Coil %Q1432 is used to check for

successful conversion.

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 142

4.6.3 Convert DINT to BCD8

Figure 87

When DINT_TO_BCD8 receives power f low, it converts the input signed double-

precision integer (DINT) data into the equivalent 8-digit Binary-Coded-Decimal (BCD)

values, which it outputs to Q. DINT_TO_BCD8 does not change the original DINT data.

Note: The output data can be used directly as input for another program function.

The function passes power f low when power is received, unless the conversion would

result in a value that is outside the range 0 to 99,999,999.
Operands
Parameter Description Allowed Operands Optional

IN The DINT value to convert to BCD8 All except S, SA, SB, and SC No

Q The BCD8 equivalent value of the original

DINT value in IN

All except S, SA, SB, and SC No

Example

Figure 88

Whenever input %I00002 is set and no errors exist, the double-precision signed integer

(DINT) at input location %AI0003 is converted to eight BCD digits and the result is stored

in memory locations %L00001 through %L00002.

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 143

4.6.4 Convert BCD4, UINT, DINT, or REAL to INT

Figure 89

BDC4, UINT, and DINT

When this function receives power f low, it converts the input data into the equivalent

single-precision signed integer (INT) value, which it outputs to Q. This function does not

change the original input data. The output data can be used directly as input for another

program function, as in the examples.

The function passes power flow when power is received, unless the data is out of range.

REAL

When REAL_TO_INT receives power flow, it rounds the input REAL data up or down to

the nearest single-precision signed integer (INT) value, which it outputs to Q.

REAL_TO_INT does not change the original REAL data.

Note: The output data can be used directly as input for another program function.

The function passes power flow when power is received, unless the data is out of range

or NaN (Not a Number).

 WARNING

Converting from REAL to INT may result in Overflow. For example, REAL 7.4E15, which equals

7.4 × 1015, converts to INT OVERFLOW.

Tip

To truncate a REAL value and express the result as an INT, i.e., to remove the fractional part of

the REAL number and express the remaining integer value as an INT, use TRUNC_INT.

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 144

Operands

Parameter Description Allowed Operands Optional

IN The value to convert to INT. All except S, SA, SB, and SC No

Q The INT equivalent value of the original value in

IN.

All except S, SA, SB, and SC No

Example: BCD4 to INT

Figure 90

Whenever input %I0002 is set, the BCD-4 value in PARTS is converted to a signed

integer (INT) and passed to the ADD_INT function, where it is added to the INT value

represented by the reference RUNNING. The sum is output by ADD_INT to the reference

TOTAL.

Example: UINT to INT

Figure 91

Whenever input %M00344 is set, the UINT value in %R00234 is converted to a signed

integer (INT) and passed to the ADD function, where it is added to the INT value in

%R06488. The sum is output by the ADD function to the reference CARGO.

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 145

Example: DINT to INT

Figure 92

Whenever input %M00031 is set, the DINT value in %R00055 is converted to a signed

integer (INT) and passed to the ADD function, where it is added to the INT at %R02345.

The sum is output by the ADD function to %R08004.

4.6.5 Convert BCD4, INT, DINT, or REAL to UINT

Figure 93

When this function receives power f low, it converts the input data into the equivalent

single-precision unsigned integer (UINT) value, which it outputs to Q.

The conversion to UINT does not change the original data. The output data can be used

directly as input for another program function, as in the example.

The function passes power f low when power is received, unless the resulting data is

outside the range 0 to +65,535.

 WARNING

Converting from REAL to UINT may result in Overflow. For example, REAL 7.2E17, which equals

7.2 × 1017, converts to UINT OVERFLOW.

Operands

Parameter Description Allowed Operands Optional

IN The value to convert to UINT. All except S, SA, SB, and SC No

Q The UINT equivalent value of the

original input value in IN.

All except S, SA, SB, and SC No

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 146

Example: BCD4 to UINT

Tip

One use of BCD4_TO_UINT is to convert BCD data from the I/O structure into integer data and

store it in memory. This can provide an interface to BCD thumbwheels or external BCD electronics,

such as high-speed counters and position encoders.

Figure 94

In the example at right, whenever input %I0002 is set, the BCD4 value in PARTS is

converted to an unsigned single-precision integer (UINT) and passed to the ADD_UINT

function, where it is added to the UINT value represented by the reference RUNNING.

The sum is output by ADD_UINT to the reference TOTAL.

Example: INT to UINT

Figure 95

Whenever input %I0002 is set, the INT value in %L00050 is converted to an unsigned

single-precision integer (UINT) and passed to the ADD_UINT function, where it is added

to the UINT value in %R08833. The sum is output by ADD_UINT to the reference TOTAL.

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 147

Example: DINT to UINT

Figure 96

Whenever input %I00002 is set and no errors exist, the double precision signed integer

(DINT) at input location %R00007 is converted to an unsigned integer (UINT) and passed

to the SUB function, where the constant value 145 is subtracted from it. The result of the

subtraction is stored in the output reference location %Q00033.

Example: REAL to UINT

Figure 97

Whenever input %I00045 is set, the REAL value in %L00045 is converted to an unsigned

single-precision integer (UINT) and passed to the ADD_UINT function, where it is added

to the UINT value in %R00045. The sum is output by ADD_UINT to the reference TOTAL.

4.6.6 Convert BCD8, UINT, INT, REAL or LREAL to DINT

Figure 98

BCD8, UINT, and INT

When this function receives power f low, it converts the data into the equivalent signed

double-precision integer (DINT) value, which its outputs to Q. The conversion to DINT

does not change the original data.

The output data can be used directly as input for another program function. The function

passes power f low when power is received, unless the data is out of range.

REAL and LREAL

When REAL_TO_DINT or LREAL_TO_DINT receives power f low, it rounds the input

data to the nearest double-precision signed integer (DINT) value, which it outputs to Q.

These functions do not change the original REAL or LREAL data.

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 148

The output data can be used directly as input for another program function. The function

passes power f low when power is received, unless the conversion would result in an

out-of -range DINT value.

 WARNING

Converting from LREAL or REAL to DINT may result in Overflow. For example, REAL 5.7E20,

which equals 5.7 × 1020, converts to DINT OVERFLOW.

Tip

To truncate a REAL value and express the result as a DINT, i.e., to remove the fractional part of

the REAL number and express the remaining integer value as a DINT, use TRUNC_DINT.

Operands

Parameter Description Allowed Operands Optional

IN The value to convert to DINT. All except S, SA, SB, and SC No

Q The DINT equivalent value of the original

input value in IN.

All except S, SA, SB, and SC No

Example: UINT to DINT

Figure 99

Whenever input %M01478 is set, the unsigned single-precision integer (UINT) value at

input location %R00654 is converted to a double-precision signed integer (DINT) and the

result is placed in location %L00049. The output %M00065 is set whenever the function

executes successfully.

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 149

Example: BCD8 to DINT

Figure 100

Whenever input %I00025 is set, the BCD-8 value in %L00046 is converted to a signed

double-precision integer (DINT) and passed to the ADD_DINT function, where it is added

to the DINT value in %R00797. The sum is output by ADD_DINT to the reference TOTAL.

Example: INT to DINT

Figure 101

Whenever input %I00002 is set, the signed single-precision integer (INT) value at input

location %I00017 is converted to a double-precision signed integer (DINT) and the result

is placed in location %L00001. The output %Q01001 is set whenever the function

executes successfully.

Example: REAL to DINT

Figure 102

Whenever input %I0002 is set, the REAL value at input location %R0017 is converted to

a double precision signed integer (DINT) and the result is placed in location %R0001.

The output %Q1001 is set whenever the function executes successfully.

4.6.7 Convert BCD4, BCD8, UINT, INT, DINT, and LREAL

to REAL

Figure 103

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 150

When this function receives power flow, it converts the input data into the equivalent 32-

bit f loating-point (REAL) value, which its outputs to Q. The conversion to REAL does not

change the original input data.

The output data can be used directly as input for another program function.

The function passes power f low when power is received, unless the conversion would

result in a value that is out of range.

 WARNING

• Converting from BCD8 to REAL may result in the loss of significant digits.

This is because a BCD8 value is stored in a DWORD, which uses 32 bits to store a value,

whereas a REAL (32-bit IEEE floating point number) uses 8 bits to store the exponent and

the sign and only 24 bits to store the mantissa.

• Converting from DINT to REAL may result in the loss of significant digits for numbers with

more than 7 significant base-10 digits.

This is because a DINT value uses 32 bits to store a value, which is the equivalent of up to

10 significant base-10 digits, whereas a REAL (32-bit IEEE floating point number) uses 8

bits to store the exponent and the sign and only 24 bits to store the mantissa, which is the

equivalent of 7 or 8 significant base-10 digits. When the REAL result is displayed as a

base-10 number, it may have up to 10 digits, but these are converted from the rounded 24-

bit mantissa, so that the last 2 or 3 digits may be inaccurate.

Operands

Parameter Description Allowed Operands Optional

IN The value to convert to REAL. All except S, SA, SB, and SC No

Q The REAL equivalent value of the

original input value in IN.

All except S, SA, SB, and SC No

Example: UINT to REAL

Figure 104

The unsigned integer value in %L00001 is 825. The value placed in %L00016 is 825.000.

Example: INT to REAL

Figure 105

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 151

The integer value of input IN is -678. The value placed in %R00010 is -678.000.

Example: LREAL to REAL

Figure 106

The double-precision f loating point value of the square root of 2 is rounded to the nearest

single-precision f loating point value and placed in R00300.

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 152

4.6.8 Convert REAL to LREAL

Figure 107

When REAL_TO_LREAL receives power f low, it converts the 32-bit single precision

f loating point REAL data to the equivalent 64-bit double-precision f loating point data.

REAL_TO_LREAL does not change the original REAL data.

Operands

Parameter Description Allowed Operands Optional

IN The REAL value to convert to LREAL. All except S, SA, SB, and SC No

Q The LREAL equivalent value of the original

REAL value.

All except S, SA, SB, and SC No

Example

The REAL value of the square root of 2 is converted to the LREAL data type and placed

in R00200. Because the actual precision of the data in Result Real is seven decimal

places, the additional decimal places in the data in R00200 are not valid.

Figure 108

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 153

4.6.9 Convert DINT to LREAL

Figure 109

When DINT_TO_LREAL receives power flow, it converts the double-precision input data

to 64-bit double-precision f loating point data.

4.6.10 Truncate

Figure 110

When power is received, the Truncate functions TRUNC_DINT and TRUNC_INT round

a f loating-point (REAL) value down respective to the nearest signed double-precision

signed integer (DINT) or signed single-precision integer (INT) value. TRUNC_DINT and

TRUNC_INT output the converted value to Q. The original data is not changed.

Note: The output data can be used directly as input for another program function.

TRUNC_DINT and TRUNC_INT pass power f low when power is received, unless the

specified conversion would result in a value that is out of range or unless IN is NaN (Not

a Number).

Operands

Parameter Description Allowed Operands Optional

IN The REAL value whose copy is to be

converted and truncated. The original is

left intact.

All except S, SA, SB, and SC No

Q The truncated value of the original REAL

value in IN.

All except S, SA, SB, and SC No

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 154

Example

The displayed constant is truncated, and the integer result 562 is placed in %T0001.

Figure 111

4.7 Counters
Function Mnemonic Description

Down Counter DNCTR Counts down from a preset value. The output is ON whenever the Current

Value is  0.

Up Counter UPCTR Counts to a designated value. The output is ON whenever the Current

Value is  the Preset Value.

4.7.1 Data Required for Counter Function Blocks

 WARNING

Do not use two consecutive words (registers) as the starting addresses of two counters. Logic

Developer PLC does not check or warn you if register blocks overlap. Timers will not work if you

place the current value of a second timer on top of the preset value for the previous timer.

Each counter uses a one-dimensional, three-word array of %R, %W, %P, %L, or

symbolic memory to store the following information:

Current value (CV) Word 1

 WARNING

The first word (CV) can be read but should not be written to, or the function may not work properly.

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 155

Preset value (PV) Word 2 When the Preset Value (PV) operand is a variable, it is

normally set to a different location than word 2 in the timer’s

or counter’s three-word array.

• If you use a dif ferent address and you change word 2

directly, your change will have no ef fect, as PV will

overwrite word 2.

• If you use the same address for the PV operand and

word 2, you can change the Preset Value in word 2 while

the timer or counter is running, and the change will be

ef fective.

Control word Word 3 The control word stores the state of the Boolean inputs and

outputs of its associated timer or counter, as shown in the

following diagram:

 WARNING

The third word (Control) can be read but should not be written to; otherwise, the function will not

work.

Word 3: Control Word Structure

Figure 112

Note: Bits 0 through 13 are not used for counters.

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 156

4.7.2 Down Counter

Figure 113

The Down Counter (DNCTR) function counts down f rom a preset value. The minimum

Preset Value (PV) is zero; the maximum PV is +32,767 counts. When the Current Value

(CV) reaches the minimum value, 32,768, it stays there until reset. When DNCTR is

reset, CV is set to PV. When the power f low input transitions f rom OFF to ON, CV is

decremented by one. The output is ON whenever CV ≤ 0

The output state of DNCTR is retentive on power failure; no automatic initialization

occurs at power-up.

 WARNING

Do not use the Address of the down counter with other instructions. Overlapping references cause

erratic counter operation.

Note: For DNCTR to function properly, you must provide an initial reset to set the CV to the

value in PV. If DNCTR is not initially reset, CV will decrement from 0 and the output of

DNCTR will be set to ON immediately.

Operands

Parameter Description Allowed Operands Optional

Address

(????)

The beginning address of a three-word WORD

array:

 Word 1: Current Value (CV)

 Word 2: Preset Value (PV)%

 Word 3: Control word

R, W, P, L, symbolic No

R When R receives power flow, it resets the

counter's CV to PV.

Power flow No

PV Preset Value to copy into word 2 of the

counter's address when the counter is enabled

or reset. 0 PV  32,767. If PV is out of range,

word 2 cannot be reset.

All except S, SA, SB, SC No

CV The current value of the counter All except S, SA, SB, SC and

constant

No

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 157

Example – Down Counter

DNCTR counts 5000 new parts before energizing output %Q00005.

Figure 114

4.7.3 Up Counter

Figure 115

The Up Counter (UPCTR) function counts to the Preset Value (PV). The range is 0 to

+32,767 counts. When the Current Value (CV) of the counter reaches 32,767, it remains

there until reset. When the UPCTR reset is ON, CV resets to 0. Each time the power flow

input transitions from OFF to ON, CV increments by 1. CV can be incremented past the

Preset Value (PV). The output is ON whenever CV  PV. The output (Q) stays ON until

the R input receives power f low to reset CV to zero.

The state of UPCTR is retentive on power failure; no automatic initialization occurs at

power-up.

 WARNING

Do not use the Address of the up counter with other instructions. Overlapping references cause

erratic counter operation.

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 158

Operands

Parameter Description Allowed Operands Optional

Address

(????)

The beginning address of a three-word WORD array:

 Word 1: Current Value (CV)

 Word 2: Preset Value (PV)

 Word 3: Control word

R, W, P, L, symbolic No

R When R is ON, it resets the counter's CV to 0. Power flow No

PV Preset Value to copy into word 2 of the counter's

address when the counter is enabled or reset. 0  PV 

32,767. If PV is out of range, it does not affect word 2.

All except S, SA, SB,

and SC

No

CV The current value of the counter All except S, SA, SB,

SC and constant

No

Example – Up Counter

Every time input %I0012 transitions from OFF to ON, the Up Counter counts by 1; internal

coil %M0001 is energized whenever 100 parts have been counted. Whenever %M0001

is ON, the accumulated count is reset to zero.

Figure 116

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 159

Example – Up Counter and Down Counter

This example uses an up/down counter pair with a shared register for the accumulated

or current value. When the parts enter the storage area, the up-counter increments by 1,

increasing the current value of the parts in storage by a value of 1. When a part leaves

the storage area, the down counter decrements by 1, decreasing the inventory storage

value by 1. To avoid conflict with the shared register, both counters use different register

addresses, but each has a current value (CV) address that is the same as the

accumulated value for the other register.

Figure 117

4.8 Data Move Functions
The Data Move functions provide basic data move capabilities.

Function Mnemonics Description

Array Size ARRAY_SIZE Counts the number of elements in an array.

Array Size

Dimension 1

ARRAY_SIZE_DIM1 Returns the value of the Array Dimension 1 property of a one- or

two-dimensional array.

Array Size

Dimension 2

ARRAY_SIZE_DIM2 Returns the value of the Array Dimension 2 property of a two-

dimensional array.

Block Clear BLK_CLR_WORD Replaces all the contents of a block of data with zeroes. Can be

used to clear an area of WORD or analog memory.

Block Move BLKMOV_DINT

BLKMOV_DWORD

BLKMOV_INT

BLKMOV_REAL

BLKMOV_UINT

BLKMOV_WORD

Copies a block of seven constants to a specified memory

location. The constants are input as part of the function.

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 160

Function Mnemonics Description

Bus Read BUS_RD_BYTE

BUS_RD_DWORD

BUS_RD_WORD

Reads data from a module on the bus.

Bus Read Modify

Write

BUS_RMW_BYTE

BUS_RMW_DWORD

BUS_RMW_WORD

Uses a read/modify/write cycle to update a data element in a

module on the bus.

Bus Test and Set BUS_TS_BYTE

BUS_TS_WORD

Handles semaphores on the bus.

Bus Write BUS_WRT_BYTE

BUS_WRT_DWORD

BUS_WRT_WORD

Writes data to a module on the bus.

Communication

Request

COMMREQ Allows the program to communicate with an intelligent module,

such as a Genius Bus Controller or a High-Speed Counter.

Data Initialization DATA_INIT_DINT

DATA_INIT_DWORD

DATA_INIT_INT

DATA_INIT_REAL

DATA_INIT_LREAL

DATA_INIT_UINT

DATA_INIT_WORD

Copies a block of constant data to a reference range. The

mnemonic specifies the data type.

Data Initialize ASCII DATA_INIT_ASCII Copies a block of constant ASCII text to a reference range.

Data Initialize DLAN DATA_INIT_DLAN Used with a DLAN Interface module.

Data Initialize

Communications

Request

DATA_INIT_COMM Initializes a COMMREQ function with a block of constant data.

The length should equal the size of the COMMREQ function’s

entire command block.

Move MOVE_BOOL

MOVE_DATA

MOVE_DINT

MOVE_DWORD

MOVE_INT

MOVE_REAL

MOVE_LREAL

MOVE_UINT

MOVE_WORD

Copies data as individual bits, so the new location does not have

to be the same data type. Data can be moved into a different data

type without prior conversion.

Move Data Explicit MOVE_DATA_EX Provides an input that allows for data coherency by locking

symbolic memory being written to during the copy operation.

Move from Flat MOVE_FROM_FLAT Copies reference memory data to a UDT variable or UDT array.

Provides the option of locking the symbolic or I/O variable

memory area being written to during the copy operation.

Move to Flat MOVE_TO_FLAT Copies data from symbolic or I/O variable memory to reference

memory. Copies across mismatching data types.

Shift Register SHFR_BIT

SHFR_DWORD

SHFR_WORD

Shifts one or more data bits, data WORDs or data DWORDs from

a reference location into a specified area of memory. Data

already in the area is shifted out.

Size Of SIZE_OF Counts the number of bits used by a variable.

Swap SWAP_DWORD

SWAP_WORD

Swaps two BYTEs of data within a WORD or two WORDs within

a DWORD.

4.8.1 Array Size

Figure 118

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 161

Counts the number of elements in the array assigned to input IN and writes the number

to output Q.

In an array of structure variables, the number of structure variables is written to Q; the

elements in the structure variables are not counted.

Tip

If the array assigned to input IN of ARRAY_SIZE is passed to a parameterized C block for

processing, also pass the value of output Q to the block. In the C block logic, use the value of

output Q to ensure all array elements are processed without exceeding the end of the array. For a

two-dimensional array, this method works only if all elements are treated identically; for example,

all are initialized to the same value.

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 162

Operands

Parameter Description Allowed Operands Optional

IN Array of any data type whose

elements are counted.

If a non-array variable is assigned

to IN, the value of Q is 1.

Data flow, I, Q, M, T, S, SA, SB, SC, G,

discrete symbolic, I/O variable

No

Q Number of elements in the array

assigned to input IN.

DINT or DWORD variable.

Data flow, I, Q, M, T, G, R, P, L, AI, AQ,

W, symbolic, I/O variable

No

Example

The two-dimensional array Test Array has its Array Dimension 1 property set to 4 and its

Array Dimension 2 property set to 3. ARRAY_SIZE calculates 4 × 3 and writes the value

12 to the variable Elements.

Figure 119

4.8.2 Array Size Dimension Function Blocks

Array Size Dimension 1

Figure 120

Returns the value of the Array Dimension 2 property of an array and writes the value to

output Q. If a non-array variable is assigned to IN, the value of Q is 0.

In an LD or ST block that is not a parameterized block or a User Defined Function Block

(UDFB), you can use the output Q value to ensure that a loop using a variable index to

access array elements does not exceed the array’s second dimension.

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 163

Operands

Parameter Description Allowed Operands Optional

IN Array of any data type. Data flow, I, Q, M, T, S, SA, SB, SC,

G, discrete symbolic, I/O variable

No

Q The value of the Array Dimension 1

property of the array assigned to input

IN. The value is set to 0 if a non-array

is assigned to IN.

Note: Because the index of the

first element of an array

is zero, the index of the

last element is one less

than the value assigned

to Q.

DINT or DWORD variable.

Data flow, I, Q, M, T, G, R, P, L, AI,

AQ, W, symbolic, I/O variable

No

Array Size Dimension 2

Figure 121

Returns the value of the Array Dimension 2 property of an array and writes the value to

output Q. If a non-array variable is assigned to IN, the value of Q is 0.

In an LD or ST block that is not a parameterized block or a User Defined Function Block

(UDFB), you can use the output Q value to ensure that a loop using a variable index to

access array elements does not exceed the array’s second dimension.

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 164

Operands

Parameter Description Allowed Operands Optional

IN Array of any data type. Data flow, I, Q, M, T, S, SA, SB, SC,

G, discrete symbolic, I/O variable

No

Q The value of the Array Dimension 2

property of the array assigned to input IN.

The value is set to 0 if a non-array is

assigned to IN.

Note: Because the index of the first

element of an array is zero,

the index of the last element is

one less than the value

assigned to Q.

DINT or DWORD variable.

Data flow, I, Q, M, T, G, R, P, L, AI,

AQ, W, symbolic, I/O variable

No

Example - FOR_LOOP that Iterates Through Dimension 1 of an

Array

To use a FOR_LOOP to access array elements by means of a variable index, you must

ensure that the FOR_LOOP does not iterate beyond the last element of the array.

In the following logic, MOVE_DINT initializes the variable D1_temp to 0.

ARRAY_SIZE_DIM1 counts the number of elements of a one-dimensional array named

D1_Array and outputs the result to output Q. Because the index of the first element of an

array is zero, the loop must iterate (Q - 1) times. SUB_DINT performs the subtraction

and the result is converted to an INT value and assigned to variable D1_size.

Figure 122

In the following rungs, the FOR_LOOP executes when D1ON is set to On. The variable

index D1_Index increments by 1 f rom 0 through D1_size, the value calculated by

ARRAY_SIZE_DIM1 and SUB_DINT. In each loop, the value of D1_temp is assigned to

the element D1_Array[D1_Index] and D1_temp is increased by 1.

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 165

Figure 123

You can use a FOR_LOOP to iterate through an array’s second dimension in a method

similar to this example. You can also use nested FOR_LOOPs to ensure that operations

on elements using two variable indexes each do not exceed their array dimension. For

additional examples, refer to the online help.

4.8.3 Block Clear

Figure 124

When the Block Clear (BLKCLR_WORD) function receives power f low, it f ills the

specified block of data with zeroes, beginning at the reference specified by IN. When the

data to be cleared is f rom BOOL (discrete) memory (%I, %Q, %M, %G, or %T), the

transition information associated with the references is updated. BLKCLR_WORD

passes power to the right whenever it receives power.

Note: The input parameter IN is not included in coil checking.

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 166

Operands

Parameter Description Allowed Operands Optional

Length (??) The number of words to clear, starting at

the IN location. 1  Length  256 words.

Constant No

IN The first WORD of the memory block to

clear to 0.

All except %S and data flow. No

Example

At power-up, 32 words of %Q memory (512 points) beginning at %Q0001 are f illed with

zeroes. The transition information associated with these references will also be updated.

Figure 125

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 167

4.8.4 Block Move

When the Block Move (BLKMOV) function receives power

flow, it copies a block of seven constants into consecutive

locations beginning at the destination specified in output Q.

BLKMOV passes power to the right whenever it receives

power.

Mnemonics:

BLKMOV_DINT

BLKMOV_DWORD

BLKMOV_INT

BLKMOV_REAL

BLKMOV_UINT

BLKMOV_WORD

Operands

Note: For each mnemonic, use the corresponding data type for the Q operand. For

example, BLKMOV_DINT requires Q to be a DINT variable.

Parameter Description Allowed Operands Optional

IN1 to IN7 The seven constant values to

move.

Constants. Constant type must match

function type.

No

Q The first memory location of the

destination for the moved values.

IN1 is moved to Q.

All except %S.

%SA, SB, SC are also prohibited on

BLKMOV REAL, BLK_MOV_INT, and

BLK_MOV_UINT.

No

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 168

Example

When the enabling input represented by the name #FST_SCN is ON, BLKMOV_INT

copies the seven input constants into memory locations %R0010 through %R0016.

Figure 126

4.8.5 BUS_ Functions
Four program functions allow the PACSystems CPU to communicate with modules in

the system.

• Bus Read (BUS_RD)

• Bus Write (BUS_WRT)

• Bus Read/Modify/Write (BUS_RMW)

• Bus Test and Set (BUS_TS)

These functions use the same parameters to specify which module on the bus will

exchange data with the CPU.

Note: Additional information related to addressing modules is required to use the BUS_

functions. For open VME modules in an RX7i system, refer to the PACSystems RX7i

User’s Guide to Integration of VME Modules, GFK-2235. For other modules, refer

to the product documentation provided by the manufacturer.

Rack, Slot, Subslot, Region, and Offset Parameters

The rack and slot parameters refer to a module in the hardware configuration. The region

parameter refers to a memory region configured for that module. The sub-slot is ordinarily

set to 0. The of fset is a 0-based number that the function adds to the module’s base

address (which is part of the memory region configuration) to compute the address to be

read or written.

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 169

BUS Read

The BUS_RD function reads data from the bus.

This function should be executed before the data is needed in

the program. If the amount of data to be read is greater than

32767 BYTES, WORDS, or DWORDS, use multiple

instructions to read the data.

When BUS_RD receives power flow, it accesses the module

at the specified rack (R), slot (S), subslot (SS), address region

(RGN) and offset (OFF). BUS_RD copies the specified

number (Length) of data units (DWORDS, WORDs or BYTEs)

from the module to the CPU, beginning at output reference

(Q).

The function passes power to the right when its operation is

successful. The status of the operation is reported in the

status location (ST).

Note:

• For each BUS_RD function type, use the

corresponding data type for the Q operand. For

example, BUS_RD_BYTE requires Q to be a

BYTE variable.

• An interrupt block can preempt the execution of

a BUS_RD function. On the bus, only 256 bytes

are read coherently (i.e., read without being

preempted by an interrupt).

Mnemonics:

BUS_RD_DINT

BUS_RD_DWORD

BUS_RD_WORD

Operands for BUS READ

Parameter Description Allowed Operands Optional

Length (??) The number of BYTEs, DWORDs, or

WORDs. 1 to 32,767.
Constant

No

R Rack number. UINT constant or

variable.
All except %S—%SC

No

S Slot number. UINT constant or

variable.

All except %S—%SC No

SS Subslot number (defaults to 0). UINT

constant or variable.
All except %S—%SC

Yes

RGN Region (defaults to 1). WORD

constant or variable.

All except %S—%SC Yes

OFF The offset in bytes. DWORD

constant or variable.

All except %S—%SC No

ST The status of the operation. WORD

variable.

All except variables located in %S—

%SC, and constants

Yes

Q Reference for data read from the

module. DWORD variable.

All except variables located in %S—

%SC, and constants

No

BUS_RD Status in the ST Output

The BUS_RD function returns one of the following values to the ST output:

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 170

Value Description

0 Operation successful.

1 Bus error

2 Module does not exist at rack/slot location.

3 Module at rack/slot location is an invalid type.

4 Start address outside the configured range.

5 End address outside the configured address range.

6 Absolute address even but interface configured as odd byte only

8 Region not enabled

10 Function parameter invalid.

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 171

BUS Read Modify Write

The BUS_RMW function updates one byte, word, or

double word of data on the bus. This function locks the

bus while performing the read-modify-write operation.

When the BUS_RMW function receives power flow

through its enable input, the function reads a dword,

word or byte of data from the module at the specified

rack (R), slot (S), subslot (SS) and optional address

region (RGN) and offset (OFF). The original value is

stored in parameter (OV).

The function combines the data with the data mask

(MSK). The operation performed (AND / OR) is selected

with the OP parameter. The mask value is dword data.

When operating on a word of data, only the lower 16 bits

are used. When operating on a byte of data, only the

lower 8 bits of the mask data are used. The result is then

written back to the same address from which it was read.

The BUS_RMW function passes power to the right when

its operation is successful, and returns a status value to

the ST output.

Other mnemonic:

BUS_RMW_WORD

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 172

Operands for BUS_RMW

For BUS_RMW_WORD, the absolute bus address must be a multiple of 2. For

BUS_RMW_DWORD, it must be a multiple of 4.

The absolute bus address is equal to the base address plus the of fset value.

Parameter Description Allowed Operands Optional

OP Type of operation:

0 = AND

1 = OR

Constant

No

MSK The data mask. DWORD constant or

variable.
All except %S—%SC

No

R Rack number. UINT constant or variable. All except %S—%SC No

S Slot number. UINT constant or variable. All except %S—%SC No

SS Subslot number (optional, defaults to 0).

UINT constant or variable.
All except %S—%SC

Yes

RGN Region (defaults to 1). WORD constant or

variable.

All except %S—%SC Yes

OFF The offset in bytes. DWORD constant or

variable.

All except %S—%SC No

ST The status of the operation. WORD

variable.

All except variables located in

%S—%SC, and constants

Yes

OV Original value. DWORD variable. All except variables located in

%S—%SC, and constants

Yes

BUS_RMW Status in the ST Output

The BUS_RMW function returns one of the following values to the ST output:

Value Description

0 Operation successful.

1 Bus error

2 Module does not exist at rack/slot location.

3 Module at rack/slot location is an invalid type.

4 Start address outside the configured range.

5 End address outside the configured address range.

6 Absolute address even but interface configured as odd byte only

7 For WORD type, absolute bus address is not a multiple of 2. For DWORD type, absolute

bus address is not a multiple of 4.

8 Region not enabled

9 Function type too large for configured access type.

10 Function parameter invalid.

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 173

BUS Test and Set

The BUS_TS function uses semaphores to control

access to specific memory in a module located on

the bus.

The BUS_TS function exchanges a Boolean TRUE

(1) for the value currently at the semaphore

location. If that value was already a 1, then the

BUSTST function does not acquire the semaphore.

If the existing value was 0, the semaphore is set and

the BUS_TS function has the semaphore and the

use of the memory area it controls. The semaphore

can be cleared, and ownership relinquished by

using the BUSWRT function to write a 0 to the

semaphore location. This function locks the bus

while performing the operation.

When the BUS_TS function receives power flow

through its enable input, the function exchanges a

Boolean TRUE (1) with the address specified by the

RACK, SLOT, SUBSLOT, RGN, and OFF

parameters. The function sets the Q output on if the

semaphore was available (0) and was acquired. It

passes power flow to the right whenever power is

received, and no errors occur during execution.

Other mnemonic:

BUS_TS_WORD

Operands for BUS Test and Set

BUS_TS can be programmed as BUS_TS_BYTE or BUS_TS_WORD. For

BUS_TS_WORD, the absolute address of the module must be a multiple of 2. The

absolute address is equal to the base address plus the of fset value.

Parameter Description Allowed Operands Optional

R Rack number. UINT constant or variable. All except %S—%SC No

S Slot number. UINT constant or variable. All except %S—%SC No

SS Subslot number (defaults to 0). UINT

constant or variable.

All except %S—%SC Yes

RGN Region (defaults to 1). WORD constant or

variable.

All except %S—%SC Yes

OFF The offset in bytes. DWORD constant or

variable.

All except %S—%SC No

ST The status of the bus test and set operation.

WORD variable.

All except variables

located in %S—%SC, and

constant

Yes

Q Output set on if the semaphore was

available (0). Otherwise, Q is set off.

Power flow Yes

BUS Write

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 174

When the BUS_WRT function receives power flow through its

enable input, it writes the data located at reference (IN) to the

module at the specified rack (R), slot (S), subslot (SS) and

optional address region (RGN) and offset (OFF). BUSWRT

writes the specified length (LEN) of data units (DWORDS,

WORDs or BYTEs).

The BUS_WRT function passes power to the right when its

operation is successful. The status of the operation is reported

in the status location (ST).

Note:

• For each BUS_WRT function type, use the

corresponding data type for the IN operand. For

example, BUS_WRT_BYTE requires IN to be a

BYTE variable.

• An interrupt block can preempt the execution of a

BUS_WRT function. On the bus, only 256 bytes

are written coherently (i.e., written without being

preempted by an interrupt).

Mnemonics:

BUS_WRT_DINT

BUS_WRT_DWORD

BUS_WRT_WORD

Operands for Bus Write

Parameter Description Allowed Optional

Length (??) Length. The number of BYTEs, DWORDs,

or WORDs. 1 to 32,767.
Constant

No

IN Reference for data to be written to the

module. DWORD variable.
All except variables located in

%S—%SC, and constant

No

R Rack number. UINT constant or variable. All except %S—%SC No

S Slot number. UINT constant or variable. All except %S—%SC No

SS Subslot number (defaults to 0) UINT

constant or variable.
All except %S—%SC

Yes

RGN Region. (defaults to 1) WORD constant or

variable.

All except %S—%SC Yes

OFF The offset in bytes. DWORD constant or

variable.

All except %S—%SC No

ST The status of the operation. WORD

variable.

All except variables located in

%S—%SC, and constant

Yes

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 175

4.8.6 Communication Request (COMMREQ)

Figure 127

The Communication Request (COMMREQ) function communicates with an intelligent

module, such as a Genius Communications Module or High-Speed Counter.

Notes:

• The information presented in this section shows only the basic format of the

COMMREQ function. Many types of COMMREQs have been defined. You will need

additional information to program the COMMREQ for each type of device.

Programming requirements for each module that uses the COMMREQ function are

described in the specialty module's user documentation.

• If you are using the COMMREQ to conduct serial communications, refer to the Serial

I/O, SNP and RTU Protocols section in PACSystems RX7i, RX3i and RSTi-EP CPU

Reference Manual, GFK-2222.

• If you are using the COMMREQ to interface with an intelligent module (such as

Genius Communications Gateway), refer to that product’s user manual for

operational details.

• A COMMREQ instruction inside an interrupt block being executed may cause the

block to be preempted when a new, incoming interrupt has the same priority.

When COMMREQ receives power flow, it sends the command block of data specified by

the IN operand to the communications TASK in the intelligent or specialty module, at the

rack/slot location specified by the SYSID operand. The command block contents are sent

to the receiving device and the program execution resumes immediately. (Because

PACSystems does not support WAIT mode COMMREQs, the timeout value is ignored.)

The COMMREQ passes power f low unless the following fault conditions exist. The

Function Faulted (FT) output may be set ON if :

• Control block is invalid

• Destination is invalid (target module is not present or is faulted)

• Target module cannot receive mail because its queue is full

The Function Faulted output may have these states:

Enable Error? Function Faulted Output

active no OFF

active yes ON

not active no execution OFF

Command Block

The command block provides information to the intelligent module on the command to

be performed. The command block starts at the reference specified by the operand IN.

This address may be in any word-oriented area of memory (%R, %P, %L, %W, %AI,

%AQ, or symbolic non-discrete variables). The length of the command block depends

on the amount of data sent to the device.

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 176

The Command Block contains the data to be communicated to the other device, plus

information related to the execution of the COMMREQ. Information required for the

command block can be placed in the designated memory area using a programming

function such as MOVE, BLKMOV, or DATA_INIT_COMM.

Command Block Structure

Address + Offset Description

Address Data Block Length (in

words)

The number of data words starting with the data at

address+6 to the end of the command block, inclusive. The

data block length ranges from 1 to 128 words. Each

COMMREQ command has its own data block length. When

entering the data block length, you must ensure that the

command block fits within the register limits

Address + 1 Wait/No Wait Flag Must be set to 0 (No Wait)

Address + 2 Status Pointer Memory

Type

Specifies the memory type for the location where the

COMMREQ status word (CSR) returned by the device will be

written when the COMMREQ completes.

Address + 3 Status Pointer Offset The word at address + 3 contains the offset for the status

word within the selected memory type.

Note: The status pointer offset is a zero-based

value. For example, %R00001is at offset

zero in the register table.

Address + 4 Idle Timeout Value This parameter is ignored in No Wait mode.

Address + 5 Maximum

Communication Time

This parameter is ignored in No Wait mode.

Address + 6

to Address + 133

Data Block The data block contains the command's parameters. The

data block begins with a command number in address + 6,

which identifies the type of communications function to be

performed. Refer to the specific device manual for

COMMREQ command formats.

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 177

Status Pointer Memory Type

Status pointer memory type contains a numeric code that specifies the user reference

memory type for the status word. The table below shows the code for each reference

type:

For this memory type Enter this decimal value

%I Discrete input table (BIT mode) 70

%Q Discrete output table (BIT mode) 72

%I Discrete input table (BYTE mode) 16

%Q Discrete output table (BYTE mode) 18

%R Register memory 8

%W Word memory 196

%AI Analog input table 10

%AQ Analog output table 12

Notes:

• The value entered determines the mode. For example, if you enter the %I bit mode is

70, then the offset will be viewed as that bit. On the other hand, if the %I value is 16,

then the offset will be viewed as that byte.

• The high byte at address + 2 should contain zero.

Operands for COMMREQ

Parameter Description Allowed Operands Optional

IN The reference of the first WORD of the

command block.

Variables in %R, %P, %L, %AI,

%AQ, %W, and symbolic non-

discrete variables

No

SYSID The rack number (most significant byte) and

slot number (least significant byte) of the

target device (intelligent module).

Note: For systems that do not have

expansion racks, SYSID must

be zero for the main rack.

All except flow and variables in

%S - %SC

No

TASK The task ID of the process on the target

device

Constants; variables in %R,

%P, %L, %AI, %AQ, %W, and

symbolic non-discrete variables

No

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 178

Parameter Description Allowed Operands Optional

FT Function Faulted output. FT is energized if

an error is detected processing the

COMMREQ:

• This is a WAIT mode COMMREQ and

the CPU does not support it

• The specified target address (SYSID

operand) is not present.

• The specified task (TASK operand) is

not valid for the device.

• The data length is 0.

• The devices status pointer address

(part of the command block) does not

exist. This may be due to an incorrect

memory type selection, or an address

within that memory type that is out of

range.

Power flow Yes

COMMREQ Status Word

Figure 128

The CRS word consists of two-byte values, a major code and a minor code.

Refer to the specific device manual for CRS major and minor codes used by COMMREQ

commands at that device.

COMMREQ Example 1

Figure 129

When enabling input %M0020 is ON, a command block starting at %R0016 is sent to

communications task 1 in the device located at rack 1, slot 2 of the PLC. If an error occurs

processing the COMMREQ, %Q0100 is set.

COMMREQ Example 2

The MOVE function can be used to enter the command block contents for the

COMMREQ described in example 1.

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 179

Figure 130

Input IN of the COMMREQ specifies %R00016 as the beginning reference for the

command block. Successive references contain the following:

%R00016 Data Block Length

%R00017 Wait/No Wait Flag

%R00018 Status Pointer Memory Type

%R00019 Status Pointer Offset

%R00020 Idle Timeout Value (Because this parameter is ignored in NO WAIT mode,

no value is input).

%R00021 Maximum Communication Time Value (Because this parameter is ignored

in NO WAIT mode, no value is input).

%R00022 to end of data Data Block

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 180

MOVE functions supply the following command block data for the COMMREQ.

• The f irst MOVE function places the length of the data being communicated in

%R00016.

• The second MOVE function places the constant 0 in %R00017. This specifies NO

WAIT mode.

• The third MOVE function places the constant 8 in %R00018. This specifies the

register table as the location for the status pointer.

• The fourth MOVE function places the constant 512 in reference %R00019. Therefore,

the status pointer is located at %R00513.

The programming logic displayed in example 2 can be simplified by replacing the six

MOVE functions with one DATA_INIT_COMM function.

Figure 131

4.8.7 Data Initialization

The Data Initialization (DATA_INIT) function copies a block

of constant data to a reference range.

When the DATA_INIT instruction is first programmed, the

constants are initialized to zeroes. To specify the constant

data to copy, double-click the DATA_INIT instruction in the

LD editor.

Note: The mnemonics DATA_INIT_ASCII (refer to

Data Initialize ASCII) and DATA_INIT_COMM (refer

to Data Initialize Communications Request)

operate differently from the other six

functions.

Mnemonics:

DATA_INIT_DWORD

DATA_INIT_DWORD

DATA_INIT_INT

DATA_INIT_UINT

DATA_INIT_REAL

DATA_INIT_LREAL

DATA_INIT_WORD

When DATA_INIT receives power f low, it copies the constant data to output Q.

DATA_INIT's constant data length (LEN) specifies how much constant data of the

function type is copied to consecutive reference addresses starting at output Q.

DATA_INIT passes power to the right whenever it receives power.

Notes:

• The output parameter is not included in coil checking.

• If you replace one DATA_INIT instruction (except DATA_INIT_ASCII or

DATA_INIT_COMM) with another (except DATA_INIT_ASCII or

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 181

DATA_INIT_COMM), Logic Developer - PLC attempts to keep the same data. For

example, configuring a DATA_INIT_INT with eight rows and then replacing the

instruction with a DATA_INIT_DINT would keep the data for the eight rows. Some

precision may be lost when replacing a DATA_INIT_ instruction, and a warning

message will be displayed when this case is detected.

Operands

Note: For each mnemonic, use the corresponding data type for the Q operand. For example,

DATA_INIT_DINT requires Q to be a DINT variable.

Parameter Description Allowed Operands Optional

Length The quantity (default 1) of constant

data copied to consecutive reference

addresses starting at output Q.

Constants No

Q The beginning address of the area to

which the data is copied.

All, except %S. SA, SB, and SC are

not allowed for REAL, LREAL, INT,

and UINT versions.

No

Example

Figure 132

On the f irst scan (as restricted by the #FST_SCN system variable), 100 words of initial

data are copied to %R00005 through %R00104.

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 182

4.8.8 Data Initialize ASCII

Figure 133

The Data Initialize ASCII (DATA_INIT_ASCII) function copies a block of constant ASCII

text to a reference range.

When DATA_INIT_ASCII is f irst programmed, the constants are initialized to zeroes. To

specify the constant data to copy, double-click the DATA_INIT_ASCII instruction in the

LD editor.

When DATA_INIT_ASCII receives power f low, it copies the constant data to output Q.

DATA_INIT_ASCII’s constant data length (LEN) specifies how many bytes of constant

text are copied to consecutive reference addresses starting at output Q. LEN must be an

even number. DATA_INIT_ASCII passes power to the right whenever it receives power.

Note: The output parameter is not included in coil checking.

Operands

Parameter Description Allowed Operands Optional

Length The number (default 1) of bytes of constant text

copied to consecutive reference addresses starting

at output Q. LEN must be an even number.

Constants No

Q The beginning address of the area where the data

is copied.

All except %S. No

Example

Figure 134

On the f irst scan (as restricted by the #FST_SCN system variable) the decimal equivalent

of 100 bytes of ASCII text is copied to %R00050 through %R00149. %Q00002 receives

power.

4.8.9 Data Initialize Communications Request

Figure 135

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 183

The Data Initialize Communications Request (DATA_INIT_COMM) function initializes a

COMMREQ function with a block of constant data. The IN parameter of the COMMREQ

must correspond with output Q of this DATA_INIT_COMM function.

When DATA_INIT_COMM is f irst programmed, the constants are initialized to zeroes.

To specify the constant data to copy, double-click the DATA_INIT_COMM instruction in

the LD editor.

When DATA_INIT_COMM receives power flow, it copies the constant data to output Q.

DATA_INIT_COMM’s constant data length operand specifies how many words of

constant data to copy to consecutive reference addresses starting at output Q. The

length should be equal to the size of the COMMREQ function’s entire command block.

DATA_INIT_COMM passes power to the right whenever it receives power.

Note: The output parameter is not included in coil checking.

Operands

Parameter Description Allowed Operands Optional

Length The number of WORDs (default 7) of constant

data copied to consecutive reference addresses

starting at output Q. Must equal the size of the

COMMREQ function’s entire command block,

including the header (words 0-5).

Constant No

Q The beginning address of the area where the

data is copied.

R, W, P, L, AI, AQ, and

symbolic non-discrete

variables

No

Example

Figure 136

On the f irst scan (as restricted by the #FST_SCN system variable), a command block

consisting of 100 words of data, including the 6 header words, is copied to %P00001

through %P00100. %Q00002 receives power.

4.8.10 Data Initialize DLAN
The Data Initialize DLAN (DATA_INIT_DLAN) function is used with a DLAN Interface

module, which is a limited availability, specialty system. If you have a DLAN system, refer

to the DLAN/DLAN+ Interface Module User’s Manual, GFK-0729, for details.

Operands

Parameter Description Allowed Operands Optional

Q The beginning address of the area

where the data is copied.

Flow, R, W, P, L, AI, AQ, and symbolic

non-discrete variables

No

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 184

4.8.11 Move

When the MOVE function receives power flow, it copies data as

individual bits from one location in PLC memory to another.

Because the data is copied in bit format, the new location does

not need to be the same data type as the original.

The MOVE function copies data from input operand IN to output

operand Q as bits. If data is moved from one location in BOOL

(discrete) memory to another, for example, from %I memory to %T

memory, the transition information associated with the BOOL

memory elements is updated to indicate whether the MOVE

operation caused any BOOL memory elements to change state.

Data at the input operand does not change unless there is an

overlap in the source and destination.

Mnemonics:

MOVE_BOOL

MOVE_DINT

MOVE_DWORD

MOVE_INT

MOVE_REAL

MOVE_UINT

MOVE_WORD

Note: If an array of BOOL-type data specified in the Q operand does not include all the bits in

a byte, the transition bits associated with that byte (which are not in the array) are cleared

when the Move function receives power flow. The input IN can be either a variable

providing a reference for the data to be moved or a constant. If a constant is specified,

then the constant value is placed in the location specified by the output reference. For

example, if a constant value of 4 is specified for IN, then 4 is placed in the memory location

specified by Q. If the length is greater than 1 and a constant is specified, then the constant

is placed in the memory location specified by Q and the locations following, up to the

length specified. Do not allow overlapping of IN and Q operands.

The result of the MOVE depends on the data type selected for the function, as shown

below. For example, if the constant value 9 is specified for IN and the length is 4, then 9

is placed in the bit memory location specified by Q and the three locations following:

Figure 137

The MOVE function passes power to the right whenever it receives power.

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 185

MOVE Operands

Parameter Description Allowed

Operands

Optional

Length (??) The length of IN; the number of bits, words, or double

words to copy.

If IN is a constant and Q is BOOL, then 1  Length 

16; otherwise, 1  Length  256.

1  Length  32,767

Constant No

IN The location of the first data item to copy.

For MOVE_BOOL, any discrete reference may be

used. It does not need to be byte-aligned. However,

16 bits beginning with the reference address

specified are displayed online.

If IN is a constant, it is treated as an array of bits.

The value of the least significant bit is copied into the

memory location specified by Q. If Length is greater

than one, the bits are copied in order from the least

significant to the most significant into successive

memory locations, up to the length specified.

All. %S, %SA, %SB,

%SC allowed only

for WORD, DWORD,

BOOL types.

No

Q The location of the first destination data item.

For MOVE_BOOL, any discrete reference may be

used. It does not need to be byte-aligned. However,

16 bits beginning with the reference address

specified are displayed online.

All except %S. Also,

no %SA, SB, SC

except for WORD,

DWORD, BOOL

types.

No

MOVE_BOOL Example

Figure 138

When %I00003 is set, the three bits %M00001, %M00002, and %M00003 are moved to

%M00100, %M00101, and %M00102, respectively. Coil %Q00001 is turned on.

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 186

MOVE_WORD Example

Figure 139

V_M00001 and V_M00033 are both WORD arrays of length 3, for a total of 48 bits in

each array. Since PLCs do not recognize arrays, Length must be set at 3, for the total

number of WORDs to be moved. When enabling input V_Q0014 is ON, MOVE_WORD

moves 48 bits from the memory location %M00001 to memory location %M00033. Even

though the destination overlaps the source for 16 bits, the move is done correctly.

4.8.12 Move Data

The MOVE_DATA function copies the variable assigned to the

input, IN to the variable assigned to the output, Q. If the constant

0 is assigned to IN, the variable assigned to Q is initialized to its

default value.

Mnemonic:

MOVE_DATA

MOVE_DATA Operands

Parameter Description Allowed Operands Optional

Length (??) The length of IN; the number of

elements to copy.

1  Length  32,767

Constant No

IN The location of the data item to copy.

If IN is 0, Q is set to its default value.

Enumerated variable, structure

variable, or array of these types; the

constant 0.

For details, refer to Data Types and

Structures in the PACMotion Multi-

Axis Motion Controller User’s Manual,

GFK-2448.

No

Q The location of the data copied from

IN.

Q must be the same data type as IN,

unless IN is the constant 0.

Enumerated variable, structure

variable, or array of these types.

No

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 187

4.8.13 Move Data Explicit

Figure 140

MOVE_DATA_EX provides optional data coherency by locking the symbolic memory

being written to during the copy operation. This allows data to be copied coherently when

accessed by multiple logic threads (i.e. interrupt blocks). Note that copying large amounts

of data with coherency enabled can increase interrupt latency.

MOVE_DATA_EX Operands

Parameter Description Allowed Operands Optional

Length (??) The length of IN; the number of elements to copy.

1  Length  32,767

Constant No

DC Data coherency.

If True memory being written to is locked, enabling

coherent copying of data from one Controller

memory area to another.

If False (default), data is copied normally from one

Controller memory area to another without data

coherency.

• The input DC should be used only when

using interrupt blocks and is required only

when the same memory is used in more than

one interrupt block, or in the main program

and an interrupt block.

• If DC is True, an interrupt block cannot

preempt the copy operation.

• If DC is False or not present, then interrupts

can preempt the copy.

• Using DC can impact interrupt latency if the

amount of data copied is large.

Data flow. Yes

IN The location of the data item to copy.

If IN is 0 (LD only), length is assigned the constant

1 and the variable or structure assigned to Q is set

to its default value.

Enumerated variable or

structure variable, or

array of these types; the

constant 0.

No

Q Variable or array to which IN is copied.

Q must be the same data type as IN, unless IN is

the constant 0.

Enumerated variable or

structure variable, or

array of these types.

No

Example

Figure 141

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 188

Enum_Array and Enum_Array_Out are arrays of enumerated variables, with three

elements each. To copy all elements in Enum_Array, input Length should be 3. When

the enabling input Q00014 is on, MOVE_DATA_EX copies three elements from memory

location Enum_Array to memory location Enum_Array_Out.

4.8.14 Move From Flat

Figure 142

MOVE_FROM_FLAT copies reference memory data to a User-defined Data Type (UDT)

variable or UDT array.

MOVE_FROM_FLAT provides optional data coherency by locking the data being written

to during the copy operation. This allows data to be copied coherently when accessed

by multiple logic threads (i.e. interrupt blocks). Note that copying large amounts of data

with coherency enabled can increase interrupt latency.

Operation

Copying arrays and array elements

The constant value assigned to input LEN (Length) determines the number of UDT array

elements to be f illed by copying data f rom reference memory to output Q.

Example:

If constant value 6 is assigned to input LEN (Length), there should be a UDT array of at

least six elements assigned to output Q. During logic execution, n bytes of data are

copied from reference memory to the first six UDT array elements, where n is the length

of the UDT array element (in bytes) times six.

Copying to specified array elements

For output Q, a single element of a UDT array can be specified, for example,

myUDT_array[4] (5th element of myUDT_array). In this case, the input LEN (Length)

operand applies to the array elements starting f rom and including myUDT_array[4].

Example:

myUDT_array is a UDT array of ten elements, of which each element is a UDT variable,

and myUDT_array[4] is assigned to output Q. This restricts the value of input LEN

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 189

(Length) to six or less because there are six remaining UDT array elements that can be

f illed in myUDT_array.

Notes:

• Length determines how many UDT variable elements to overwrite in Q.

• If an array head is assigned to input IN, the Length determines how many UDT array

elements assigned to Q are filled by copying data from reference memory.

MOVE_FROM_FLAT Operands

Parameter Description Allowed Operands Optional

Length (??) Determines the number of UDT array elements to be

filled by copying data from reference memory to output

Q.

1  Length  32,767

Constant No

DC Data coherency.

If True, memory being written to is locked, enabling

coherent copying of data from one Controller memory

area to another.

If False (default), data is copied normally from one

Controller memory area to another; that is without data

coherency.

• The input DC should be used only when using

interrupt blocks and is required only when the

same memory is used in more than one interrupt

block, or in the main program and an interrupt

block.

• If DC is True, an interrupt block cannot preempt

the copy operation.

• If DC is False or not present, then interrupts can

preempt the copy.

• Using DC can impact interrupt latency if the

amount of data copied is large.

Data flow. Yes

IN Reference memory data being copied to UDT variable

elements in output Q as determined by the Length.

All except %S, symbolic,

or I/O variable.

No

Q UDT variable or UDT array to which IN is copied.

Discrete or non-discrete

symbolic, discrete or

non-discrete I/O variable.

No

Example

A WORD variable mapped to %R1 is assigned to input IN and a value of 1 is assigned

to Length. A UDT variable or UDT array is assigned to output Q.

When MOVE_FROM_FLAT executes, n bytes of data are copied, starting at %R1 to a

UDT variable or UDT array, where n is the UDT array element length (in bytes). If a UDT

array is assigned to output Q, n bytes of data are copied to the first UDT array element.

4.8.15 Move to Flat

Figure 143

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 190

MOVE_TO_FLAT instruction copies data f rom symbolic or I/O variable memory to

reference memory. MOVE_TO_FLAT copies across mismatched data types for an

operation such as a Modbus transfer.

MOVE_TO_FLAT provides optional data coherency by locking the reference memory

being written to during the copy operation. This allows data to be copied coherently when

accessed by multiple logic threads (i.e. interrupt blocks). Note that copying large amounts

of data with coherency enabled can increase interrupt latency.

Notes:

• The Data Coherency (DC) input should be used only when using interrupt blocks

and is required only when the same memory is used in more than one interrupt

block, or in the main program and an interrupt block.

• If DC is True, an interrupt block cannot preempt the copy operation.

• If DC is False or not present, then interrupts can preempt the copy.

• Using DC can impact interrupt latency if the amount of data copied is large.

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 191

Copying Arrays and Array Elements

The Length determines the number of UDT array elements to be copied to the reference

memory of the variable assigned to output Q.

Example: If the value 6 is assigned to Length, there should be a UDT array of at least

six elements assigned to input IN. When logic executes, n bytes of data are copied from

the UDT array elements to the reference memory of the variable assigned to output Q,

where n is the length of the UDT array element (in bytes) times six.

MOVE_TO_FLAT Operands

Parameter Description Allowed Operands Optional

Length (??) The length of IN; the number of elements to copy.

1  Length  32,767

Constant No

DC Data coherency.

If True, the memory being written to is locked. This enables a

coherent copy of a UDT to reference memory.

If False (default), data is copied normally from one Controller

memory area to another; that is without data coherency.

• DC should be used only when using interrupt blocks and is

required only when the same memory is used in more than

one interrupt block, or in the main program and an interrupt

block.

• If DC is True, an interrupt block cannot preempt the copy

operation.

• If DC is False or not present, interrupts can preempt the copy.

• Using DC can impact interrupt latency if the amount of data

copied is large.

Data flow. Yes

IN UDT variable or UDT array. The data copied to the reference

memory mapped to the variable assigned to Q.

If IN is 0, length is assigned the constant 1 and the variable or

structure assigned to Q is set to its default value.

Discrete or non-discrete symbolic,

discrete or non-discrete I/O

variable.

No

Q Variable or array to which IN is copied. The amount of data copied is

determined by the constant value assigned to input LEN (Length).

All memory areas except %S,

discrete symbolic, discrete I/O

variable.

• Indirect referencing is

available for all register

references (%R, %P, %L,

%W, %AI, and %AQ).

• BYTE arrays must be packed;

that is, they must be in

discrete memory.

No

Example

A UDT variable or UDT array is assigned to input IN.

The constant value 8 is assigned to input LEN (Length).

A DWORD variable mapped to %R1 is assigned to output Q.

If the constant value 8 is assigned to LEN (length), there should be a UDT array of at

least eight elements assigned to IN. When MOVE_TO_FLAT executes, n bytes of data

are copied from the UDT variable or array to %R memory, starting at %R1 in the example,

where n is the length of a UDT array element (in bytes) times eight.

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 192

4.8.16 Shift Register

When the Shift Register (SHFR_BIT, SHFR_DWORD, or

SHFR_WORD) function receives power and the R operand

does not, SHFR shifts one or more data BITs, data DWORDs,

or data WORDs from a reference location into a specified area

of memory. A contiguous section of memory serves as a shift

register. For example, one word might be shifted into an area of

memory with a specified length of five words. As a result of this

shift, another word of data would be shifted out of the end of the

memory area.

Mnemonics:

SHFR_BIT

SHFR_DWORD

SHFR_WORD

 WARNING

The use of overlapping input and output reference address ranges in multiword functions is not

recommended, as it may produce unexpected results.

The reset input (R) takes precedence over the function enable input. When the reset is

active, all references beginning at the shif t register (ST) up to the length specified, are

f illed with zeroes.

If the function receives power flow and R is not active, each BIT, DWORD, or WORD of

the shif t register is moved to the next highest reference. The elements shifted out of ST

are shif ted into Q. The highest reference of IN is shifted into the vacated element starting

at ST.

Note: The contents of the shift register are accessible throughout the program because they

are overlaid on absolute locations in logic addressable memory.

The function passes power to the right whenever it receives power f low and the R

operand does not.

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 193

Operands for Shift Register

Parameter Description Allowed

Operands

Optional

Length (??) The number of data items in the shift register,

ST.

1  Length  256

 No

R Reset. When R is ON, the shift register located

at ST is filled with zeroes.

Power flow No

N The number of data items to shift into ST. Constants No

IN The value to shift into the first data item of ST.

SHFR_BIT: For %I, %Q, %M and %T memory,

any BOOL reference may be used; it does not

need to be byte-aligned. However, 1 bit,

beginning with the reference address specified,

is displayed online.

All

No

ST The first data item of the shift register.

Note: For %I, %Q, %M and %T

memory, any BOOL reference

may be used; it does not need to

be byte-aligned. However, 16

bits, beginning with the reference

address specified, are displayed

online.

All except data flow,

constants, S

No

Q The data shifted out of ST. The same number of

data items will be shifted into Q as were shifted

out of ST.

SHFR_BIT: For %I, %Q, %M and %T memory,

any BOOL reference may be used; it does not

need to be byte-aligned. However, 1 bit,

beginning with the reference address specified,

is displayed online.

All except S No

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 194

Example

Figure 144

SHFR_WORD operates on register memory locations %R0001 through %R0100. When

the reset reference CLEAR is active, the Shif t Register words are set to zero.

When the NXT_CYC reference is active and CLEAR is not, the two words at the starting

address V_Q00033 are shifted into the Shift Register at %R0001. The words shifted out

of the Shif t Register f rom %R0100 are stored in output %M0005. Note that, for this

example, the length specified and the amount of data to be shifted (N) are not the same.

4.8.17 Size Of

Counts the number of bits used by the variable

assigned to input IN and writes the number of bits

to output Q.

Mnemonics:

SIZE_OF

Operands

Parameter Description Allowed Operands Optional

IN The variable whose size in

bits is calculated.

Variable of any data type except BYTE

arrays in non-discrete memory and double-

segment structures.

No

Q The number of bits used by

the variable assigned to input

IN.

DINT or DWORD variable.

ST also supports INT and WORD variables.

No

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 195

Example

Figure 145

The single-segment structure named Var assigned to input IN contains eight BOOL

elements (8 × 1 = 8 bits) and twelve WORD elements (12 × 16 = 192 bits). SIZE_OF

outputs the value 8 + 192 = 200 to the variable R00001 assigned to output Q.

4.8.18 Swap

The SWAP function is used to swap two bytes within a word

(SWAP WORD) or two words within a double word (SWAP

DWORD). The SWAP can be performed over a wide range of

memory by specifying a length greater than 1. If that is done,

the data in each word or double word within the specified length

is swapped.

Other mnemonic:

SWAP_WORD

When the SWAP function receives power f low, it swaps the data in reference IN and

places the swapped data into output reference Q. The function passes power to the right

whenever it receives power.

PACSystems CPUs use the Intel convention for storing word data in bytes. They store

the least significant byte of a word in address n and the most significant byte in address

n+1. Many VME modules follow the Motorola convention of storing the most significant

byte in address n and the least signif icant byte in address n+1.

The PACSystems CPU assigns byte address 1 to the same storage location regardless

of the byte convention used by the other device. However, because of the difference in

byte significance, word and multiword data, for example, 16-bit integers (INT, UINT), 32-

bit integers (DINT) or f loating point (REAL) numbers, must be adjusted when being

transferred to or f rom Motorola-convention modules. In these cases, the two bytes in

each word must be swapped, either before or after the transfer. In addition, for multiword

data items, the words must be swapped end-for-end on a word basis. For example, a

64-bit real number transferred to the PACSystems CPU from a Motorola-convention

module must be byte-swapped and word-reversed, either before or af ter reading, as

shown below:

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 196

Figure 146

Character (ASCII) strings or BCD data require no adjustment since the Intel and Motorola

conventions for storage of character strings are identical.

Operands for Swap

The two parameters, IN and Q, must both be the same type, WORD or DWORD.

Parameter Description Allowed Operands Optional

Length (??) The number of WORDs or DWORDs to

operate on.

1  Length  256

Constant No

IN Reference for data to be swapped.

(must be the same type as Q)

All No

Q Reference for swapped data. (must be

the same type as IN)

All except S No

Example for Swap

Figure 147

Two bytes located in bits %I00033 through %I00048 are swapped. The result is stored

in %L00007.

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 197

4.9 Data Table Functions
Function Mnemonic Description

Array Move ARRAY_MOVE_BOOL

ARRAY_MOVE_BYTE

ARRAY_MOVE_DINT

ARRAY_MOVE_INT

ARRAY_MOVE_WORD

Copies a specified number of data elements from a source

memory block to a destination memory block.

Note: The memory blocks do not need to be

defined as arrays. You must supply a starting

address and the number of contiguous

registers to use for the move.

Array Range ARRAY_RANGE_DINT

ARRAY_RANGE_DWORD

ARRAY_RANGE_INT

ARRAY_RANGE_UINT

ARRAY_RANGE_WORD

Determines if a value is between the range specified in two

tables

FIFO Read FIFO_RD_DINT

FIFO_RD_DWORD

FIFO_RD_INT

FIFO_RD_UINT

FIFO_RD_WORD

Removes the entry at the bottom of the First In First Out (FIFO)

table, and decrements the pointer by one

FIFO Write FIFO_WRT_DINT

FIFO_WRT_DWORD

FIFO_WRT_INT

FIFO_WRT_UINT

FIFO_WRT_WORD

Increments the table pointer and writes data to the bottom of

the FIFO table

LIFO Read LIFO_RD_DINT

LIFO_RD_DWORD

LIFO_RD_INT

LIFO_RD_UINT

LIFO_RD_WORD

Removes the entry at the pointer location in the LIFO (Last In

First Out) table, and decrements the pointer by one

LIFO Write LIFO_WRT_DINT

LIFO_WRT_DWORD

LIFO_WRT_INT

LIFO_WRT_UINT

LIFO_WRT_WORD

Increments the LIFO table's pointer and writes data to the table

Search SEARCH_EQ_BYTE

SEARCH_EQ_DINT

SEARCH_EQ_DWORD

SEARCH_EQ_INT

SEARCH_EQ_UINT

SEARCH_EQ_WORD

Searches for all array values equal to a specified value

SEARCH_GE_BYTE

SEARCH_GE_DINT

SEARCH_GE_DWORD

SEARCH_GE_INT

SEARCH_GE_UINT

SEARCH_GE_WORD

Searches for all array values greater than or equal to a

specified value

SEARCH_GT_BYTE

SEARCH_GT_DINT

SEARCH_GT_DWORD

SEARCH_GT_INT

SEARCH_GT_UINT

SEARCH_GT_WORD

Searches for all array values greater than a specified value

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 198

Function Mnemonic Description

SEARCH_LE_BYTE

SEARCH_LE_DINT

SEARCH_LE_DWORD

SEARCH_LE_INT

SEARCH_LE_UINT

SEARCH_LE_WORD

Searches for all array values less than or equal to a specified

value

SEARCH_LT_BYTE

SEARCH_LT_DINT

SEARCH_LT_DWORD

SEARCH_LT_INT

SEARCH_LT_UINT

SEARCH_LT_WORD

Searches for all array values less than a specified value

SEARCH_NE_BYTE

SEARCH_NE_DINT

SEARCH_NE_DWORD

SEARCH_NE_INT

SEARCH_NE_UINT

SEARCH_NE_WORD

Searches for all array values not equal to a specified value

Sort SORT_INT

SORT_UINT

SORT_WORD

Sorts a memory block in ascending order

Table Read TBL_RD_DINT

TBL_RD_DWORD

TBL_RD_INT

TBL_RD_UINT

TBL_RD_WORD

Copies a value from a specified table location to an output

reference

Table Write TBL_WRT_DINT

TBL_WRT_DWORD

TBL_WRT_INT

TBL_WRT_UINT

TBL_WRT_WORD

Copies a value from an input reference to a specified table

location

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 199

4.9.1 Array Move

When the Array Move function receives power flow, it

copies a specified number of elements from a source

memory block to a destination memory block. Starting

at the indexed location (SR+SNX-1) of the input

memory block, it copies N elements to the output

memory block, starting at the indexed location

(DS+DNX-1) of the output memory block.

Mnemonics:

ARRAY_MOVE_BOOL

ARRAY_MOVE_BYTE

ARRAY_MOVE_DINT

ARRAY_MOVE_DWORD

ARRAY_MOVE_INT

ARRAY_MOVE_UINT

ARRAY_MOVE_WORD

Note: For ARRAY_MOVE_BOOL, when 16-bit registers are selected for the operands of the

source memory block and/or destination memory block starting address, the least

significant bit of the specified 16-bit register is the first bit of the memory block. The value

displayed contains 16 bits, regardless of the length of the memory block.

The indices in an Array Move instruction are 1-based. In using an Array Move, no

element outside either the source or destination memory blocks (as specified by their

starting address and length) may be referenced.

The function passes power f low unless one of the following conditions occurs:

• It receives no power f low.

• (N + SNX - 1) is greater than Length.

• (N + DNX - 1) is greater than Length.

Note: For each mnemonic, use the corresponding data type for the SR and DS operands. For

example, ARRAY_MOVE_BYTE requires SR and DS to be BYTE variables.

Operands for Array Move

Parameter Description Allowed Operands Optional

Length (??) The length of each memory block (source

and destination); the number of elements

in each memory block. 1  Length 

32,767.

Constant No

SR

(must be the same

data type as DS)

The starting address of the source memory

block.

Note: For an Array Move with the

data type BOOL, any

reference may be used; it

does not need to be byte-

aligned. Sixteen bits,

beginning with the

reference address

specified, are displayed

online.

All except constants. %S -

%SC allowed only for

BYTE, WORD, DWORD

types.

No

SNX The index of the source memory block All except variables in %S -

%SC.

No

DNX The index of the destination memory block All except variables in %S -

%SC.

No

N Count indicator All except variables in %S -

%SC

No

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 200

Parameter Description Allowed Operands Optional

DS

(must be the same

data type as SR)

The starting address of the destination

memory block.

Note: For an Array Move with the

data type BOOL, any

reference may be used; it

does not need to be byte-
aligned. Sixteen bits,

beginning with the

reference address

specified, are displayed

online.

All, except S and constants.

%SA - %SC allowed only

for BYTE, WORD, DWORD

types

No

Array Move Example 1

Figure 148

To def ine the input memory block %R0001 - %R0016 and the output memory block

%R0100 - %R0115, SR is set as %R0001, DS is set as %R0100, and Length is set to

16.

To copy the f ive registers %R0003 - %R0007 to the registers %R0104 - %R0108, N is

set to 5, SNX=%R0100 is set to 3 (to designate the third register, %R0003, of the block

starting at %R0001), and DNX is set to 5 (to designate the fifth register, %R0104, of the

block starting at %R0100).

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 201

Array Move Example 2

Figure 149

Using bit memory blocks, the input block starts at SR=%M0009, the output block starts

at %Q0022, and the length of both blocks is 16 one-bit registers (Length=16).

To copy the seven registers %M0011 - %M0017 to %Q0026 - %Q0032, N is set to 7,

SNX is set to 3 (to designate the third register, %M0011, of the block starting at

%M0009), and DNX is set to 5 (to designate the f ifth register, %Q0026, of the block

starting at %Q0022).

Array Move Example 3

Figure 150

Sixteen (=N) bits that are not byte-aligned are moved from the two 16-bit registers that

start at %R00001 (SR) to the two 16-bit registers that begin at %R00100 (DS). For the

purposes of this Boolean move, Length is set to 20, because the other 12 bits in either

memory block are not considered.

By setting SNX to 3, N to 16, and DNX to 5, the third (SNX) least significant bit of %R0001

through the second least significant bit of %R0002 (for a total of 16 bits=N) are written

into the f ifth (DNX) least significant bit of %R0100 through the fourth least significant bit

of %R0101 (for the same total of 16 bits).

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 202

4.9.2 Array Range

The ARRAY_RANGE function compares a single input

value against two arrays of delimiters that specify an

upper and lower bound to determine if the input value

falls within the range specified by the delimiters. The

output is an array of bits that is set ON (1) when the

input value is greater than or equal to the lower limit and

less than or equal to the upper limit. The output is set

OFF (0) when the input is outside this range or when the

range is invalid, as when the lower limit exceeds the

upper limit.

Mnemonics:

ARRAY_RANGE_DINT

ARRAY_RANGE_DWORD

ARRAY_RANGE_INT

ARRAY_RANGE_UINT

ARRAY_RANGE_WORD

The ARRAY_RANGE function compares a single input value against two arrays of

delimiters that specify an upper and lower bound to determine if the input value falls

within the range specified by the delimiters. The output is an array of bits that is set ON

(1) when the input value is greater than or equal to the lower limit and less than or equal

to the upper limit. The output is set OFF (0) when the input is outside this range or when

the range is invalid, as when the lower limit exceeds the upper limit.

When ARRAY_RANGE receives power, it compares the value in input parameter IN

against each range specified by the array element values of LL and UL. Output Q sets a

bit ON (1) for each corresponding array element where the value of IN is greater than or

equal to the value of LL and is less than or equal to the value of UL. Output Q sets a bit

OFF (0) for each corresponding array element where the value of IN is not within this

range or when the range is invalid, as when the value of LL exceeds the value of UL. If

the operation is successful, ARRAY_RANGE passes power f low to the right.

Operands for Array Range

Notes:

• For each mnemonic, use the corresponding data type for the LL, UL, and Q

operands. For example, ARRAY_RANGE_DINT requires LL, UL, and Q to be DINT

variables.

• Q is not aligned. It is displayed in bit format. It displays either a 1 (ON) or a 0 (OFF)

for the first array element. For BOOL references, it represents the reference

displayed. For other references, it represents the low order bit of the reference

displayed.

Parameter Description Allowed Operands Optional

Length (??) The number of elements in each array. Constant No

LL The lower limit of the range All except constants and %S -

%SC for INT, DINT.

No

UL The upper limit of the range All except constants and %S -

%SC for INT, DINT.

No

IN The value to compare against each range

specified by LL and UL

All except constants and %S -

%SC for INT, DINT.

No

Q Energized when the value in IN is within the

range specified by LL and UL, inclusive.

All except S No

Array Range Example 1

Figure 151

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 203

The lower limit (LL) values of %R00001 through %R00008 are 1, 20, 30, 100, 25, 50, 10,

and 200. The upper limit (UL) values of %R00100 through %R00108 are 40, 50, 150, 2,

45, 90, 250, and 47. The resulting Q values will be placed in the first 8 bits of %R00200.

The bit values low order to high are: 1, 1, 1, 0, 1, 0, 1, and 0. The bit value displayed will

be set ON (1) for the low order bit of %R00200. The ok output will be set ON (1).

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 204

Array Range Example 2

Figure 152

The lower limit (LL) array contains %T00001 through %T00016, %T00017 through

%T00032, and %T00033 through %T00048. The lower limit values are 100, 65, and 1.

The upper limit (UL) values are 29, 165, and 2. The resulting Q values of 0, 1, and 0 will

be placed in %Q00001 through %Q00003. The bit value displayed will be 0 (OFF),

representing the value of %Q00001. The power output will be set ON (1).

4.9.3 FIFO Read

The First-In-First-Out (FIFO) Read (FIFO_RD) function

moves data out of tables. Values are always moved out of the

bottom of the table. If the pointer reaches the last location and

the table becomes full, FIFO_RD must be used to remove the

entry at the pointer location and decrement the pointer by one.

FIFO_RD is used in conjunction with the FIFO_WRT function,

which increments the pointer and writes entries into the table.

Mnemonics:

FIFO_RD_DINT

FIFO_RD_DWORD

FIFO_RD_INT

FIFO_RD_UINT

FIFO_RD_WORD

1. FIFO_RD copies the top location (entry 0) of the table to output parameter Q.

Additional program logic must then be used to place the data in the input

reference.

2. The remaining items in the table are copied to a lower numbered position in the

table.

3. FIFO_RD decrements the pointer by one.

4. Steps 1, 2, and 3 are repeated each time FIFO_RD is executed, until the table

is empty (PTR = 0).

The pointer does not wrap around when the table is full.

When FIFO_RD receives power f low, the data at the f irst location of the table is copied

to output Q. Next, each item in the table is moved down to the next lower location. This

begins with item 2 in the table, which is moved into position 1. Finally, the p ointer is

decremented. If this causes the pointer location to become 0, the output EM is set ON,

i.e., EM indicates whether the table is empty.

FIFO_RD passes power to the right if the pointer is greater than zero and less than the

value specif ied for LEN.

Note: A FIFO table is a queue. A LIFO table is a stack.

Operands for FIFO Read

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 205

Note: For each mnemonic, use the corresponding data type for the TB and Q operands. For

example, FIFO_RD_DINT requires TB and Q to be DINT variables.

Parameter Description Allowed Operands Optional

Length (??) 1  Length  32,767. Constants No

TB (must be the same

type as Q)

The elements in the FIFO

table

All except constants No

PTR Pointer. Index of the last

element of the FIFO table.

All except constants, data flow, and

variables in %S -%SC

No

EM Energized when the last

element of the table is read

Flow No

Q (must be the same

type as TB)

The element read from the

FIFO table

All except constants, S; SA, SB, SC

allowed only for WORD, DWORD

No

Example for FIFO Read

Figure 153

PRODUCT is a FIFO table with 100 word-sized elements. When the enabling input

PACK_IT is ON, the PRODUCT data item in the table location pointed to by STK_PTR

is copied to the reference location specified in CART. This table location pointed to would

be the bottom, or oldest data item in the table. The number in STK_PTR is then

decremented. A copy of the oldest data item in the PRODUCT table is left behind in each

table location as the current data is copied out during successive PACK_IT triggers.

Output node EM passes power when the PTR = 0, firing the coil EMPTY. No further data

f rom the PRODUCT table can be read without first copying data in using the FIFO_WRT

function.

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 206

4.9.4 FIFO Write

The First-In-First-Out (FIFO) Write (FIFO_WRT) function

moves data into tables. The function increments the table

pointer by one and adds an entry at the new pointer location

in a FIFO table. Values are always moved in at the bottom

of the table. If the pointer reaches the last location and the

table becomes full, FIFO_WRT can add no further values.

The FIFO_RD function must then be used to remove the

entry at the pointer location and decrement the pointer by

one.

Mnemonics:

FIFO_WRT_DINT

FIFO_WRT_DWORD

FIFO_WRT_INT

FIFO_WRT_UINT

FIFO_WRT_WORD

1. FIFO_WRT increments the pointer by one.

2. FIFO_WRT copies data f rom input parameter IN to the position in the table

indicated by the pointer. (It writes over any value currently at that location.)

Additional program logic must then be used to place the data in the input

reference.

3. Steps 1 and 2 are repeated each time FIFO_WRT is executed, until the table is

full (PTR=0).

The pointer does not wrap around when the table is full.

When FIFO_WRT receives power flow, the pointer is incremented by 1. Then, input data

is written into the table at the pointer location. If the pointer was already at the last location

in the table, no data is written and FIFO_WRT does not pass power to the right. The

pointer always indicates the last item entered the table. If the table becomes full, it is not

possible to add more entries to it.

FIFO_WRT passes power to the right af ter a successful execution (PTR < LEN).

Operands for FIFO Write

Note: For each mnemonic, use the corresponding data type for the TB and IN operands. For

example, FIFO_WRT_DINT requires TB and IN to be DINT variables.

Parameter Description Allowed Operands Optional

Length (??) 1  Length  32,767. Constants No

TB (must be the

same data type

as IN)

The elements in the FIFO table All except constants, data flow, and S.

SA - SC allowed only for WORD, DWORD

types

No

PTR Pointer. Index of the last element

of the FIFO table.

All except constants, data flow, S - SC. No

IN (must be the

same data type

as TB)

The element to write to the FIFO

table

All. S – SC allowed only for WORD, DWORD

types.

No

FL Energized when IN is written to the

last element of the table

Power flow No

Example for FIFO Write

Figure 154

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 207

PRODUCT is a FIFO table with 100 word-sized elements. When the enabling input

UNPACK is ON, a data item from P_CODE is copied to the table location pointed to by

the value in STK_PTR. Output node FL passes power when PTR = LEN, firing the FULL

coil. No further data f rom P_CODE can be added to the table without first copying data

out, using the FIFO_RD function.

4.9.5 LIFO Read

The Last-In-First-Out (LIFO) Read (LIFO_RD) function moves

data out of tables. Values are always moved out of the top of the

table. If the pointer reaches the last location and the table

becomes full, LIFO_RD must be used to remove the entry at the

pointer location and decrement the pointer by one. LIFO_RD is

used in conjunction with the LIFO_WRT function, which

increments the pointer and writes entries into the table.

Mnemonics:

LIFO_RD_DINT

LIFO_RD_DWORD

LIFO_RD_INT

LIFO_RD_UINT

LIFO_RD_WORD

1. LIFO_RD copies data indicated by the pointer to output parameter Q. Additional

program logic must then be used to place the data in the input reference.

2. LIFO_RD decrements the pointer by one.

3. Steps 1 and 2 are repeated each time the instruction is executed, until the table is

empty (PTR = LEN).

The pointer does not wrap around when the table is full.

When LIFO_RD receives power flow, the data at the pointer location is copied to output

Q, then the pointer is decremented. If this causes the pointer location to become 0, the

output EM is set ON, i.e., EM indicates whether the table is empty. If the table is empty

when LIFO_RD receives power f low, no read occurs. The pointer always indicates the

last item entered into the table.

LIFO_RD passes power to the right if the pointer was in range for an element to be read.

Note: A LIFO table is a stack. A FIFO table is a queue.

Operands for LIFO Read

Note: For each mnemonic, use the corresponding data type for the TB and Q operands. For

example, LIFO_RD_DINT requires TB and Q to be DINT variables.

Parameter Description Allowed Operands Optional

Length (??) 1  Length  32,767. Constant No

TB (must be the

same type as Q)

The elements in the table All except constants No

PTR Pointer. Index of the next element to

read.

All except constants, S - SC, and

data flow

No

EM Energized when the last element of

the table is read

Power flow No

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 208

Q (must be the

same type as TB)

The element read from the table All except constants and S. SA, SB,

SC allowed only for WORD,

DWORD.

No

Example for LIFO Read

Figure 155

PRODUCT is a LIFO table with 100 word-sized elements. When the enabling input

PACK_IT is ON, the data item at the top of the table is copied into the reference indicated

by the nickname CART. The reference identified by STK_PTR contains the table pointer.

Output coil EMPTY indicates when the table is empty.

4.9.6 LIFO Write

The Last-In-First-Out (LIFO) Write (LIFO_WRT) function

increments the table pointer by one and then adds an entry

at the new pointer location in a table. Values are always

moved in at the top of the table. If the pointer reaches the

last location and the table becomes full, LIFO_WRT cannot

add further values. LIFO_RD must then be used to remove

the entry at the pointer location and decrement the pointer

by one.

Mnemonics:

LIFO_WRT_DINT

LIFO_WRT_DWORD

LIFO_WRT_INT

LIFO_WRT_UINT

LIFO_WRT_WORD

1. LIFO_WRT increments the table pointer by one.

2. LIFO_WRT copies data f rom input parameter IN to the position in the table

indicated by the pointer. (It writes over any value currently at that location.)

Additional program logic must then be used to place the data in the input

reference.

3. Steps 1 and 2 are repeated each time LIFO_WRT is executed, until the table is

full (PTR=LEN).

The pointer does not wrap around when the table is full.

When LIFO_WRT receives power f low, the pointer increments by 1; then the new data

is written at the pointer location. If the pointer was already at the last location in the table,

no data is written and LIFO_WRT does not pass power to the right. The pointer always

indicates the last item entered into the table. If the table is full, it is not possible to add

more entries to it.

LIFO_WRT passes power to the right af ter a successful execution (PTR < LEN).

Note A LIFO table is a stack. A FIFO table is a queue.

Operands for LIFO Write

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 209

Note For each mnemonic, use the corresponding data type for the TB and IN operands.

For example, LIFO_WRT_DINT requires TB and Q to be DINT variables.

Parameter Description Allowed Operands Optional

Length (??) 1  Length  32,767. Constants No

TB (must be the

same type as IN)

The elements in the table All except constants, S, data flow. SA -

SC allowed only for WORD, DWORD.

No

PTR Pointer. Index of the next

element to write.

All except constants, S - SC, and data

flow

No

IN (must be the

same type as TB)

The element to write to the

table

All. S – SC allowed only for WORD,

DWORD

No

FL Energized when IN is written

to the last element of the

table

All No

Example for LIFO Write

Figure 156

PRODUCT is a LIFO table with 100 word-sized elements. When the enabling input

STORE is ON, a data item from NEW_ITEM is copied to the table location pointed to by

the value in STK_PTR. Output FL passes power when PTR = LEN, f iring the FULL coil.

No further data f rom NEW_ITEM can be added to the table without f irst copying data out,

using the LIFO_RD function.

4.9.7 Search

Figure 157

When the Search function receives power, it searches the specified memory block for a

value that satisf ies the search criteria. For example, SEARCH_GE_DWORD searches

for a DWORD that is greater than or equal to the specif ied value (the IN operand).

Search can evaluate six different relationships for six data types, for a total of thirty-six

mnemonics.

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 210

Search Relationships:

SEARCH_EQ_ searches for a value of the specified data type equal to the IN operand.

SEARCH_GE_ searches for a value of the specified data type greater than or equal to IN.

SEARCH_GT_ searches for a value of the specified data type greater than IN.

SEARCH_LE_ searches for a value of the specified data type less than or equal to IN.

SEARCH_LT_ searches for a value of the specified data type less than IN.

SEARCH_NE_ searches for a value of the specified data type that is not equal to IN.

Data types:

BYTE, DINT, DWORD, INT, UINT, WORD

Searching begins at AR+INX, where AR is the starting address and INX is the index

value into the memory block. The search continues either until a register that satisfies

the search criteria is found or until the end of the memory block is reached.

• If a register is found, the Found Indication (FD) is set ON and the Output Index (ONX)

is set to the relative position of this register within the block.

• If no register is found before the end of the block is reached, the Found Indication

(FD) is set OFF and the Output Index (ONX) is set to zero.

The input index (INX) is zero-based, that is, 0 the means f irst reference, whereas the

output index (ONX) is one-based, that is, 1 means the f irst reference.

The valid values for INX are 0 to (Length - 1). The valid values for ONX are 1 to Length.

INX should be set to zero to begin searching at the memory block's first register. This

value increments by one at the time of execution. If the value of input INX is out­of­range,

(< 0 or > Length-1), INX is set to the default value of zero.

SEARCH passes power flow to the right when it performs without error. If INX is out of

range, SEARCH does not pass power f low to the right.

Operands for the Search Function

Note: For each mnemonic, use the corresponding data type for the AR and IN operands.

For example, SEARCH_EQ_BYTE requires AR and IN to be BYTE variables.

Parameter Description Allowed Operands Optional

Length (??) The number of registers starting at AR

that make up the memory block to search.

1  Length  32,767 8-bit or 16-bit

registers.

Constants No

AR (must be the same

type as IN)

The starting address of the memory block

to search; the address of the first register

in the memory block.

All except constants No

INX The zero-based index into the memory

block at which to begin the search. Zero

points to the first reference.

Valid range: 0  INX  (Length-1).

If INX is out of range, it is set to the

default value of 0.

All except constants No

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 211

Parameter Description Allowed Operands Optional

IN (must be the same type

as AR)

The value that the search is based on. For

example:

SEARCH_GT_DINT searches for a DINT

value that is greater than IN.

SEARCH_NE_UINT searches for a UINT

value that is not equal to IN.

SEARCH_GE_WORD searches for a

WORD value that is greater than or equal

to IN.

All No

ONX The one-based position within the

memory block of the search target. A

value of 1 point to the first reference.

Valid range: 1  ONX  Length

data flow, I, Q, M, T, G,

R, P, L, AI, AQ

No

FD Found indicator. This power flow indicator

is energized when a register that satisfies

the search criteria is found and the

function was successful.

Power flow No

Example for the Search Function

Figure 158

To search the memory block %AI00001 - %AI00016, AR is set as %AI00001 and Length

is set as 16. The values of the 16 registers are 100, 20, 0, 5, 90, 200, 0, 79, 102, 80, 24,

34, 987, 8, 0, and 500. Initially, the search index into AR, %AQ0001, is 5. When power

f low input is ON, each scan searches the memory block looking for a match to the IN

value of 0. The f irst scan starts searching at %AI00006 and finds a match at %AI00007,

so FD turns ON and %AQ00001 becomes 7. The second scan starts searching at

%AI00008 and f inds a match at %AI00015, so FD remains ON and %AQ0001 becomes

15. The next scan starts at %AI00016. Since the end of the memory block is reached

without a match, FD is set OFF and %AQ0001 is set to zero. The next scan starts

searching at the beginning of the memory block.

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 212

4.9.8 Sort

When it receives power flow, the SORT function sorts the elements

of the memory block 'IN' in ascending order. The output memory

block Q contains integers that give the index that the sorted

elements had in the original memory block or list. Q is the same size

as IN. It also has a specification (LEN) of the number of elements to

be sorted.

Mnemonics:

SORT_INT

SORT_UINT

SORT_WORD

SORT operates on memory blocks of no more than 64 elements. When EN is ON, all the

elements of IN are sorted into ascending order, based on their data type. The array Q is

also created, giving the original position that each sorted element held in the unsorted

array. OK is always set ON.

Notes The SORT function is executed each scan it is enabled. Do not use the SORT

function in a timed or triggered input program block.

Operands

Note: For each mnemonic, use the corresponding data type for the IN and Q operands.

For example, SORT_INT requires IN and Q to be INT variables.

Parameter Description Allowed Operands Optional

Length (??) The number (1—64) of elements that make up

the memory block to sort.

Constants No

IN The memory block that contains the elements

to sort. After the sort, IN contains the

elements in the sorted order.

All except data flow, S,

constants. SA – SC valid

only for WORD type

No

Q (must be the

same type as IN)

An array of indexes that gives the position of

the sorted elements in the original memory

block

All except S - SC and

constants

No

Example

Figure 159

New part numbers (%I00017 - %I00032) are pushed onto a parts array PLIST every time

%Q00014 is ON. When the array is f illed, it is sorted and the output %Q00025 is turned

on. The array PPOSN then contains the original position that the now-sorted elements

held before the sort was done on PLIST.

If PLIST were an array of f ive elements and contained the values 25, 67, 12, 35, 14

before the sort, then after the sort it would contain the values 12, 14, 25, 35, 67. PPOSN

would contain the values 3, 5, 1, 4, 2.

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 213

4.9.9 Table Read

The Table Read (TBL_RD) function sequentially reads values in

a table. When the pointer reaches the end of the table, it wraps

around to the beginning of the table. (TBL_RD is like FIFO_RD

with a wrap-around.)

Mnemonics:

TBL_RD_DINT

TBL_RD_DWORD

TBL_RD_INT

TBL_RD_UINT

TBL_RD_WORD

When TBL_RD receives power f low:

1. TBL_RD increments the pointer by one.

2. TBL_RD copies data indicated by the pointer to output parameter Q. Additional

program logic must then be used to capture the data from the output reference.

3. Steps 1 and 2 are repeated each time the instruction is executed, until the end

of the table is reached (PTR=the length specified in Length). When the end of

the table is reached, the pointer wraps around to the beginning of the table.

When TBL_RD receives power f low, the pointer (PTR) increments by one. If this new

pointer location is the last item in the table, the output EM is set ON. The next time

TBL_RD executes, PTR is automatically set back to 1. Af ter PTR is incremented, the

content at the new pointer location is copied to output Q.

TBL_RD always passes power to the right when it receives power.

Note: The TBL_RD and TBL_WRT functions can operate on the same or different tables.

By specifying a different reference for the pointer, these functions can access the

same data table at different locations or at different rates.

Operands

Note: For each mnemonic, use the corresponding data type for the TB and Q operands.

For example, TBL_RD_DINT requires TB and Q to be DINT variables.

Parameter Description Allowed Operands Optional

Length 1  Length  32,767 Constants No

TB (must be the

same type as Q)

The elements in the table All except constants No

PTR Pointer. Index of the next

element.

All except data flow, S - SC,

constants

No

EM Energized when the last

element of the table is read

Power flow No

Q (must be the same

type as TB)

The element read from the

table

All except constants, S. SA, SB,

SC allowed only for WORD,

DWORD

No

Table Read Example

Figure 160

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 214

WIDGETS is a table with 20 integer elements. When the enabling input %M00346 is ON,

the pointer increments and the contents of the next element of the table are copied into

ITEM_CT. %L00001 functions as the pointer into the data table. %M01001 is used to

signal when all items of the data table have been accessed.

4.9.10 Table Write

The Table Write (TBL_WRT) function sequentially updates values

in a table that never becomes full. When the pointer (PTR) reaches

the end of the table, it automatically returns to the beginning of the

table.

Mnemonics:

TBL_WRT_DINT

TBL_WRT_DWORD

TBL_WRT_INT

TBL_WRT_UINT

TBL_WRT_WORD

1. TBL_WRT increments the pointer by one.

2. TBL_WRT copies data f rom input parameter IN to the position in the table

indicated by the pointer. (It writes over any value currently at that location.)

Additional program logic must then be used to place the data in the input

reference.

3. Steps 1 and 2 are repeated each time the instruction is executed, until the table

is full (PTR=LEN). When the table is full, the pointer wraps around to the

beginning of the table.

Note: The TBL_WRT and TBL_RD functions can operate on the same or different tables.

By specifying a different reference for the pointer, these functions can access the

same data table at different locations or at different rates.

When TBL_WRT receives power f low, the pointer (PTR) increments by 1. If this new

pointer location is the last item in the table, the output FL is set to ON. The next time

TBL_WRT executes, PTR is automatically set back to 1. Af ter incrementing PTR,

TBL_WRT writes the content of the input reference to the current pointer location,

overwriting data already stored there.

TBL_WRT always passes power to the right when it receives power.

Note: TBL_WRT is like FIFO_WRT with a wrap-around.

Operands

Note: For each mnemonic, use the corresponding data type for the TB and IN operands.

For example, TBL_WRT_DINT requires TB and IN to be DINT variables.

Parameter Description Allowed Operands Optional

Length 1  Length  32,767. Constants No

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 215

Parameter Description Allowed Operands Optional

TB (must be the same

data type as IN)

The elements in the table All except S, constants, data flow.

SA – SC allowed only for WORD,

DWORD

No

PTR Pointer. Index of the next

element.

All except constants, data flow, %S

- %SC

No

IN (must be the same

data type as TB)

The element to write to the table All. %S - %SC allowed only for

WORD, DWORD

No

FL Energized when IN is written to

the last element of the table

Power flow No

Table Write Example

Figure 161

WIDGETS is a table with 20 integer elements. When the enabling input %I00012 is ON,

the pointer increments and the contents of %P00077 are written into the table at the

pointer location. %L00001 functions as the pointer into the data table.

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 216

4.10 Math Functions
Your program may need to include logic to convert data to a different data type before

using a Math or Numerical function. The description of each function includes information

about appropriate data types. Refer to the Conversion Functions section to understand

how to convert one data type to a dif ferent data type.

Function Mnemonics Description

Absolute Value ABS_DINT, ABS_INT,

ABS_REAL, ABS_LREAL

Finds the absolute value of a double- precision integer

(DINT), signed single-precision integer (INT), or floating-

point (REAL or LREAL) value. The mnemonic specifies the

value's data type.

Add ADD_DINT, ADD_INT,

ADD_REAL, ADD_LREAL,

ADD_UINT

Addition. Adds two numbers.

Divide
4
 DIV_DINT, DIV_INT,

DIV_MIXED, DIV_REAL,

DIV_LREAL, DIV_UINT

Division. Divides one number by another and outputs the

quotient.

Note: Take care to avoid
Overflow conditions when performing divisions.

Modulus MOD_DINT, MOD_INT,

MOD_UINT

Modulo Division. Divides one number by another and

outputs the remainder.

Multiply
4
 MUL_DINT, MUL_INT,

MUL_MIXED, MUL_REAL,

MUL_LREAL, MUL_UINT

Multiplication. Multiplies two numbers.

Note: Take care to avoid
Overflow conditions when performing

multiplications.

Scale SCALE Scales an input parameter and places the result in an

output location.

Subtract SUB_DINT, SUB_INT,

SUB_REAL, SUB_LREAL,

SUB_UINT

Subtraction. Subtracts one number from another.

4 To avoid

Overflows when multiplying or dividing 16-bit numbers, use the Conversion Functions to convert the numbers to a 32-bit data type.

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 217

4.10.1 Overflow
When an operation results in overf low, there is no power f low.

If an operation on signed operands (INT, DINT, REAL) results in overf low, the output

reference is set to its largest possible value for the data type. For signed numbers, the

sign is set to show the direction of the overflow. If signed or double precision integers

are used, the sign of the result for DIV and MUL functions depends on the signs of I1

and I2.

Maximum

Values

MAXINT16 Maximum signed 16-bit 7FFF hex 32,767

MAXUINT16 Maximum unsigned 16-bit FFFF hex 65,535

MAXINT32 Maximum signed 32-bit 7FFFFFFF hex 2,147,483,647

Minimum

Values

MININT16 Minimum signed 16-bit 8000 hex –32,768

MININT32 Minimum signed 32-bit 80000000 hex –2,147,483,648

If an operation on unsigned operands (UINT) results in overflow or underflow, the output

value wraps around. For example, the ADD_UINT operation, 65535+16, yields a result

of 15.

4.10.2 Absolute Value

When the function receives power flow, it places the

absolute value of input IN into output Q.

Mnemonics:

ABS_DINT

ABS_INT

ABS_REAL

ABS_LREAL

The function outputs power f low, unless one of the following conditions occurs:

• For INT type, IN is –32,768.

• For DINT type, IN is –2,147,483,648.

• For REAL or LREAL type, IN is NaN (Not a Number).

Operands

Parameter Description Allowed Operands Optional

IN (must be same type as Q) The value to process. All except S, SA, SB, SC No

Q (must be same type as IN) The absolute value of IN. All except S, SA, SB, SC and

constant

No

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 218

Example

The absolute value of –2,976, which is 2,976, is placed in %R00010:

Figure 162

4.10.3 Add

When the ADD function receives power flow, it adds the two operands

IN1 and IN2 of the same data type and stores the sum in the output

variable assigned to Q, also of the same data type.

Mnemonics:

ADD_DINT

ADD_INT

ADD_REAL

ADD_LREAL

ADD_UINT

The power f low output is energized when ADD is performed, unless an invalid
operation or occurs. (For more information, refer to the section on Overf low

Mnemonic Operation Displays as

ADD_INT Q(16-bit) = IN1(16-bit) + IN2(16-bit) base 10 number with sign, up to 5 digits long

ADD_DINT Q(32-bit) = IN1(32-bit) + IN2(32-bit) base 10 number with sign, up to 10 digits long

ADD_REAL Q(32-bit) = IN1(32-bit) + IN2(32-bit) base 10 number, sign and decimals, up to 8 digits

long (excluding the decimals)

ADD_LREAL Q(64-bit) = IN1(64-bit) + IN2(64-bit) base 10 number, sign and decimals, up to 17

digits long (excluding the decimals)

ADD_UINT Q(16-bit) = IN1(16-bit) + IN2(16-bit) base 10 number, unsigned, up to 5 digits long

Operands of the ADD Function

Operand Description Allowed Operands Optional

IN1 The value to the left of the plus sign (+) in

the equation IN1+IN2=Q.

All except S, SA, SB, SC No

IN2 The value to the right of the plus sign (+) in

the equation IN1+IN2=Q.

All except S, SA, SB, SC No

Q The result of IN1+IN2. If an ADD of signed

operands results in
Overflow, Q is set to the largest possible

value and there is no power flow.

If an ADD_UINT operation results in
Overflow, Q wraps around.

All except S, SA, SB, SC and

constant.

No

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 219

Example1 for ADD

Figure 163

The f irst example is a failed attempt to create a counter circuit that would count the

number of times switch %I00001 closes. The running total is stored in register %R00002.

The intent of this design is that when %I0001 closes, the ADD instruction should add one

to the value in %R00002 and place the new value right back into %R0002. The problem

with this design is that the ADD instruction executes once every PLC scan while %I0001

is closed. For example, if %I0001 stays closed for five scans, the output increments five

times, even though %I00001 only closed once during that period.

Example2 for ADD

Figure 164

To correct the above problem, the enable input to the ADD instruction should come from

a transition (one-shot) coil, as shown below. In the improved circuit, the %I0001 input

switch controls a transition coil, %M0001, whose contact turns on the enable input of the

ADD function for only one scan each time contact %I00001 closes. For the %M00001

contact to close again, contact %I0001 has to open and close again.

Note: If IN1 and/or IN2 is NaN (Not a Number), ADD_REAL passes no power flow.

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 220

4.10.4 Divide

When the DIV function receives power flow, it divides the operand IN1

by the operand IN2 of the same data type as IN1 and stores the

quotient in the output variable assigned to Q, also of the same data

type as IN1 and IN2.

The power f low output is energized when DIV is
performed, unless an invalid operation or
Overf low occurs. (For more information, refer to the
section on
Overflow.)

Mnemonics:

DIV_DINT

DIV_INT

DIV_MIXED

DIV_REAL

DIV_LREAL

DIV_UINT

Notes:

• DIV rounds down; it does not round to the closest integer. For example,

24 DIV 5 = 4.

• DIV_MIXED uses mixed data types.

• Be careful to avoid overflows.

The following REAL and LREAL operations are invalid for DIV:

• Any number divided by 0. This operation yields a result of 65535.

• ∞ divided by ∞

• I1 and/or I2 is NaN (Not a Number)

Mnemonic Operation Displays as

DIV_UINT Q(16-bit) = IN1(16-bit) / IN2(16-bit) base 10 number, unsigned, up to 5 digits long

DIV_INT Q(16-bit) = IN1(16-bit) / IN2(16-bit) base 10 number with sign, up to 5 digits long

DIV_DINT Q(32-bit) = IN1(32-bit) / IN2(32-bit) base 10 number with sign, up to 10 digits long

DIV_MIXED Q(16-bit) = IN1(32-bit) / IN2(16-bit) base 10 number with sign, up to 5 digits long

DIV_REAL Q(32-bit) = IN1(32-bit) / IN2(32-bit) base 10 number, sign and decimals, up to 8 digits

long (excluding the decimals)

DIV_LREAL Q(64-bit) = IN1(64-bit) / IN2(64-bit) base 10 number, sign and decimals, up to 17

digits long (excluding the decimals)

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 221

Operands for the DIV Function

Parameter Description Allowed Operands Optional

IN1 Dividend: the value to be divided; shown to the

left of DIV in the equation IN1 DIV IN2=Q.

All except S, SA, SB, SC No

IN2 Divisor: the value to divide into IN1; shown to

the right of DIV in the equation IN1 DIV IN2=Q.

All except S, SA, SB, SC No

Q The quotient of IN1/IN2. If a DIV operation on

signed operands results in
Overflow, Q is set to the largest possible value

and there is no power flow.

If a DIV_UINT operation results in
Overflow, Q wraps around.

All except S, SA, SB, SC

and constant

No

DIV_MIXED Operands

Parameter Description Allowed Operands Optional

IN1 Dividend: the value to be divided; shown to the

left of DIV in the equation IN1 DIV IN2=Q.

All except S, SA, SB, SC No

IN2 Divisor: the value to divide into IN1; shown to the

right of DIV in the equation IN1 DIV IN2=Q.

All except S, SA, SB, SC No

Q The quotient of IN1/IN2. If an
Overflow occurs, the result is the largest value

with the proper sign and no power flow.

All except S, SA, SB, SC

and constant

No

DIV_MIXED Example

DIV_DINT can be used in conjunction with a MUL_DINT function to scale a ±10 volt input

to ±25,000 engineering units. Refer to Example – Scaling Analog Input Values.

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 222

4.10.5 Modulus

When the Modulo Division (MOD) function receives power flow, it

divides input IN1 by input IN2 and outputs the remainder of the

division to Q.

Mnemonics:

MOD_DINT

MOD_INT

MOD_UINT

All three operands must be of the same data type. The sign of the result is always the

same as the sign of input parameter IN1. Output Q is calculated using the formula:

Q = IN1-((IN1 DIV IN2) × IN2)

where DIV produces an integer number.

The power flow output is always ON when the function receives power flow, unless there

is an attempt to divide by zero. In that case, the power f low output is set to OFF.

Operands for Modulus Function

Parameter Description Allowed Operands Optional

IN1 Dividend: the value to be divided to obtain the

remainder; shown to the left of MOD in the

equation IN1 MOD IN2=Q.

All except S, SA, SB, SC No

IN2 Divisor: the value to divide into IN1; shown to

the right of MOD in the equation IN1 MOD

IN2=Q.

All except S, SA, SB, SC No

Q The remainder of IN1/IN2. All except S, SA, SB, SC and

constant

No

4.10.6 Multiply

When the MUL function receives power flow, it multiplies the two

operands IN1 and IN2 of the same data type and stores the result in

the output variable assigned to Q, also of the same data type.

The power f low output is energized when the function
is performed, unless an invalid operation or
Overf low occurs. (For more information, refer to the
section on
Overflow)

Mnemonics:

MUL_DINT

MUL_INT

MUL_MIXED

MUL_REAL

MUL_LREAL

MUL_UINT

Note: MUL_MIXED uses mixed data types. Be careful to avoid overflows.

The following REAL and LREAL operations are invalid for MUL:

• 0 x ∞

• I1 and/or I2 is NaN (Not a Number).

Mnemonic Operation Displays as

MUL_INT Q(16-bit) = IN1(16-bit) × IN2(16-bit) base 10 number with sign, up to 5 digits long

MUL_DINT Q(32-bit) = IN1(32-bit) × IN2(32-bit) base 10 number with sign, up to 10 digits long

MUL_REAL Q(32-bit) = IN1(32-bit) × IN2(32-bit) base 10 number, sign and decimals, up to 8

digits long (excluding the decimals)

MUL_LREAL Q(64-bit) = IN1(64-bit) × IN2(64-bit) base 10 number, sign and decimals, up to 17

digits long (excluding the decimals)

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 223

MUL_UINT Q(16-bit) = IN1(16-bit) × IN2(16-bit) base 10 number, unsigned, up to 5 digits long

MUL_MIXED Q(32-bit) = IN1(16-bit) × IN2(16-bit) base 10 number with sign, up to 10 digits long

Operands for Multiply

Parameter Description Allowed Operands Optional

IN1 The first value to multiply; the value to the left

of the multiply sign (×) in the equation IN1 ×

IN2=Q.

All except S, SA, SB, SC No

IN2 The second value to multiply; the value to the

right of the multiply sign (×) in the equation IN1

× IN2=Q.

All except S, SA, SB, SC No

Q The result of IN1 × IN2. If a MUL operation on

signed operands results in
Overflow, Q is set to the largest possible value

and there is no power flow.

If a MUL_UINT operation results in
Overflow, Q wraps around.

All except S, SA, SB, SC and

constant

No

Example – Scaling Analog Input Values

A common application is to scale analog input values with a MUL operation followed by
a DIV and possibly an ADD operation. A 0 to ±10 volt analog input will place values of
0 to ±32,000 in its corresponding %AI input register. Multiplying this input register using
an MUL_INT function will result in an Overf low since an INT type instruction has an
input and output range of 32,767 to –32,768. Using the %AI value as in input to a
MUL_DINT also does not work as the 32-bit IN1 will combine 2 analog inputs at the
same time. To solve this problem, you can move the analog input to the low word of a
double register, then test the sign and set the second register to 0 if the sign tests
positive or –1 if negative. Then use the double register just created with a MUL_DINT
which gives a 32-bit result, and which can be used with a following DIV_DINT function.

For example, the following logic could be used to scale a ±10 volt input %AI1 to ±25000

engineering units in %R5.

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 224

Figure 165

An alternate, but less accurate, way of programming this circuit using INT values involves

placing the DIV_DINT instruction first, followed by the MUL_DINT instruction. The value

of IN2 for the DIV instruction would be 32, and the value of IN2 for the MUL would be 25.

This maintains the scaling proportion of the above circuit and keeps the values within the

working range of the INT type instructions. However, the DIV instruction inherently

discards any remainder value, so when the DIV output is multiplied b y the MUL

instruction, the error introduced by a discarded remainder is multiplied. The percent of

error is non-linear over the full range of input values and is greater at lower input values.

By contrast, in the example above, the results are more accurate because the DIV

operation is performed last, so the discarded remainder is not multiplied. If even greater

precision is required, substitute REAL type math instructions in this example so that the

remainder is not discarded.

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 225

4.10.7 Scale

When the SCALE function receives power flow, it scales the

input operand IN and places the result in the output variable

assigned to output operand OUT. The power flow output is

energized when SCALE is performed without Overflow.

Mnemonics:

SCALE_DINT

SCALE_INT

SCALE_DINT

SCALE_UINT

Operands

Parameter Description Allowed Operands Optional

IHI (Inputs High) Maximum input value (module-

related). The upper limit of the unscaled data.

IHI is used with ILO, OHI and OLO to calculate

the scaling factor applied to the input value IN.

All except S, SA, SB, SC No

ILO (Inputs Low) Minimum input value (module-

related). The lower limit of the unscaled data.

Must be the same data type as IHI.

All except S, SA, SB, SC No

OHI (Outputs High) Maximum output value. The

upper limit of the scaled data. Must be the

same data type as IHI. When the IN input is at

the IHI value, the OUT value is the same as the

OHI value.

All except S, SA, SB, SC No

OLO (Outputs Low) Minimum output value. The

lower limit of the scaled data. Must be the same

data type as IHI. When the IN input is at the

ILO value, the OUT value is the same as the

OLO value.

All except S, SA, SB, SC No

IN (INput value) The value to be scaled. Must be

the same data type as IHI.

All except S, SA, SB, SC No

OUT (OUTput value) The scaled equivalent of the

input value. Must be the same data type as IHI.

All except S, SA, SB, SC No

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 226

Example

Figure 166

In the example at right, the registers %R0120 through %R0123 are used to store the

high and low scaling values. The input value to be scaled is analog input %AI0017. The

scaled output data is used to control analog output %AQ0017. The scaling is performed

whenever %I0001 is ON.

4.10.8 Subtract

When the SUB function receives power flow, it subtracts the operand

IN2 from the operand IN1 of the same data type as IN2 and stores the

result in the output variable assigned to Q, also of the same data type.

Mnemonics:

SUB_DINT

SUB_INT

SUB_REAL

SUB_LREAL

SUB_UINT

The power f low output is energized when SUB is performed, unless an invalid
operation or Overflow occurs. (For more information, refer to the section on Overf low.

If a SUB_UINT operation results in a negative number, Q wraps around, yielding a result

that is the highest possible value (65535) minus the absolute value of the difference -1.

The following REAL and LREAL operations are invalid for SUB:

• (± ∞) – (± ∞)

• I1 and/or I2 is NaN (Not a Number)

Mnemonic Operation Displays as

SUB_INT Q(16-bit) = IN1(16-bit) – IN2(16-bit) base 10 number with sign, up to 5 digits long

SUB_DINT Q(32-bit) = IN1(32-bit) – IN2(32-bit) base 10 number with sign, up to 10 digits long

SUB_REAL Q(32-bit) = IN1(32-bit) – IN2(32-bit) base 10 number, sign and decimals, up to 8 digits

long (excluding the decimals)

SUB_LREAL Q(64-bit) = IN1(64-bit) – IN2(64-bit) base 10 number, sign and decimals, up to 17

digits long (excluding the decimals)

SUB_UINT Q(16-bit) = IN1(16-bit) – IN2(16-bit) base 10 number, unsigned, up to 5 digits long

Operands for Subtract

Parameter Description Allowed Operands Optional

IN1 The value to subtract from; the value to the left of the

minus sign (-) in the equation IN1-IN2=Q.

All except S, SA, SB,

SC

No

IN2 The value to subtract from IN1; the value to the right of

the minus sign (-) in the equation IN1-IN2=Q.

All except S, SA, SB,

SC

No

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 227

Parameter Description Allowed Operands Optional

Q The result of IN1-IN2. If a SUB operation on signed

operands results in underflow, Q is set to the smallest

possible value and there is no power flow.

If a SUB_UINT operation results in
Overflow, Q wraps around. For example,

The SUB_UINT operation 600 – 601 = –1 sets Q to

65535

The SUB_UINT operation 600 – 602 = –2 sets Q to

65534

All except S, SA, SB,

SC and constant

No

4.11 Program Flow Functions
The program flow functions limit program execution or change the way the CPU executes

the application program.

Function Mnemonic Description

Argument

Present

ARG_PRES Determines whether an input or output parameter value was present when

the function block instance of the parameter was invoked. For example, a

parameter can be optional (pass by value).

Call CALL Causes program execution to go to a specified block.

Comment COMMENT Places a text explanation in the program.

End Master

Control Relay

ENDMCRN Nested End Master Control Relay. Indicates that the subsequent logic is to

be executed with normal power flow.

End of Logic END Provides an unconditional end of logic. The program executes from the first

rung to the last rung or the END instruction, whichever is encountered first.

Jump JUMPN Nested jump. Causes program execution to jump to a specified location

indicated by a LABELN. JUMPN/LABELN pairs can be nested within one

another. Multiple JUMPNs can share the same LABELN.

Label LABELN Nested label. Specifies the target location of a JUMPN instruction.

Master Control

Relay

MCRN Nested Master Control Relay. Causes all rungs between the MCR and its

subsequent ENDMCRN to be executed without power flow. Up to

MCRN/ENDMCRN pairs can be nested within one another. All the MCRNs

share the same ENDMCRN.

Wires H_WIRE Horizontally connects elements of a line of LD logic, to complete the power

flow.

V_WIRE Vertically connects elements of a line of LD logic, to complete the power

flow.

4.11.1 Argument Present

Figure 167

The ARG_PRES function determines whether an input parameter value was present

when the function block instance of the parameter was invoked. This may be necessary

if the parameter is optional.

This function must be called from a function block instance or a parameterized block.

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 228

The standard output parameter ENO is false only when EN is false.

Operands for ARG_PRES

Parameter Description Allowed Operands Optional

IN Parameter name. Must be a parameter of

the function block that contains the

ARG_PRES instruction. Cannot be an array

element or structure element. An alias to a

parameter should resolve only to the

parameter name.

All except flow and constants. No

Q True if the parameter is present, otherwise

false.

Must be flow in LD. In other

languages all types allowed

except S, SA, SB, SC and

constants.

No

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 229

Example for ARG_PRES

The following sample rung calls the user defined function block, ReadTemp, which has

two parameters, TempVal and Temp1.

Figure 168

The function block ReadTemp contains the following logic, which uses an ARG_PRES

function to determine whether a value for TempVal is present. If TempVal does not have

a value, Temp_Pres is OFF and Idle is ON. If a value exists for TempVal, the ARG_PRES

function sets Temp_Pres ON. When Temp_Pres and Switch are both ON, Start is set

ON.

Figure 169

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 230

4.11.2 Call

Non-parameterized Parameterized. May call a parameterized external block or a parameterized

block. May have up to 7 input and 8 output parameters.

When the CALL function receives power f low, it causes the logic execution to go

immediately to the designated program block, external C block (parameterized or not),

or parameterized block and execute it. Af ter the block’s execution is complete, control

returns to the point in the logic immediately following the CALL instruction.

Notes:

• A CALL function can be used in any program block, including the _MAIN block, or

a parameterized block. It cannot be used in an external block.

• You cannot call a _MAIN block.

• The called block must exist in the target before making the call.

• There is no limit to the number of calls that can be made from or to a given block.

• You can set up recursive subroutines by having a block call itself. When stack size

is configured to be the default (64K), the PLC guarantees a minimum of eight nested

calls before an Application Stack Overflow fault is logged.

• Each block has a predefined parameter, Y0, which the CPU sets to 1 upon each

invocation of the block. Y0 can be controlled by logic within the block and provides

the output status of the block. When the Y0 parameter of a Program Block,

parameterized block, or external C block returns ON, the CALL passes power to the

right; when it returns OFF, the CALL does not pass power to the right.

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 231

Operands for Call

Parameter Description

Block Name (????) Block name; the name of the block to transfer to.

You cannot CALL the _MAIN block.

A program block or a parameterized block can call itself.

(Parameterized calls only)

Input parameters (0 – 7)

Output parameters (1 – 8)

Notes for External (C) blocks:

• You must define the TYPE, LENGTH, and NAME for each

external C block parameter.

• The valid data type, value range, and memory area for each

parameter are stated in the external block's written

documentation.

• Data flow is permitted for any parameter. For additional

information, see the section on External Blocks

• in Section 2.

Notes for Parameterized Blocks:

• You must define the TYPE, LENGTH, and NAME for each

parameter. Valid operands on the CALL instruction include

variables, flow, and indirect references. Input operands can

also be constants.

• If a formal parameter is an array of BOOL type and has a

length evenly divisible by 16, then a variable or array residing

in word-oriented memory can be passed on to the

parameterized block as an operand. For example, if a

parameterized block has a formal parameter Y1 of data type

BIT and length 48, you can pass a WORD array of length 3 to

Y1.

• The BOOL parameter Y0 is automatically defined for all

parameterized blocks and can be used in the parameterized

block's logic. When the parameterized block stops executing

and Y0 is ON, the CALL passes power flow to the right. If Y0 is

OFF, the CALL passes no power flow.

• A parameterized block is not required to have the same

number of inputs and outputs.

• For additional information, refer to Using Parameters with a

Parameterized Block

• in Section 2.

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 232

Example 1 for Call

Figure 170

In the example at right, if Enable is set, the C block named C_123 is executed. C_123

operates on the input data located at reference addresses Data1, Data2, and Data 3,

and produces values located at reference addresses Data4, Data5, and Data6. Logic

within C_123 controls the power f low output.

Example 2 for Call

Figure 171

Parameterized blocks are useful for building libraries of user-defined functions. For

example, if you have an equation such as:

E=(A+B+C+D)/4, a parameterized block named AVG_4 could be called as shown in the

example to the right.

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 233

In this example, the average of the values in R00001, R00002, R00003, and R00004

would be placed in R00005.

The logic within the parameterized block would be def ined as shown below.

Logic for AVG_4 Parameterized Block

Figure 172

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 234

4.11.3 Comment

Figure 173

The Comment function is used to enter a text explanation in the program. When you

insert a Comment instruction into the LD logic, it displays????. Af ter you key in a

comment, the f irst few words are displayed.

Figure 174

You can set the Comment mode option to Brief or Full.

Note:

• Editing a comment makes the Programmer lose equality.

• Comment text is downloaded to the controller and retrieved upon Logic Upload.

4.11.4 JumpN

Description Always associated with... Mnemonic

Nested form of Jump

instruction.

a LABELN instruction JUMPN

A JUMPN instruction causes a portion of the program logic to be bypassed. Program

execution continues at the LABELN specified in the same block. Power f low jumps

directly f rom the JUMPN to the rung with the named LABELN.

When the Jump is active, any functions between the jump and the label are not executed.

All coils between JUMPN and its associated LABELN are lef t at their previous states.

This includes coils associated with timers, counters, latches, and relays.

Any JUMPN can be either a forward or a backward jump, i.e., its LABELN can be either

in a further or previous rung. The LABELN must be in the same block.

Note: To avoid creating an endless loop with forward and backward JUMPN instructions,

a backward JUMPN should contain a way to make it conditional.

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 235

A JUMPN and its associated LABELN can be placed anywhere in a program, if the

JUMPN / LABELN range:

• does not overlap the range of a MCRN / ENDMCRN pair.

• does not overlap the range of a FOR_LOOP / END_FOR pair.

Nothing can be connected to the right side of a JUMPN instruction.

Operands

Parameter Description Optional

Label (????) Label name; the name assigned to the destination LABEL(N). No

4.11.5 Master Control Relay/End Master Control Relay

Figure 175

Description Always associated with... Mnemonics

Nested form of the Master

Control Relay

an ENDMCRN instruction MCRN

Nested End Master Control

Relay

an MCRN instruction ENDMCRN

MCRN

An MCRN instruction marks the beginning of a section of logic that will be executed with

no power flow. The end of an MCRN section must be marked with an ENDMCRN having

the same name as the MCRN. ENDMCRNs must follow their corresponding MCRNs in

the logic.

All rungs between an active MCRN and its corresponding ENDMCRN are executed with

negative power f low f rom the power rail. The ENDMCRN function associated with the

MCRN causes normal program execution to resume, with positive power f low coming

f rom the power rail.

With a Master Control Relay, functions within the scope of the Master Control Relay are

executed without power f low, and coils are turned of f .

Block calls within the scope of an active Master Control Relay will not execute. However,

any timers in the block will continue to accumulate time.

A rung may not contain anything af ter an MCRN.

Unlike JUMP instructions, MCRNs can only move forward. An ENDMCRN instruction

must appear af ter its corresponding MCRN instruction in a program.

The following controls are imposed by an MCRN:

• Timers do not increment or decrement. TMR types are reset. For an ONDTR function,

the accumulator holds its value.

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 236

• Normal outputs are of f ; negated outputs are on.

Note: When an MCRN is energized, the logic it controls is scanned and contact status is

displayed, but no outputs are energized. If you are not aware that an MCRN is

controlling the logic being observed, this might appear to be a faulty condition.

An MCRN and its associated ENDMCRN can be placed anywhere in a program, if the

MCRN / ENDMCRN range:

• Is completely nested within another MCRN / ENDMCRN range, up to a maximum 255

levels of nesting, or is completely outside of the range of another MCRN / ENDMCRN

range.

• Is completely nested within a FOR_LOOP / END_FOR range or is completely outside

of the range of a FOR_LOOP / END_FOR.

EndMCRN

The End Master Control Relay instruction marks the end of a section of logic begun with

a Master Control Relay instruction. When the MCRN associated with the ENDMCRN is

active, the ENDMCRN causes program execution to resume with normal power f low.

When the MCRN associated with the ENDMCRN is not active, the ENDMCRN has no

ef fect.

ENDMCRN must be tied to the power rail; there can be no logic before it in the rung;

execution cannot be conditional.

ENDMCRN has a name that identif ies it and associates it with the corresponding

MCRN(s). The ENDMCRN function has no outputs; there can be nothing af ter an

ENDMCR instruction in a rung.

Operands for MCRN/ENDMCRN

The Master Control Relay function has a single operand, a name that identif ies the

MCRN. This name is used again with an ENDMCRN instruction. The MCRN has no

output.

Parameter Description Optional

Name

(????)

The name associated with the MCRN that starts the section of logic. No

Example of MCRN/ENDMCRN

Figure 176

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 237

The example at right an MCRN named Sec_MCRN nested inside the MCRN named

First_MCRN. Whenever the V_I0002 contact allows power flow into the MCRN function,

program execution will continue without power f low to the coils until the associated

ENDMCRN is reached. If the V_I0001 and V_I0003 contacts are ON, the V_Q0001 coil

is turned OFF and the SET coil V_Q0003 maintains its current state.

4.11.6 Wires

Figure 177

Horizontal and vertical wires (H_WIRE and V_WIRE) are used to connect elements of a

line of LD logic between functions. Their purpose is to complete the flow of logic (power)

f rom lef t to right in a line of logic.

A horizontal wire transmits the BOOLEAN ON/OFF state of the element on its immediate

lef t to the element on its immediate right.

A vertical wire may intersect with one or more horizontal wires on each side. The state

of the vertical wire is the inclusive OR of the ON states of the horizontal wires on its left

side. The state of the vertical wire is copied to all the attached horizontal wires on its right

side.

Note: Wires can be used for data flow, but you cannot route data flow leftwards. Nor can

two separate data flow lines come into the left side of the same vertical wire.

4.12 Relational Functions
Relational functions compare two values of the same data type or determine whether a

number lies within a specif ied range. The original values are unaf fected.

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 238

Function Mnemonic Description

Compare CMP_DINT

CMP_INT

CMP_REAL

CMP_LREAL

CMP_UINT

Compares two numbers, IN1 and IN2, of the data type specified by

the mnemonic.

• If IN1 < IN2, the LT output is turned ON.

• If IN1 = IN2, the EQ output is turned ON.

• If IN1 > IN2, the GT output is turned ON.

Equal EQ_DATA

EQ_DINT

EQ_INT

EQ_REAL

EQ_LREAL

EQ_UINT

Tests two numbers for equality

Greater or

Equal

GE_DINT

GE_INT

GE_REAL

GE_LREAL

GE_UINT

Tests whether one number is greater than or equal to another

Greater Than GT_DINT

GT_INT

GT_REAL

GT_LREAL

GT_UINT

Tests whether one number is greater than another

Less or Equal LE_DINT

LE_INT

LE_REAL

LE_LREAL

LE_UINT

Tests whether one number is less than or equal to another

Less Than LT_DINT

LT_INT

LT_REAL

LT_LREAL

LT_UINT

Tests whether one number is less than another

Not Equal NE_DINT

NE_INT

NE_REAL

NE_LREAL

NE_UINT

Tests two numbers for inequality

Range RANGE_DINT

RANGE_DWORD

RANGE_INT

RANGE_UINT

RANGE_WORD

Tests whether one number is within the range defined by two other

supplied numbers

4.12.1 Compare

When the Compare (CMP) function receives power

flow, it compares the value IN1 to the value IN2.

• If IN1 < IN2, CMP energizes the LT

(Less Than) output.

• If IN1 = IN2, CMP energizes the EQ

(Equal) output.

• If IN1 > IN2, CMP energizes the GT

(Greater Than) output.

Mnemonics:

CMP_DINT

CMP_INT

CMP_REAL

CMP_LREAL

CMP_UINT

IN1 and IN2 must be the same data type.

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 239

CMP compares data of the following types: DINT, INT, REAL, LREAL, and UINT.

Tip

To compare values of different data types, first use conversion functions to make the types the

same.

When it receives power f low, CMP always passes power f low to the right, unless IN1

and/or IN2 is NaN (Not a Number).

Operands

Parameter Description Allowed Operands Optional

IN1 The first value to compare. All except S, SA, SB, SC No

IN2 The second value to compare. All except S, SA, SB, SC No

LT Output LT is energized when I1 < I2. Power flow No

EQ Output EQ is energized when I1 = I2. Power flow No

GT Output GT is energized when I1 > I2. Power flow No

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 240

Example

Figure 178

When %I00001 is ON, the integer variable SHIPS is compared with the variable BOATS.

Internal coils %M0001, %M0002, and %M0003 are set to the results of the compare.

4.12.2 Equal, Not Equal, Greater or Equal, Greater Than,

Less or Equal, Less Than

Other data types:

_INT

_REAL

_LREAL

_UINT

When the relational function receives power flow, it compares input IN1 to input IN2.

These operands must be the same data type. If inputs IN1 and IN2 are equal, the function

passes power to the right, unless IN1 and/or IN2 is NaN (Not a Number). The following

relational functions can be used to compare two numbers:

Function Definition Relational Statement

EQ Equal IN1=IN2

NE Not Equal IN1≠IN2

GE Greater Than or Equal IN1≥IN2

GT Greater Than IN1>IN2

LE Less Than or Equal IN1≤IN2

LT Less Than IN1<IN2

Note: If an overflow occurs with a _UINT operation, the result wraps around – refer to Section

4.10.1, Overflow.

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 241

If the _DINT or _INT operations are fed the largest possible value with any sign, they

cannot determine if it is an overf low value. The power f low output of the previous

operation would need to be checked. If an overflow occurred on a previous DINT, or INT

operation, the result was the largest possible value with the proper sign and no power

f low.

Tip

To compare values of different data types, first use conversion functions to make the types the

same. The relational functions require data to be one of the following types: DINT, INT, REAL,

LREAL, or UINT.

Operands

Parameter Description Allowed Operands Optional

IN1 The first value to be compared; the

value on the left side of the relational

statement.

All except S, SA, SB, SC No

IN2 The second value to be compared; the

value on the right side of the relational

statement. IN2 must be the same data

type as IN1.

All except S, SA, SB, SC No

Q The power flow. If the relational

statement is true, Q is energized, unless

IN1 or IN2 is NaN.

Power flow Yes

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 242

4.12.3 EQ_DATA

The EQ_DATA function compares two input variables, IN1 and

IN2 of the same data type. If IN1 and IN2 are equal, output Q is

energized. If they are not equal, Q is cleared.

Mnemonic:

EQ_DATA

Operands

Parameter Description Allowed Operands Optional

IN1 The first value to be compared; the

value on the left side of the relational

statement.

PACMotion ENUM variable or structure

variable.

For details, refer to Data Types and

Structures in the PACMotion Multi-Axis

Motion Controller User’s Manual,

GFK-2448.

No

IN2 The second value to be compared;

the value on the right side of the

relational statement. IN2 must be the

same data type as IN1.

PACMotion ENUM variable or structure

variable.

No

Q If IN1 or IN2 is true, Q is energized. Power flow No

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 243

4.12.4 Range

 When the Range function is enabled, it compares the value of input

IN against the range delimited by operands L1 and L2. Either L1 or

L2 can be the high or low limit. When L1 ≤ IN ≤ L2 or L2 ≤ IN ≤ L1,

output parameter Q is set ON (1). Otherwise, Q is set OFF (0).

If the operation is successful, it passes power flow to the right.

Mnemonics:

RANGE_DINT

RANGE_DWORD

RANGE_INT

RANGE_UINT

RANGE_WORD

Operands

Parameter Description Allowed Operands Optional

IN The value to compare against the range delimited

by L1 and L2. Must be the same data type as L1

and L2.

All except S, SA, SB, SC No

L1 The start point of the range. May be the upper limit

or the lower limit. Must be the same data type as IN

and L2.

All except S, SA, SB, SC No

L2 The end point of the range. May be the lower or

upper limit. Must be the same data type as IN and

L1.

All except S, SA, SB, SC No

Q If L1  IN  L2 or L2  IN  L1, Q is energized;

otherwise, Q is off.

Power flow No

Example

Figure 179

When RANGE_INT receives power f low f rom the normally open contact %I0001, it

determines whether the value in %R00003 is within the range 0 to 100 inclusively. Output

coil %M00002 is ON only if 0  %AI0050  100.

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 244

4.13 Timers
This section describes the PACSystems timed contacts and timer function blocks that

are implemented in the LD language.

4.13.1 Timed Contacts
The PACSystems has four timed contacts that can be used to provide regular pulses of

power f low to other program functions. Timed contacts cycle on and off, in square-wave

form, every 0.01 second, 0.1 second, 1.0 second, and 1 minute. Timed contacts can be

read by an external communications device to monitor the state of the CPU and the

communications link. Timed contacts are also often used to blink pilot lights and LEDs.

The timed contacts are referenced as T_10MS (0.01 second), T_100MS (0.1 second),

T_SEC (1.0 second), and T_MIN (1 minute). These contacts represent specific locations

in %S memory:

#T_10MS 0.01 second timed contact %S0003

#T_100MS 0.1 second timed contact %S0004

#T_SEC 1.0 second timed contact %S0005

#T_MIN 1.0-minute timed contact %S0006

These contacts provide a pulse having an equal on and off time duration. The following

timing diagram illustrates the on/of f time duration of these contacts.

Figure 180

CAUTION

Do not use timed contacts for applications requiring accurate measurement of elapsed time.

Timers, time-based subroutines, and PID blocks are preferred for these types of applications.

The CPU updates the timed contact references based on a free-running timer that has no

relationship to the start of the CPU sweep. If the sweep time remains in phase with the timed

contact clock, the contact will always appear to be in the same state. For example, if the CPU is in

constant sweep mode with a sweep time setting of 100ms, the T_10MS and T_100MS bits will

never toggle.

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 245

4.13.2 Timer Function Blocks

Function
Function Block

Type
Mnemonic Description

Off Delay Timer

Built-in

(instance data is

WORD array)

See

Built-In Timer

Function Blocks

below.

OFDT_HUNDS

OFDT_SEC

OFDT_TENTHS

OFDT_THOUS

The Current Value (CV) of the timer resets to

zero when power flow input is on. CV

increments while power flow is off. When

CV=PV (Preset Value), power flow is no longer

passed to the right until power flow input is on

again.

On Delay

Stopwatch Timer

ONDTR_HUNDS

ONDTR_SEC

ONDTR_TENTHS

ONDTR_THOUS

Retentive on delay timer. Increments while it

receives power flow and holds its value when

power flow stops.

On Delay Timer

TMR_HUNDS

TMR_SEC

TMR_TENTHS

TMR_THOUS

Simple on delay timer. Increments while it

receives power flow and resets to zero when

power flow stops.

Timer Off Delay
Standard

(instance data is a

structure variable)

See

Standard Timer

Function Blocks.

TOF

When the input IN transitions from ON to OFF,

the timer starts timing until a specified period of

time has elapsed, then sets the output Q to

OFF.

Timer On Delay TON

When the input IN transitions from OFF to ON,

the timer starts timing until a specified period

has elapsed, then sets the output Q to ON.

Timer Pulse TP

When the input IN transitions from OFF to ON,

the timer sets the output Q to ON for a

specified time interval.

Built-In Timer Function Blocks

Note: Special care must be taken when programming timers in program blocks that are

not called every sweep, and in parameterized blocks and UDFBs. For details, refer

to:

• Using OFDT, ONDTR and TMR in Program Blocks not Called Every Sweep,

• Timers that are Skipped by the Jump Instruction,

• Using OFDT, ONDTR and TMR in Parameterized Blocks, and

• Using OFDT, ONDTR and TMR in UDFBs.

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 246

Data Required for Built-in Timer Function Blocks

The data associated with these functions is retentive through power cycles. Each timer

uses a three-word array of %R, %W, %P, %L or symbolic memory to store the following

information:

Block Word

Current value (CV) Word 1

Preset value (PV) Word 2

Control word Word 3

 WARNING

Do not use two consecutive words (registers) as the starting addresses of two timers. Logic

Developer - PLC does not check or warn you if register blocks overlap. Timers will not work if you

place the current value of a second timer on top of the preset value for the previous timer.

Word 1: Current value (CV)

 WARNING

The first word (CV) can be read but should not be written to, or the function may not work properly.

Word 2: Preset value (PV)

When the Preset Value (PV) operand is a variable, it is normally set to a different location

than word 2 in the timer’s or counter’s three-word array.

• If you use a different address and you change word 2 directly, your change will have

no ef fect, as PV will overwrite word 2.

• If you use the same address for the PV operand and word 2, you can change the

Preset Value in word 2 while the timer or counter is running, and the change will be

ef fective.

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 247

Word 3: Control word

The control word stores the state of the Boolean inputs and outputs of its associated

timer or counter, as shown in the following diagram:

Figure 181

 WARNING

The third word (Control) can be read but should not be written to; otherwise, the function will not

work.

Note: Bits 0 through 13 are used for timer accuracy.

Using OFDT, ONDTR and TMR in Program Blocks not Called Every

Sweep

Care should be taken when timers (ONDTR, TMR, and OFDTR) are used in program

blocks that are not called every sweep. The timers accumulate time across calls to the

sub-block unless they are reset. This means that they function like timers operating in a

program with a much slower sweep than the timers in the main program block. For

program blocks that are inactive for large periods of time, the timers should be

programmed in such a manner as to account for this catch up feature.

Timers that are Skipped by the Jump Instruction

You should not program a Jump around an instance of OFTD, ONDTR or TMR. Timers

that are skipped will not catch up and will therefore not accumulate time in the same

manner as if they were executed every sweep.

Note: Timer function blocks do not accumulate time if used in a block that is executed as

a result of an interrupt.

Using OFDT, ONDTR and TMR in Parameterized Blocks

Special care must be taken when programming timers in PACSystems parameterized

blocks. Timers in parameterized blocks can be programmed to track true real-time if the

guidelines and rules below are followed. If the guidelines and rules described here are

not followed, the operation of the timer functions in parameterized blocks is undef ined.

Note: These rules are not enforced by the programming software. It is your responsibility

to ensure these rules are followed.

The best use of a timer function is to invoke it with a reference address exactly one time

each scan. With parameterized blocks, it is important to use the appropriate reference

memory with the timer function and to call the parameterized block an appropriate

number of times.

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 248

Finding the Source Block

The source block is either the _MAIN block or the lowest logic block of type Block that

appears above the parameterized block in the call tree. To determine the source block

for a given parameterized block, determine which block invoked that parameterized

block. If the calling block is _MAIN or of type Block, it is the source block. If the calling

block is any other type (parameterized block or function block), apply the same test to

the block that invoked this block. Continue back up the call tree until the _MAIN block or

a block of type Block is found. This is the source block for the parameterized block.

Programming OFDT, ONDTR and TMR in Parameterized Blocks

Dif ferent guidelines and rules apply depending on whether you want to use the

parameterized block in more than one place in your program logic.

Parameterized block called from one block

If your parameterized block that contains a timer will be called from only one logic block,

follow these rules:

1. Call the parameterized block exactly one time per execution of its source block.

2. Choose a reference address for the timer that will not be manipulated

anywhere else. The reference address may be %R, %P, %L, %W, or symbolic.

Note: %L memory is the same %L memory available to the source block of type Block.

%L memory corresponds to %P memory when the source block is _MAIN.

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 249

Parameterized block called from multiple blocks

When calling the parameterized block f rom multiple blocks, it is imperative to separate

the timer reference memory used by each call to the parameterized block. Follow these

rules and guidelines:

1. Call the parameterized block exactly one time per execution of each source

block in which it appears.

2. Choose a %L reference or parameterized block formal parameter for the timer

reference memory. Do not use a %R, %P, %W, or symbolic memory reference.

Note:

• The strongly recommended choice is a %L location, which is inherited from the
parameterized block’s source block. Each source block has its own %L memory

space except the _MAIN block, which has a %P memory area instead. When the

_MAIN block calls another block, the %P mappings from the _MAIN block are

accessed by the called block as %L mappings.

• If you use a parameterized block formal parameter (word array passed-by-

reference), the actual parameter that corresponds to this formal parameter must be

a %L, %R, %P, %W, or symbolic reference. If the actual parameter is a %R, %P,

%W, or symbolic reference, a unique reference address must be used by each

source block.

Recursion

If you use recursion (that is, if you have a block call itself either directly or indirectly) and

your parameterized block contains an OFDT, ONDTR, or TMR, you must follow two

additional rules:

• Program the source block so that it invokes the parameterized block before making

any recursive calls to itself .

• Do not program the parameterized block to call itself directly.

Using OFDT, ONDTR and TMR in UDFBs

UDFBs are user-defined logic blocks that have parameters and instance data. For details

on these and other types of blocks, refer to Section 2.

When a timer function is present inside a UDFB, and a member variable is used for the

control block of a timer, the behavior of the timer may not match your expectations. If

multiple instances of the UDFB are called during a logic sweep, only the f irst -executed

instance will update its timer. If a different instance is then executed, its timer value will

remain unchanged.

In the case of multiple calls to a UDFB during a logic scan, only the f irst call will add

elapsed time to its timer functions. This behavior matches the behavior of timers in a

normal program block.

Example

A UDFB is defined that uses a member variable for a timer function block. Two instances

of the function block are created: timer_A and timer_B. During each logic scan, both

timer_A and timer_B are executed. However, only the member variable in timer_A is

updated and the member variable in timer_B always remains at 0.

Off Delay Timer

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 250

The Off-Delay Timer (OFDT) increments while power flow is

off, and the timer's Current Value (CV) resets to zero when

power flow is on. OFDT passes power until the specified

interval PV (Preset Value) has elapsed.

Mnemonics:

OFDT_SEC

OFDT_TENTHS

OFDT_HUNDS

OFDT_THOUS

Time may be counted in the following increments:

• Seconds

• Tenths (0.1) of a second

• Hundredths (0.01) of a second

• Thousandths (0.001) of a second

The range for PV is 0 to +32,767-time units. If PV is out of range, it has no effect on the

timer's word 2. The state of this timer is retentive on power failure; no automatic

initialization occurs at power-up.

When OFDT receives power f low, CV is set to zero and the timer passes power to the

right. The output remains on as long as OFDT receives power f low.

Each time the OFDT is invoked with its power f low input turned OFF, CV is updated to

ref lect the elapsed time since the timer was reset. OFDT continues passing power to the

right until CV equals or exceeds PV. When this happens, OFDT stops passing power

f low to the right and stops accumulating time. If PV is 0 or negative, the timer stops

passing power f low to the right the f irst time that it is invoked with its power f low input

OFF.

When the function receives power f low again, CV resets to zero.

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 251

Notes:

• The best way to use an OFDT function is to invoke it with a particular reference

address exactly one time each scan. Do not invoke an OFDT with the same

reference address more than once per scan (inappropriate accumulation of time

would result). When an OFDT appears in a program block, it accumulates time once
per scan. Subsequent calls to that program block within the same scan will have no

effect on its OFDTs.

• Do not program an OFDT function with the same reference address in two different

blocks. You should not program a JUMP around a timer function. Also, if you use

recursion (where a block calls itself either directly or indirectly), program the program

block so that it invokes the timer before it makes any recursive calls to itself.

• For information on using timers inside parameterized blocks, refer to Using OFDT,

ONDTR and TMR in Parameterized Blocks.

• An OFDT expires (turns OFF power flow to the right) the first scan that it does not

receive power flow if the previous scan time was greater than PV.

• When OFDT is used in a program block that is not called every scan, the timer

accumulates time between calls to the program block unless it is reset. This means

that OFDT functions like a timer operating in a program with a much slower scan

than the timer in the main program block. For program blocks that are inactive for a

long time, OFDT should be programmed to allow for this catch-up feature. For

example, if a timer in a program block is reset and the program block is not called
(is inactive) for four minutes, when the program block is called, four minutes of time

will already have accumulated. If the enable input is OFF, these four minutes are

applied to the timer (that is, CV is set to 4 minutes).

Timing diagram

Figure 182

a. ENABLE and Q both go high; timer is reset (CV = 0).

b. ENABLE goes low; timer starts accumulating time.

c. CV reaches PV; Q goes low and timer stops accumulating time.

d. ENABLE goes high; timer is reset (CV = 0).

e. ENABLE goes low; timer starts accumulating time.

f. ENABLE goes high; timer is reset (CV = 0) before CV had a chance to reach

PV. (The diagram is not to scale.)

g. ENABLE goes low; timer begins accumulating time.

h. CV reaches PV; Q goes low and timer stops accumulating time.

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 252

Operands for OFDT

 WARNING

Do not use the Address, Address+1, or Address+2 addresses with other instructions. Overlapping

references cause erratic timer operation.

Parameter Description Allowed Operands Optional

Address

(????)

The beginning address of a three-word WORD

array:

Word 1: Current value (CV)

Word 2: Preset value (PV)

Word 3: Control word

R, W, P, L, symbolic No

PV The Preset Value used when the timer is enabled

or reset. 0  PV  +32,767. If PV is out of range,

it has no effect on Word 2.

All except S, SA, SB, SC Optional

CV The current value of the timer. All except S, SA, SB, SC,

constant

Optional

Example for OFDT

Figure 183

The output action is reversed by the use of a negated output coil. In this circuit, the OFDT

timer turns of f negated output coil %Q0001 whenever contact %I0001 is closed. After

%I0001 opens, %Q0001 stays of f for 2 seconds then turns on.

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 253

On Delay Stopwatch Timer

The retentive On-Delay Stopwatch Timer (ONDTR)

increments while it receives power f low and holds

its value when power f low stops.

Time may be counted in the following increments:

• Seconds

• Tenths (0.1) of a second

• Hundredths (0.01) of a second

• Thousandths (0.001) of a second

Mnemonics:

ONDTR_SEC

ONDTR_TENTHS

ONDTR_HUNDS

ONDTR_THOUS

The range is 0 to +32,767-time units. The state of this timer is retentive on power failure;

no automatic initialization occurs at power-up.

When ONDTR f irst receives power f low, it starts accumulating time (Current Value (CV)).

When the CV equals or exceeds Preset Value (PV), output Q is energized, regardless of

the state of the power f low input.

If the timer continues to receive power f low, it continues accumulating until CV equals

the maximum value (+32,767-time units). Once the maximum value is reached, it is

retained, and Q remains energized regardless of the state of the enable input.

When power f low to the timer stops, CV stops incrementing and is retained. Output Q, if

energized, will remain energized. When ONDTR receives power f low again, CV again

increments, beginning at the retained value.

When reset (R) receives power flow and PV is not equal to zero, CV is set back to zero

and output Q is de-energized.

Note: If PV equals zero, the time is disabled and the reset is activated, and the output of

the time becomes high. Subsequent removal of the reset or activation of input will

have no effect on the timer output; the output of the time remains high.

ONDTR passes power flow to the right when CV is greater than or equal to PV. Since no

automatic initialization to the outgoing power f low state occurs at power-up, the power

f low state is retentive across power failure.

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 254

Notes:

• The best way to use an ONDTR function is to invoke it with a reference address

exactly one time each scan. Do not invoke an ONDTR with the same reference

address more than once per scan (inappropriate accumulation of time would result).

When an ONDTR appears in a program block, it will only accumulate time once per

scan. Subsequent calls to that same program block within the same scan will have

no effect on its ONDTRs. Do not program an ONDTR function with the same

reference address in two different blocks. You should not program a JUMPN around

a timer function. Also, if you use recursion (that is, having a block call itself either

directly or indirectly), program the program block so that it invokes the timer before

it makes any recursive calls to itself.

• For information on using timers inside parameterized blocks, refer to Using OFDT,

ONDTR and TMR in Parameterized Blocks.

• An ONDTR expires (passes power flow to the right) the first scan that is enabled

and not reset if the previous scan time was greater than PV.

• When ONDTR is used in a program block that is not called every scan, it

accumulates time between calls to the program block unless it is reset. This means

that ONDTR functions like a timer operating in a program with a much slower scan

than the timer in the main program block. For program blocks that are inactive for a

long time, ONDTR should be programmed to allow for this catch-up feature. For

example, if a timer in a program block is reset and the program block is not called

(is inactive) for four minutes, when the program block is called, four minutes of time

will already have accumulated. If the enable input is ON and the reset input is OFF,

these four minutes are applied to the timer (that is, CV is set to 4 minutes).

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 255

Timing diagram

Figure 184

a. ENABLE goes high; timer starts accumulating.

b. Current value (CV) reaches preset value (PV); Q goes high. Timer continues to

accumulate time until ENABLE goes low, RESET goes high or current value becomes

equal to the maximum time.

c. RESET goes high; Q goes low, accumulated time is reset (CV=0).

d. RESET goes low; timer then starts accumulating again, as ENABLE is high.

e. ENABLE goes low; timer stops accumulating. Accumulated time stays the same.

f. ENABLE goes high again; timer continues accumulating time.

g. CV becomes equal to PV; Q goes high. Timer continues to accumulate time until

ENABLE goes low, RESET goes high or CV becomes equal to the maximum time.

h. ENABLE goes low; timer stops accumulating time.

Operands for On Delay Stopwatch Timer

 WARNING

Do not use the Address, Address+1, or Address+2 addresses with other instructions. Overlapping

references cause erratic timer operation.

Parameter Description Allowed Operands Optional

Address

(????)

Beginning address of a three-word WORD

array:

Word 1: Current value (CV)

Word 2: Preset value (PV)

Word 3: Control word

R, W, P, L, symbolic No

R When R is ON, it resets the Current Value

(Word 1) to zero.

Power flow Optional

PV The Preset Value used when the timer is

enabled or reset. 0  PV  +32,767. If PV is out

of range, it has no effect on Word 2.

All except S, SA, SB, SC Optional

CV Current Value of the timer All except S, SA, SB, SC

and constant

Optional

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 256

Example for On Delay Stopwatch Timer

Figure 185

A retentive on-delay timer is used to create a signal (%Q0011) that turns on 8.0 seconds

af ter %Q0010 turns on, and turns of f when %Q0010 turns of f .

On Delay Timer

The On-Delay Timer (TMR) increments while it receives power

flow and resets to zero when power flow stops. The timer

passes power after the specified interval PV (Preset Value) has

elapsed, as long as power is received.

Mnemonics:

TMR_SEC

TMR_TENTHS

TMR_HUNDS

TMR_THOUS

The range for PV is 0 to +32,767-time units. If PV is out of range, it has no effect on the

timer's word 2. The state of this timer is retentive on power failure; no automatic

initialization occurs at power-up.

Time may be counted in the following increments:

• Seconds

• Tenths (0.1) of a second

• Hundredths (0.01) of a second

• Thousandths (0.001) of a second

When TMR is invoked with its power f low input turned OFF, its Current Value (CV) is

reset to zero, and the timer does not pass power f low to the right. Each time the TMR is

invoked with its power f low input turned ON, CV is updated to ref lect the elapsed time

since the timer was reset. When CV reaches PV, the timer function passes power flow

to the right.

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 257

Notes:

• The best way to use a TMR function is to invoke it with a particular reference address

exactly one time each scan. Do not invoke a TMR with the same reference address

more than once per scan (inappropriate accumulation of time would result). When

a TMR appears in a program block, it will only accumulate time once per scan.
Subsequent calls to that same program block within the same scan will have no

effect on its TMRs. Do not program a TMR function with the same reference address

in two different blocks. You should not program a JUMP around a timer function.

Also, if you use recursion (that is, having a block call itself either directly or

indirectly), program the program block so that it invokes the timer before it makes

any recursive calls to itself.

• For information on using timers inside parameterized blocks, refer to Using OFDT,

ONDTR and TMR in Parameterized Blocks.

• A TMR timer expires (passes power flow to the right) the first scan that it is enabled

if the previous scan time was greater than PV.

• When TMR is used in a program block that is not called every scan, TMR

accumulates time between calls to the program block unless it is reset. This means

that it functions like a timer operating in a program with a much slower sweep than

the timer in the main program block. For program blocks that are inactive for a long

time, TMR should be programmed to allow for this catch-up feature. For example, if

a timer in a program block is reset and the program block is not called (is inactive)

for 4 minutes, when the program block is called, four minutes of time will already

have accumulated. If the enable input is ON, these four minutes are applied to the

timer (i.e. CV is set to 4 minutes).

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 258

Timing Diagram

Figure 186

ENABLE goes high; timer begins accumulating time.

CV reaches PV; Q goes high and timer continues accumulating time.

ENABLE goes low; Q goes low; timer stops accumulating time and CV is cleared.

ENABLE goes high; timer starts accumulating time.

ENABLE goes low before current value reaches PV; Q remains low; timer stops

accumulating time and is cleared to zero (CV=0).

Operands for On Delay Timer

 WARNING

Do not use the Address, Address+1, or Address+2 addresses with other instructions.

Overlapping references cause erratic timer operation .

Parameter Description Allowed Operands Optional

???? The beginning address of a three-word WORD

array:

Word 1: Current value (CV)

Word 2: Preset value (PV)

Word 3: Control word

R, W, P, L, symbolic No

PV The Preset Value, used when the timer is

enabled or reset. 0  PV  +32,767. If PV is out

of range, it has no effect on Word 2.

All except S, SA, SB, SC Yes

CV The current value of the timer. All except S, SA, SB, SC and

constant

Yes

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 259

Example for On Delay Timer

Figure 187

An on-delay timer with address TMRID is used to control the length of time that a coil is

on. This coil has been assigned the variable DWELL. When the normally open

(momentary) contact DO_DWL is ON, coil DWELL is energized.

The contact of coil DWELL keeps coil DWELL energized (when contact DO_DWL is

released) and also starts the timer TMRID. When TMRID reaches its preset value of five

tenths of a second, coil REL energizes, interrupting the latched -on condition of coil

DWELL. The contact DWELL interrupts power flow to TMRID, resetting its current value

and de-energizing coil REL. The circuit is then ready for another momentary activation

of contact DO_DWL.

Standard Timer Function Blocks

The standard timers are a pulse timer (TP), an on-delay timer (TON), and an of f-delay

timer (TOF). The pulse timer block can be used to generate output pulses of a given

duration. The on-delay timer can be used to delay setting an output ON for a fixed period

af ter an input is set ON. The off-delay timer can be used to delay setting an output OFF

for a f ixed period after an input goes OFF so that the output is held on for a given period

longer than the input.

Notes:

• Any block type can contain calls to the standard timers. (See Section 2 for a

discussion of the various block types.)

• Interrupt blocks can contain standard timers.

• An instance of a timer can be passed by reference to a parameterized block or

UDFB.

• When the timer stops timing as a result of reaching its Preset Time (PT), the Elapsed

Time (ET) contains the actual timer duration. For example, if the Preset Time was

specified as 333ms, but the timer actually timed to 350ms, the 350ms value is saved

in ET.

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 260

Data Required for Standard Timer Function Blocks

Each invocation of a timer has associated instance data that persists from one execution

of the timer to the next. Instance variables are automatically located in symbolic memory.

(You cannot specify an address.) You can specify a stored value for each element. The

user logic cannot modify the values.

Each timer instance variable has the following structure. Elements of a timer structure

cannot be published.

The instance data type for each timer must be the same as the timer type:

The TOF timer requires an instance variable of type TOF.

The TON timer requires an instance variable of type TON.

The TP timer requires an instance variable of type TP.

Element Type Description Details

IN BOOL Timer input Cannot be accessed in user logic.

PT DINT Preset time Cannot be accessed in user logic.

ET DINT Elapsed time Read only. Accessible in user logic.

Q BOOL Set ON when timer finishes timing Read only. Accessible in user logic.

ENO BOOL Enable output Read only. Accessible in user logic.

TI BOOL Set ON when the timer instance is

timing (that is, ET is incrementing).

Read only. Accessible in user logic.

Resetting the Timer

The preset time (PT) may be changed while the timer is timing to af fect the duration.

When the timer reaches PT, the timer stops timing and the elapsed time parameter (ET)

contains the actual timer duration.

To reset the timer function block, set the PT input to 0. When the function block resets:

• ET is set to 0

• Q is set to of f (0)

• The TI element is set to 0

• The IN parameter is ignored

Operands

TOF, TON and TP have the same input and output parameters, except for the instance

variable, which must be the same type as the instruction.

Note: Writing or forcing values to the instance data elements IN, PT, Q, ET, ENO or TI

may cause erratic operation of the timer function block.

Parameter Description Allowed Types Allowed

Operands

Optional

???? Structure variable containing the

internal data for the timer instance.

(Refer to

Data Required for Standard Timer

Function Blocks.)

TOF, TON, or TP.

Must be same type as

the instruction.

NA No

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 261

Parameter Description Allowed Types Allowed

Operands

Optional

IN Timer input. Controls when the timer

will accumulate time.

TON and TP will begin to time when

IN transitions from OFF to ON.

TOF will begin to time when IN

transitions from ON to OFF.

Flow NA Yes

PT Preset time (in ms). Indicates the

amount of time the timer will time

until turning Q either ON or OFF,

depending on the timer type.

Setting PT to 0 resets the timer.

DINT All except S,

SA, SB, SC

Yes

Q Timer output. Action depends on the

timer type.

When TP is timing, Q is ON.

When TON is done timing, Q turns

ON.

When TOF is done timing, Q turns

OFF.

Flow NA Yes

ET Elapsed time. Indicates the length of

time, (in ms), that the timer has been

measuring time.

DINT All except S,

SA, SB, SC

and constants

Yes

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 262

Timer Off Delay

Figure 188

When the input IN transitions f rom ON to OFF, the timer starts timing until a specified

period of time (PT) has elapsed, then sets the output Q to OFF.

Timing Diagram

Figure 189

Time Description

t0 When input IN is set to ON, the output Q follows and remains ON. The elapsed time, ET, does

not increment.

t1 When IN goes OFF, the timer starts to measure time and ET increments. ET continues to

increment until its value equals the preset time, PT.

t2 When ET equals PT, Q is set to OFF and ET remains at the preset time, PT.

t3 When input IN is set to ON, the output Q follows and remains ON. ET is set to 0.

t4 When IN is set to OFF, ET, begins incrementing. When IN is OFF for a period shorter than

that specified by PT, Q remains ON.

t5 When IN is set to ON, ET is set to 0.

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 263

Example

In the following sample rung, a TOF function block is used to keep Light ON for 30,000ms

(30 seconds) af ter Door_Open is set to OFF. As long as Door_Open is ON, Light remains

ON.

Figure 190

Timer On Delay

Figure 191

When the input IN transitions f rom OFF to ON, the timer starts timing until a specified

period of time (PT) has elapsed, then sets the output Q to ON.

Timing Diagram

Figure 192

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 264

Time Description

t0 When input IN is set to ON, the timer starts to measure time and the elapsed time output ET starts

to increment. The output Q remains OFF and ET continues to increment until its value equals the

preset time, PT.

t1 When ET equals PT, the output Q is goes ON, and ET remains at the preset time, PT. Q remains

ON until IN goes OFF.

t2 When IN is set to OFF, Q goes OFF and ET is set to 0.

t3 When IN is set to ON, ET starts To increment.

t4 If IN is ON for a shorter time than the delay specified in PT, the output Q remains OFF. ET is set

to 0 when IN is set to OFF.

Example

In the following sample rung, a TON function block is used to delay setting Start to ON

for 1 minute (60,000ms) af ter Preheat is set to ON.

Figure 193

Timer Pulse

Figure 194

When the input IN transitions from OFF to ON, the timer sets the output Q to ON for the

specif ied time interval, PT has elapsed, then sets the output Q to ON.

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 265

Timing Diagram

Figure 195

Time Description

t0 When input IN is set to ON, the timer starts to measure time and the elapsed time output, ET,

increments until its value equals that of the specified preset time, PT. Q is set to 0 on until ET

equals PT.

t1 When ET equals PT, Q is set to OFF. The value of ET is held until IN is set to OFF.

t2 When IN is set to OFF, ET is set to 0.

t3 When IN is set to ON, the timer starts to measure time and ET begins incrementing. Q Is set to

ON.

t4 If the input is OFF for a period shorter than the input PT, the output Q remains on and ET

continues Incrementing.

t5 When ET equals PT, Q is set to OFF and ET is set to 0.

Example

In the following sample rung, a TP function block is used to set Sprayers to ON for a

5-second (5000ms) pulse.

Figure 196

4.14 PACSystems Simulator Ladder Diagram (LD)

Program
The following sections outline Ladder Diagram (LD) functionality differences for the

PACSystems Simulator.

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 266

4.14.1 Math Functions
Floating point results calculated by math functions run on the PACSystems Simulator

may slightly differ compared to results calculated by the same math functions run on a

PACSystems CPU. This is due to floating point hardware implementation differences

between the PACSystems Simulator and PACSystems CPUs.

4.14.2 Contacts
The table below indicates contacts that behave differently on the PACSystems Simulator:

Contact Description

FAULT

These contacts always indicate a non-fault state.
NOFLT

HIALR

LOALR

4.14.3 Control Functions
The table below indicates control functions that behave differently on the PACSystems

Simulator:

Control Function Description

Do I/O

These control functions pass power flow for valid inputs but do not perform

their intended operation at this time.

Mask I/O Interrupt

Scan Set I/O

Suspend I/O

Suspend or Resume I/O

Interrupt

Read Switch Position This control function always indicates the Run I/O Enabled position (1) for

the POS operand, and it will never indicate that the MODE operand controls

memory protection as the Memory Protection Switch setting in Hardware

Configuration is ignored.

4.14.4 Data Move Functions
The table below indicates data move functions that behave differently on the

PACSystems Simulator:

Data Move Function Description

BUS Read

All Bus Functions always pass power flow and do not perform their intended

operation at this time. All Bus Functions set the status of operation output

(ST) to Module does not exist at rack/slot location (2).

BUS Read Modify Write

BUS Test and Set

BUS Write

Communication Requests

(COMMREQs)

Communication Requests pass power flow pending validation of the input

command block. If the input command block has invalid parameters, the

Function Faulted (FT) output will pass power flow. The SYSID and TASK

COMMREQ input parameters are not validated and therefore will also not

affect power flow. Additionally, COMMREQs do not perform their intended

operation at this time.

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Ladder Diagram (LD) Programming 267

4.14.5 Timers
Timed Contacts and Timer Function Blocks running on the PACSystems Simulator may

not work as expected as no attempt has been made to simulate the timing that is

experienced when using a PACSystems CPU. PACSystems Simulator timing is not

consistent sweep to sweep and differs f rom what would be experienced on a

PACSystems CPU.

4.14.6 Motion Function Blocks
When run on a PACSystems Simulator, all motion function blocks will return one of the

following errors:

• Uninitialized Axis, Module, or CAM Table variable error (error ID 0xFA2)

• Motion module not available error (error ID 0xFA4)

4.14.7 Communication Blocks
When the PNIO_DEV_COMM block is run in logic on a PACSystems Simulator, if the

input parameters are valid then the block will pass power f low, set the OK output to

TRUE, and set the PRIMARY output to TRUE as we are simulating that the PROFINET

controller and device are communicating with valid input parameters.

CPU Programmer’s Reference Manual Section 5
GFK-2950M Dec 2024

Function Block Diagram (FBD) 268

Section 5 Function Block Diagram (FBD)
Function Block Diagram (FBD) is an IEC 61131-3 graphical programming language that

represents the behavior of functions, function blocks and programs as a set of

interconnected graphical blocks.

The block types Block, Parameterized Block, and Function Block can be programmed in

FBD. The _MAIN program block can also be programmed in FBD. For details on blocks,

refer to Program Data in Section 3. For information on using the FBD editor in the

programming sof tware, refer to the online help.

For an overview of the types of operands that can be used with instructions, refer to

Operands for Instructions in Section 3.

Most functions and function blocks implemented in FBD are the same as their LD

counterparts. Instructions that are implemented differently are discussed in detail in this

chapter. FBD has the following general dif ferences compared to LD:

• In FBD, except for timers and counters, functions and function blocks do not have EN

or ENO parameters.

• In FBD, all functions and function blocks display a solve order, which is calculated by

the FBD editor.

For CPS400 Safety programming refer to GFK-3279 VersaMax SafetyNet Function Block

Manual for the list of allowed instructions.

The FBD implementation of the PACSystems instruction set includes the following

categories:

• Advanced Math Functions

• Bit Operation Functions

• Comments

• Comparison Functions

• Control Functions

• Counters

• Data Move Functions

• Math Functions

• Program Flow Functions

• Timers

• Type Conversion Functions

• PROFINET Communication

o Consists of the PNIO_DEV_COMM function. For details, refer to the

PACSystems RX3i & RSTi-EP PROFINET I/O Controller Manual, GFK-2571.

CPU Programmer’s Reference Manual Section 5
GFK-2950M Dec 2024

Function Block Diagram (FBD) 269

5.1 Note on Reentrancy
When a function block is created using the FBD language, the wires are created as global

variables, not as members. This has two consequences. First, if there are multiple

instances of that block in the program, the wires will show the values f rom the last

instance executed during the sweep, not the values for the instance being viewed. This

will give the appearance of incorrect operation while working properly.

The second consequence is that function blocks written in FBD are not reentrant. If you

have multiple instances of a block, and one of them can be called by an interrupt, then it

is possible for the interrupt to trigger while one instance of the block is in process, change

the values of the wires, and then return control to the original block. This will result in

improper operation.

There is a work-around for both symptoms, which is to create the wires as member

variables rather than global variables. This must be done manually by creating member

variables of the appropriate types. You can then right-click on each wire in the FBD

diagram and use the Replace Variable command to change the wire f rom a global

variable to a member variable.

CAUTION

Blocks written in the FBD language are not reentrant. Because of this, if the block is called directly,

or indirectly, from an interrupt, the block must not be called anywhere else in the program, except

when steps are taken to explicitly make it reentrant (see above). Doing so can lead to unexpected

operation. This applies to basic blocks, parameterized blocks, and user -defined function blocks

written in FBD.

5.2 Advanced Math Functions
The Advanced Math functions perform logarithmic, exponential, square root,

trigonometric, and inverse trigonometric operations.

Function Description

Absolute value. Finds the absolute value of a double- precision integer (DINT), signed

single-precision integer (INT), REAL or LREAL (floating-point) value. The mnemonic

specifies the value's data type.

For details, refer to Absolute Value in Section 4.

Exponential. Raises e to the value specified in IN (e
IN

). Calculates the inverse natural

logarithm of the IN operand.

For details, refer to Exponential/Logarithmic Functions in Section 4.

Exponential. Calculates IN1 to the power of IN2 (IN1
IN2

).

For details, refer to EXPT Function below.

CPU Programmer’s Reference Manual Section 5
GFK-2950M Dec 2024

Function Block Diagram (FBD) 270

Function Description

Inverse trig. Calculates the inverse cosine of the IN operand and expresses the result

in radians.

For details, refer to Inverse Trig – ASIN, ACOS, and ATAN in Section 4.

Inverse trig. Calculates the inverse sine of the IN operand and expresses the result in

radians.

For details, refer to Inverse Trig – ASIN, ACOS, and ATAN in Section 4.

Inverse trig. Calculates the inverse tangent of the IN operand and expresses the result

in radians.

For details, refer to Inverse Trig – ASIN, ACOS, and ATAN in Section 4.

Logarithmic. Calculates the natural logarithm of the operand IN.

For details, refer to Exponential/Logarithmic Functions in Section 4.

Logarithmic. Calculates the base 10 logarithm of the operand IN.

For details, refer to Exponential/Logarithmic Functions in Section 4.

Square root. Calculates the square root of the operand IN and stores the result in Q.

For details, refer to Square Root in Section 4.

Trig. Calculates the cosine of the operand IN, where IN is expressed in radians.

For details, refer to

Trig Functions in Section 4.

Calculates the sine of the operand IN, where IN is expressed in radians.

For details, refer to

Trig Functions in Section 4.

Calculates the tangent of the operand IN, where IN is expressed in radians.

For details, refer to

Trig Functions in Section 4.

CPU Programmer’s Reference Manual Section 5
GFK-2950M Dec 2024

Function Block Diagram (FBD) 271

5.2.1 EXPT Function
 The Power of X (EXPT) function raises the value of input IN1 to the power

specified by the value IN2 and places the result in Q. The EXPT function

operates on REAL or LREAL input value(s) and place the result in output

Q. The instruction is not carried out if one of the following invalid conditions

occurs:

• IN1 < 0, for EXPT

• IN1 or IN2 is a NaN (Not a Number)

Invalid operations (error cases) may yield results that are different from

those in the LD implementation of this function.

Operands of the EXPT Function

Parameter Description Allowed

Types

Allowed

Operands

Optional

Solve Order Calculated by the FBD editor. NA NA No

IN or IN1 For EXP, LOG, and LN, IN contains

the REAL value to be operated on.

The EXPT function has two inputs,

IN1 and IN2. For EXPT, IN1 is the

base value and IN2 is the exponent.

REAL, LREAL All except variables

located in %S—%SC

No

IN2 (EXPT) The REAL exponent for EXPT. REAL, LREAL All except variables

located in %S—%SC

No

Q Contains the REAL

logarithmic/exponential value of IN

or of IN1 and IN2.

REAL, LREAL All except constants and

variables located in

%S—%SC

No

5.3 Bit Operation Functions
The Bit Operation functions perform comparison, logical, and move operations on bit

strings. Bit Operation functions treat each WORD or DWORD data as a continuous string

of bits, with bit 1 of the WORD or DWORD being the Least Significant Bit (LSB). The last

bit of the WORD or DWORD is the Most Signif icant Bit (MSB).

 WARNING

Overlapping input and output reference address ranges in multiword functions is not

recommended, as it can produce unexpected results

CPU Programmer’s Reference Manual Section 5
GFK-2950M Dec 2024

Function Block Diagram (FBD) 272

Function Description

Logical AND. Compares the bit strings IN1 and IN2 bit by bit. When the

corresponding bits are both 1, places a 1 in the corresponding location in output

string Q; otherwise, places a 0 in the corresponding location in Q.

If additional inputs (IN3 through IN8) are used, each additional bit string is

compared to the string in Q and the result is placed in Q.

For details, refer to Logical AND.

Logical OR. Compares the bit strings IN1 and IN2 bit by bit. When a pair of

corresponding bits are both 0, places a 0 in the corresponding location in output

string Q; otherwise, places a 1 in the corresponding location in Q.

If additional inputs (IN3 through IN8) are used, each additional bit string is

compared to the string in Q and the result is placed in Q.

For details, refer to Logical OR.

Logical XOR. Compares the bit strings IN1 and IN2 bit by bit. When a pair of

corresponding bits are different, places a 1 in the corresponding location in the

output bit string Q; when a pair of corresponding bits are the same, places a 0 in

Q.

If additional inputs (IN3 through IN8) are used, each additional bit string is

compared to the string in Q and the result is placed in Q.

For details, refer to Logical XOR.

Logical NOT. Sets the state of each bit in output bit string Q to the opposite state

of the corresponding bit in bit string IN1.

For details, refer to Logical NOT.

Rotate Bits Left. Rotates all the bits in a string a specified number of places to

the left.

For details, refer to Bit Operation Functions in Section 4.

Rotate Bits Right. Rotates all the bits in a string a specified number of places to

the right. For details, refer to in Section 4.

Shift Bits Left. Shifts all the bits in a word or string of words to the left by a

specified number of places.

For details, refer to Bit Operation Functions in Section 4.

CPU Programmer’s Reference Manual Section 5
GFK-2950M Dec 2024

Function Block Diagram (FBD) 273

Function Description

Shift Bits Right. Shifts all the bits in a word or string of words to the right by a

specified number of places.

For details, refer to Bit Operation Functions in Section 4.

5.3.1 Logical AND, Logical OR, and Logical XOR
The Logical functions examine each bit in bit string IN1 and the corresponding bit in bit

string IN2, beginning with the least significant bit in each string, and places the result in

Q. If additional inputs (IN3 up to IN8) are used, the function compares each bit in the

input with the corresponding bit in Q and places the result in Q. The comparison is

repeated for each input that is used. The input bit strings specified in IN1 … IN8 may

overlap.

Logical AND

If both bits examined by the Logical AND function are 1,

AND places a 1 in the corresponding location in output string

Q. If either bit is 0 or both bits are 0, AND places a 0 in string

Q in that location.

Tip:

You can use the Logical AND function to build masks or

screens, where only certain bits are passed (the bits

opposite a 1 in the mask), and all other bits are set to 0.

Minimum number of inputs = 2

Maximum number of inputs = 8

CPU Programmer’s Reference Manual Section 5
GFK-2950M Dec 2024

Function Block Diagram (FBD) 274

Minimum number of

inputs = 2

Maximum

number of inputs

= 8

Logical OR

If either bit examined by the Logical OR function is 1, OR

places a 1 in the corresponding location in output string Q.

If both bits are 0, Logical OR places a 0 in string Q in that

location.

Tips:

• You can use the Logical OR function to combine

strings or to control many outputs with one simple

logical structure. The Logical OR function is the

equivalent of two relay contacts in parallel multiplied

by the number of bits in the string.

• You can use the Logical OR function to drive indicator

lamps directly from input states or to superimpose

blinking conditions on status lights.

Minimum number

of inputs = 2

Maximum number of

inputs = 8

Logical XOR

If the bits in the strings examined by XOR are different, a 1

is placed in the corresponding position in the output bit

string.

For each pair of bits examined, if only one bit is 1, XOR

places a 1 in the corresponding location in string Q.

If both bits are 0, XOR places a 0 in the corresponding

location in string Q.

Tips:

• If string IN2 and output string Q begin at the

same reference, a 1 placed in string IN1 will

cause the corresponding bit in string IN2 to

alternate between 0 and 1, changing state with

each scan as long as input is received.

• You can program longer cycles by pulsing the

input to the function at twice the desired rate of

flashing. The input pulse should be one scan

long (one­shot type coil or self-resetting timer).

• You can use XOR to quickly compare two bit

strings, or to blink a group of bits at the rate of

one ON state per two scans.

• XOR is useful for transparency masks.

Operands for AND, OR, and XOR

CPU Programmer’s Reference Manual Section 5
GFK-2950M Dec 2024

Function Block Diagram (FBD) 275

Parameter Description Allowed Types Allowed

Operands

Optional

Solve Order Calculated by the FBD

editor.

NA NA No

IN1 The value to operate on. BOOL, WORD

DWORD

All No

IN2 (Must be

the same data

type as IN1.)

The value to operate on. BOOL, WORD

DWORD

All No

IN3 … IN8

(Must be the

same data type

as IN1.)

Values to operate on. BOOL, WORD

DWORD

All Yes

Q (Must be the

same data type

as IN1 and

IN2.)

The operation’s result. BOOL, WORD

DWORD

All except constants

and variables

located in %S

memory

No

Properties for AND, OR, and XOR

Property Valid Range

Number of Inputs 2 to 8

5.3.2 Logical NOT

Figure 197

The Logical Not or Logical Invert (NOT) function sets the state of each bit in the output

bit string Q to the opposite of the state of the corresponding bit in bit string IN1.

All bits are altered on each scan that input is received, making output string Q the logical

complement of input string IN1.

CPU Programmer’s Reference Manual Section 5
GFK-2950M Dec 2024

Function Block Diagram (FBD) 276

Operands

Parameter Description Allowed

Types

Allowed

Operands

Optional

Solve Order Calculated by the FBD

editor.

NA NA No

IN1 The input string to NOT. WORD

DWORD

All No

Q (Must be the same

data type as IN1)

The NOT's result. WORD

DWORD

All except constants

and variables located

in %S memory

No

5.4 Comments

5.4.1 Text Block

Figure 198

The Text block is used to place an explanation in the program. When you type in a

comment, the f irst few words are displayed.

To increase the size of the text box and display more text, select the box and drag one

of the handles.

There are no operands for the Text block.

• Editing a comment makes the Programmer lose equality.

• Comment text is downloaded to the controller and retrieved upon Logic Upload.

CPU Programmer’s Reference Manual Section 5
GFK-2950M Dec 2024

Function Block Diagram (FBD) 277

5.5 Comparison Functions
Comparison functions compare two values of the same data type or determine whether

a number lies within a specif ied range. The original values are unaf fected.

Function Description

Compare. Compares two numbers, IN1 and IN2.

For details, refer to Relational Functions in Section 4.

Equal. Tests two numbers for equality.

For details, refer to Comparison Functions.

Greater Than or Equal. Tests whether one number is greater than or equal to

another.

For details, refer to Comparison Functions.

Greater Than. Tests whether one number is greater than another.

For details, refer to Comparison Functions.

Less Than or Equal. Tests whether one number is less than or equal to another.

For details, refer to Comparison Functions.

Less Than. Tests whether one number is less than another.

For details, refer to Comparison Functions.

CPU Programmer’s Reference Manual Section 5
GFK-2950M Dec 2024

Function Block Diagram (FBD) 278

Function Description

Not Equal. Tests whether two numbers are not equal.

For details, refer to Comparison Functions.

Range. Tests whether one number is within the range defined by two other supplied

numbers.

For details, refer to Relational Functions in Section 4.

5.5.1 Equal, Not Equal, Greater or Equal, Greater Than,

Less or Equal, Less Than

Figure 199

The relational functions compare input IN1 to input IN2. These operands must be the

same data type. If inputs IN1 and IN2 are equal, the function outputs the result to Q,

unless IN1 and/or IN2 is NaN (Not a Number). The following relational functions can be

used to compare two numbers:

Function Definition Relational Statement

EQ Equal IN1=IN2

NE Not Equal IN1≠IN2

GE Greater Than or Equal IN1≥IN2

GT Greater Than IN1>IN2

LE Less Than or Equal IN1≤IN2

LT Less Than IN1<IN2

Tip:

To compare values of different data types, first use conversion functions to make the types the

same.

Operands

Parameter Description Allowed

Types

Allowed

Operands

Optional

Solve Order Calculated by the FBD editor. NA NA No

CPU Programmer’s Reference Manual Section 5
GFK-2950M Dec 2024

Function Block Diagram (FBD) 279

Parameter Description Allowed

Types

Allowed

Operands

Optional

IN1 The first value to be compared; the

value on the left side of the relational

statement.

BOOL (for EQ

and NE functions

only), BYTE,

DINT, DWORD,

INT, REAL,

LREAL, UINT,

WORD

All except S, SA, SB,

SC

No

IN2 The second value to be compared; the

value on the right side of the relational

statement. IN2 must be the same data

type as IN1.

No

Q If the relational statement is true, Q=1.

BOOL I, Q, G, M, T, SA, SB,

SC

No Bit reference in a

non-BOOL

variable.

All except constants.

5.6 Control Functions
The control functions limit program execution and change the way the CPU executes the

application program.

Function Description

Do I/O Interrupt. For one scan, immediately services a specified range of inputs

or outputs. (All inputs or outputs on a module are serviced if any reference

locations on that module are included in the DO I/O function. Partial I/O module

updates are not performed.) Optionally, a copy of the scanned I/O can be placed

in internal memory, rather than at the real input points.

For details, refer to Control Functions in Section 4.

Mask I/O Interrupt. Mask or unmask an interrupt from an I/O board when using

I/O variables. If not using I/O variables, use

SVC_REQ 17: Mask/Unmask I/O Interrupt, described in Section 6.

For details, refer to Control Functions in Section 4.

Proportional Integral Derivative (PID) Control.

Provides two PID closed-loop control algorithms:

 Standard ISA PID algorithm (PID_ISA)

 Independent term algorithm (PID_IND)

Note: For details, refer to Section 7.

CPU Programmer’s Reference Manual Section 5
GFK-2950M Dec 2024

Function Block Diagram (FBD) 280

Function Description

Service Request. Requests a special control system service.

Note: For details, refer to Section 6.

Scan Set I/O. Scans the IO of a specified scan set.

For details, refer to Control Functions in Section 4.

Suspend I/O. Suspends for one sweep all normal I/O updates, except those

specified by DO I/O instructions.

For details, refer to Control Functions in Section 4.

Suspend I/O Interrupt. Suspend or resume an I/O interrupt when using I/O

variables. If not using I/O variables, use

SVC_REQ 32: Suspend/Resume I/O Interrupt, described in Section 6.

For details, refer to Control Functions in Section 4.

Falling Edge Trigger. Detects a high-to-low transition of a Boolean input.

Produces a single output pulse when a falling edge is detected.

For details, refer to Control Functions in Section 4.

Rising Edge Trigger. Detects a low-to-high transition of a Boolean input.

Produces a single output pulse when a rising edge is detected.

For details, refer to Control Functions in Section 4.

5.7 Counters

CPU Programmer’s Reference Manual Section 5
GFK-2950M Dec 2024

Function Block Diagram (FBD) 281

Function Description

Down Counter. Counts down from a preset value. The output is ON

whenever the Current Value is  0.

The parameter that appears above the function block is a one-dimensional,

three-word array in %R, %W, %P, %L, or symbolic memory that the

counter uses to store its current value, preset value and control word.

For details, refer to

Counters in Section 4.

Up Counter. Counts up to a designated value. The output is ON whenever

the Current Value is  the Preset Value.

The parameter that appears above the function block is a one-dimensional,

three-word array in %R, %W, %P, %L, or symbolic memory that the

counter uses to store its current value, preset value and control word.

For details, refer to

Counters in Section 4.

CPU Programmer’s Reference Manual Section 5
GFK-2950M Dec 2024

Function Block Diagram (FBD) 282

5.8 Data Move Functions
The Data Move functions provide basic data move capabilities.

Function Description

Array Size. Counts the number of elements in an array.

For details, refer to Data Move Functions in Section 4.

Array Size Dim1. Returns the value of the Array Dimension 1 property of

an array.

For details, refer to Data Move Functions in Section 4.

Array Size Dim2. Returns the value of the Array Dimension 2 property of

an array.

For details, refer to Data Move Functions in Section 4.

Bus Read. Reads data from the bus.

For details, refer to Data Move Functions in Section 4.

CPU Programmer’s Reference Manual Section 5
GFK-2950M Dec 2024

Function Block Diagram (FBD) 283

Function Description

Bus Read Modify Write. Uses a read/modify/write cycle to update a data

element in a module on the bus.

Other BUS_RMW functions:

 BUS_RMW_DWORD

 BUS_RMW_WORD

For details, refer to Data Move Functions in Section 4.

Bus Test and Set. Handles semaphores on the bus.

Other BUS_TS function:

 BUS_TS_WORD

For details, refer to Data Move Functions in Section 4.

Bus Write. Writes data to a module on the bus.

For details, refer to Data Move Functions in Section 4.

CPU Programmer’s Reference Manual Section 5
GFK-2950M Dec 2024

Function Block Diagram (FBD) 284

Function Description

Communication Request. Allows the program to communicate with an

intelligent module, such as a Genius Bus Controller or a High-Speed

Counter.

For details, refer to

Communication Request in Section 4.

Minimum Outputs = 2

Maximum Outputs = 8

Fan Out. Copies the input value to multiple

outputs of the same data type as the input.

For details, refer to Fan Out below.

Move Data. Copies data as individual bits, so the new location does not

have to be the same data type. Data can be moved into a different data

type without prior conversion.

For details, refer to Move Data below.

Move Data Explicit. Provides data coherency by locking symbolic memory

being written to during the copy operation.

For details, refer to Data Move Functions in Section 4.

Note: FBD and ST do not support the constant 0 as a value for the

input IN.

CPU Programmer’s Reference Manual Section 5
GFK-2950M Dec 2024

Function Block Diagram (FBD) 285

Function Description

Move from Flat. Copies reference memory data to a UDT variable or UDT

array. Provides the option of locking the symbolic or I/O variable memory

area being written to during the copy operation.

For details, refer to Data Move Functions in Section 4.

Move to Flat. Copies data from symbolic or I/O variable memory to

reference memory. Copies across mismatching data types.

For details, refer to Data Move Functions in Section 4.

Size Of. Counts the number of bits used by a variable.

For details, refer to Data Move Functions in Section 4

5.8.1 Fan Out

Figure 200

Copies the input IN to multiple outputs.

CPU Programmer’s Reference Manual Section 5
GFK-2950M Dec 2024

Function Block Diagram (FBD) 286

Operands

Parameter Description Allowed Types Allowed

Operands

Optional

Solve Order Calculated by the FBD

editor.

NA NA No

IN The input to copy to the

outputs.

BOOL, DINT, DWORD,

INT, REAL, UINT, or

WORD variable or

constant

All except SA, SB,

SC.

No

OUT1 …OUT8 Variables of the same data

type as the IN operand.

The outputs. Minimum: two

outputs. Maximum: eight

outputs.

Must be same type as

IN.

All except S, SA, SB,

SC and constant.

No

5.8.2 Move Data

Figure 201

When the input operand, EN, is set to ON, the MOVE instruction copies data as bits from

one location in PACSystems controller memory to another. Because the data is copied

as bits, the new location does not need to use the same type of memory area as the

source. For example, you can copy data f rom an analog memory area into a discrete

memory area, or vice versa.

MOV sets its output, ENO, whenever it receives data unless one of the following occurs:

• When the input, EN, is set to OFF, then the output, ENO, is set to OFF.

• When the input, EN is set to ON, and the input, IN, contains an indirect reference,

and the memory of IN is out of range, then the output, ENO, is set to OFF.

The value to store at the destination Q is acquired f rom the IN parameter. If IN is a

variable, the value to store in Q is the value stored at the IN address. If IN is a constant,

the value to store in Q is that constant

The result of the MOVE depends on whether the data type for the Q operand a bit

reference or a non-bit reference is:

• If Q is a non-bit reference, LEN (the length) indicates the number of memory locations

in which the IN value should be repeated, starting at the location specif ied by Q.

• If Q is a bit reference, IN is treated as an array of bits. LEN therefore indicates the

number of bits to acquire from the IN parameter to make up the stored value. If IN is

a constant, bits are counted from the least-significant bit. If IN is a variable, LEN

CPU Programmer’s Reference Manual Section 5
GFK-2950M Dec 2024

Function Block Diagram (FBD) 287

indicates the number of bits to acquire starting at the IN location. Regardless, only

LEN bits are stored starting at address Q.

For example, if IN was the constant value 29 and LEN is 4, the results of a MOV operation

are as follows:

• Q is a WORD reference: The value 29 is repeatedly stored in locations Q, Q+1, Q+2,

and Q+3.

• Q is a BOOL reference: The binary representation of 29 is 11101. Since LEN is 4,

only the four least-significant bits are used (1101). This value is stored at location Q

in the same order, so 1 is stored in Q, 1 is stored in Q+1, 0 is stored in Q+2, and 1 is

stored in Q+3.

If data is moved f rom one location in discrete memory to another, such as f rom %I

memory to %T memory, the transition information associated with the discrete memory

elements is updated to indicate whether the MOVE operation caused any discrete

memory elements to change state.

Note: If an array of BOOL-type data specified in the Q operand does not include all the

bits in a byte, the transition bits associated with that byte (which are not in the array)

are cleared when the Move instruction receives data.

Data at the IN operand does not change unless there is an overlap in the source and

destination—a situation that is to be avoided.

CPU Programmer’s Reference Manual Section 5
GFK-2950M Dec 2024

Function Block Diagram (FBD) 288

MOV Operands

Parameter Description Allowed

Types

Allowed

Operands

Optional

Solve Order Calculated by the FBD editor. NA NA No

EN Enable BOOL variable data flow, I, Q, M, T, G,

S, SA, SB, SC,

discrete symbolic, I/O

variable

No

Bit reference in

a non-BOOL

variable

R, P, L, AI, AQ, W,

non-discrete symbolic,

I/O variable

IN The source of the data to copy into

the output Q. This can be either a

constant or a variable whose

reference address is the location of

the first source data item to move.

IN must have the same data type as

the variable in the Q parameter.

If IN is a BOOL variable or a bit

reference, an %I, %Q, %M, or %T

reference address need not be byte-

aligned, but 16 bits beginning with

the reference address specified are

displayed online.

DINT,

DWORD, INT,

REAL, LREAL,

UINT, WORD,

or bit reference

in a non-BOOL

variable

All. S, SA, SB, SC

allowed only for

WORD, DWORD,

BOOL types.

No

LEN The length of IN; the number of bits

to move.

If IN is a constant and Q is BOOL:

1  LEN  16;

If IN is a constant and Q is not

BOOL:

1  LEN  256.

All other cases: 1  LEN  32,767

LEN is also interpreted differently

depending on the data type of the Q

location. For details, see discussion

under Move Data.

Constant Constant No

ENO Indicates whether the operation was

successfully completed.

If ENO = ON (1), the operation was

initiated. Results of the operation are

indicated in the FT output.

If ENO = OFF (0), the operation was

not performed. If EN was ON, the FT

output indicates an error condition. If

EN was OFF, FT is not changed.

BOOL variable data flow, I, Q, M, T, G,

discrete symbolic, I/O

variable

Yes

Bit reference in

a non-BOOL

variable

I, Q, M, T, G, R, P, L,

AI, AQ, W, non-

discrete symbolic, I/O

variable

CPU Programmer’s Reference Manual Section 5
GFK-2950M Dec 2024

Function Block Diagram (FBD) 289

Parameter Description Allowed

Types

Allowed

Operands

Optional

Q The location of the first destination

data item. Q must have the same

data type as the variable in the IN

parameter.

If Q is a BOOL variable or a bit

reference, an %I, %Q, %M, or %T

reference address does not need to

be byte-aligned, but 16 bits

beginning with the specified

reference address are displayed

online.

DINT,

DWORD, INT,

REAL, LREAL,

UINT, WORD,

or bit reference

in a non-BOOL

variable

data flow, I, Q, M, T, S,

SA, SB, SC, G, R, P,

L, AI, AQ, W, symbolic,

I/O variable

No

CPU Programmer’s Reference Manual Section 5
GFK-2950M Dec 2024

Function Block Diagram (FBD) 290

5.9 Math Functions
Your program may need to include logic to convert data to a different type before using

a Math or Numerical function. The description of each function includes information about

appropriate data types. The Type Conversion Functions section explains how to convert

one data type into a dif ferent data type.

Function Description

Addition. Adds two or up to eight numbers.

For details, refer to

Add below.

Division.
5
Divides one number by another and outputs the quotient.

Note: Take care to avoid overflow conditions when performing

divisions.

For details, refer to Divide below

Modulo Division. Divides one number by another and outputs the remainder. For

details, refer to Modulus below.

Multiplication.
5
 Multiplies two or up to eight numbers.

Note: Take care to avoid overflow conditions when performing

divisions.

For details, refer to Multiply below.

Negate. Multiplies a number by –1 and places the result in an output location.

For details, refer to Negate below.

5
To avoid

Overflows when multiplying or dividing 16-bit numbers, use the Type Conversion Functions to convert the numbers to a 32-bit data

type.

CPU Programmer’s Reference Manual Section 5
GFK-2950M Dec 2024

Function Block Diagram (FBD) 291

Function Description

Scales an input parameter and places the result in an output location.

For details, refer to Math Functions in Section 4.

Subtraction. Subtracts one or up to seven numbers from the input IN1 and places

the result in an output location.

For details, refer to Subtract below.

The output is calculated when the instruction is performed without Overflow, unless an

invalid operation occurs.

5.9.1 Overflow
If an operation on integer operands results in overflow, the output value wraps around.

Examples:

• If the ADD operation, 32767 + 1, is performed on signed integer operands, the result

is -32768

• If the SUB operation, -32767 – 1, is performed on signed integer operands, the result

is 32767

• If an ADD_UINT operation is performed on 65535+ 16, the result is 15.

CPU Programmer’s Reference Manual Section 5
GFK-2950M Dec 2024

Function Block Diagram (FBD) 292

5.9.2 Add

Figure 202

Adds the operands IN1 and IN2 … IN8 and stores the sum in Q. IN1 … IN8 and Q must

be of the same data type.

The result is output to Q when ADD is performed without Overflow, unless one of the

following invalid conditions occurs:

• (+ ∞)

• IN1 and/or IN2 … IN8 is NaN (Not a Number).

If an ADD operation results in Overf low, the result wraps around. For example:

• If an ADD_DINT, ADD_INT or ADD_REAL operation is performed on 32767 + 1, Q

will be set to -32768.

• If an ADD_UINT operation is performed on 65535 + 16, Q will be set to 15.

CPU Programmer’s Reference Manual Section 5
GFK-2950M Dec 2024

Function Block Diagram (FBD) 293

Operands of the ADD Function

Parameter Description Allowed Types Allowed

Operands

Optional

Solve Order Calculated by the FBD

editor.

NA NA No

IN1 … IN8 The values to be added. INT, DINT, REAL, LREAL,

UINT

Must be same data type as

Q.

All except S,

SA, SB, SC and

data flow

No

Q The sum of IN1 … IN8. If

an Overflow occurs, Q

wraps around.

INT, DINT, REAL, LREAL,

UINT variable

Must be same data type as

IN1 …. IN8.

All except S,

SA, SB, SC,

constant and

data flow

No

Properties for ADD

Property Valid Range

Number of Inputs 2 to 8

5.9.3 Divide

Figure 203

Divides the operand IN1 by the operand IN2 of the same data type as IN1 and stores the

quotient in the output variable assigned to Q, also of the same data type as IN1 and IN2.

The result is output to Q when DIV is performed without Overf low, unless one of the

following invalid conditions occurs:

• 0 divided by 0 (Results in an application fault.)

• IN1 and/or IN2 is NaN (Not a Number).

If an Overf low occurs, the result wraps around.

Notes:

• DIV rounds down; it does not round to the closest integer. For example,

24 DIV 5 = 4.

• Be careful to avoid overflows.

Operands for DIV_UINT, DIV_INT, DIV_DINT, and

DIV_REAL

Parameter Description Allowed Types Allowed

Operands

Optional

Solve Order Calculated by the FBD editor. NA NA No

CPU Programmer’s Reference Manual Section 5
GFK-2950M Dec 2024

Function Block Diagram (FBD) 294

Parameter Description Allowed Types Allowed

Operands

Optional

IN1 Dividend: the value to be

divided; shown to the left of DIV

in the equation IN1 DIV IN2=Q.

INT, DINT, UINT, REAL,

LREAL

All except S,

SA, SB, SC

No

IN2 Divisor: the value to divide into

IN1; shown to the right of DIV in

the equation IN1 DIV IN2=Q.

INT, DINT, UINT, REAL,

LREAL

All except S,

SA, SB, SC

No

Q The quotient of IN1/IN2. If an

Overflow occurs, the result is

the largest value with the

proper sign.

INT, DINT, UINT, REAL

or LREAL variable

All except S,

SA, SB, SC and

constant

No

5.9.4 Modulus

Figure 204

Divides input IN1 by input IN2 and outputs the remainder of the division to Q.

All three operands must be of the same data type. The sign of the result is always the

same as the sign of input parameter IN1. Output Q is calculated using the formula:

Q = IN1-((IN1 DIV IN2) * IN2)

where DIV produces an integer number.

The result is output to Q unless one of the following invalid conditions occurs:

• 0 divided by 0 (Results in an application fault.)

• IN1 and/or IN2 is NaN (Not a Number)

CPU Programmer’s Reference Manual Section 5
GFK-2950M Dec 2024

Function Block Diagram (FBD) 295

Operands for Modulus Function

Parameter Description Allowed

Types

Allowed

Operands

Optional

Solve Order Calculated by the FBD editor. NA NA No

IN1 Dividend: the value to be

divided into in order to obtain

the remainder; shown to the

left of MOD in the equation IN1

MOD IN2=Q.

INT, DINT, UINT All except S, SA, SB,

SC

No

IN2 Divisor: the value to divide into

IN1; shown to the right of MOD

in the equation

IN1 MOD IN2=Q.

INT, DINT, UINT All except S, SA, SB,

SC

No

Q The remainder of IN1/IN2. INT, DINT, UINT

variable

All except S, SA, SB,

SC and constant

No

5.9.5 Multiply

Figure 205

Multiplies two through eight operands (IN1 … IN8) of the same data type and stores the

result in the output variable assigned to Q, also of the same data type.

The output is calculated when the function is performed without Overflow unless an

invalid operation occurs.

If an Overf low occurs, the result wraps around.

Mnemonic Operation Displays as

INT Q(16-bit) = IN1(16-bit) * IN2(16-bit) base 10 number with sign, up to 5 digits

long

DINT Q(32-bit) = IN1(32-bit) * IN2(32-bit) base 10 number with sign, up to 10 digits

long

REAL Q(32-bit) = IN1(32-bit) * IN2(32-bit) base 10 number, sign and decimals, up to

8 digits long (excluding the decimals)

UINT Q(16-bit) = IN1(16-bit) * IN2(16-bit) base 10 number, unsigned, up to 5 digits

long

CPU Programmer’s Reference Manual Section 5
GFK-2950M Dec 2024

Function Block Diagram (FBD) 296

Operands for Multiply

Parameter Description Allowed

Types

Allowed

Operands

Optional

Solve Order Calculated by the FBD editor. NA NA No

IN1 … IN8 The values to multiply. Must be the

same data type as Q.

INT, DINT,

UINT, REAL

All except S, SA,

SB, SC

No

Q The result of the multiplication. INT, DINT,

UINT, REAL

variable

All except S, SA,

SB, SC and

constant

No

Properties for Multiply

Property Valid Range

Number of Inputs 2 to 8

5.9.6 Negate

Figure 206

Multiplies a number by –1 and places the result in the output location, Q

CPU Programmer’s Reference Manual Section 5
GFK-2950M Dec 2024

Function Block Diagram (FBD) 297

Operands

Parameter Description Allowed

Types

Allowed

Operands

Optional

Solve Order Calculated by the FBD editor. NA NA No

IN The value to be negated. INT, DINT,

REAL

All except S, SA,

SB, SC

No

Q The result, -1(IN) INT, DINT,

REAL

variable

All except S, SA,

SB, SC and

constant

No

5.9.7 Subtract

Figure 207

Subtracts the operands IN2 …IN8 f rom the operand IN1 and stores the result in the

output variable assigned to Q.

The calculation is carried out when SUB is performed without Overflow, unless an invalid

operation occurs.

If a SUB operation results in Overf low, the result wraps around. For example:

• If a SUB_DINT, SUB_INT or SUB_REAL operation is performed on 32768 - 1, Q

will be set to 32767.

If a SUB_UINT operation results in a negative number, Q wraps around. (For example,

a result of –1 set Q to 65535.)

CPU Programmer’s Reference Manual Section 5
GFK-2950M Dec 2024

Function Block Diagram (FBD) 298

Mnemonic Operation Displays as

SUB_INT Q(16-bit) = IN1(16-bit) – IN2(16-bit) base 10 number with sign, up to 5 digits

long

SUB_DINT Q(32-bit) = IN1(32-bit) – IN2(32-bit) base 10 number with sign, up to 10

digits long

SUB_REAL Q(32-bit) = IN1(32-bit) – IN2(32-bit) base 10 number, sign and decimals, up

to 8 digits long (excluding the decimals)

SUB_UINT Q(16-bit) = IN1(16-bit) – IN2(16-bit) base 10 number, unsigned, up to 5

digits long

Operands for Subtract

Parameter Description Allowed Types Allowed

Operands

Optional

Solve Order Calculated by the FBD

editor.

NA NA No

IN1 The value to subtract from. DINT, INT, REAL,

UINT

All except S, SA,

SB, SC

No

IN2 … IN8 The value(s) to subtract

from IN1. Must be the same

data type as IN1.

All except S, SA,

SB, SC

No

Q The result of the

subtraction. Must be the

same data type as IN1.

DINT, INT, REAL,

UINT variable

All except S, SA,

SB, SC and

constant

No

Properties for Subtract

Property Valid Range

Number of Inputs 2 to 8

CPU Programmer’s Reference Manual Section 5
GFK-2950M Dec 2024

Function Block Diagram (FBD) 299

5.10 Program Flow Functions
The program flow functions limit program execution or change the way the CPU executes

the application program.

Function Description

The CALL function causes the logic

execution to go immediately to the

designated program block, external C block

(parameterized or not), or parameterized

block and execute it. After the block’s

execution is complete, control returns to the

point in the logic immediately following the

CALL instruction.

For details, refer to Program Flow

Functions in Section 4.

Non-parameterized CALL Parameterized CALL.

May call a parameterized

external block or a

parameterized block.

The ARG_PRES (Argument Present)

function determines whether a parameter

value was present when the function block

instance of the parameter was invoked.

For details, refer to Program Flow

Functions in Section 4.

CPU Programmer’s Reference Manual Section 5
GFK-2950M Dec 2024

Function Block Diagram (FBD) 300

5.11 Timers
This section describes the PACSystems timing functions that are implemented in the

FBD language.

5.11.1 Built-in Timer Function Blocks
These function blocks use WORD Array instance data. The parameter that appears

above the function block is a one-dimensional, three-word array in %R, %W, %P, %L, or

symbolic memory that the timer uses to store its current value, preset value and control

word.

Function Description

Off Delay Timer. The timer's Current Value (CV) resets to zero

when its enable parameter (EN) is set to ON.. CV increments

while EN is OFF. When CV=PV (Preset Value), ENO is set to

OFF until EN is set to ON again.

Other OFDT functions:

OFDT_SEC

OFDT_TENTHS

OFDT_THOUS

For details, refer to Timers in Section 4.

On Delay Stopwatch Timer. Retentive on delay timer. Increments

while EN is ON and holds its value when EN is OFF.

ONDTR_SEC

ONDTR_TENTHS

ONDTR_THOUS

For details, refer to Timers in Section 4.

On Delay Timer. Simple on delay timer. Increments while EN is

ON and resets to zero when EN is OFF.

TMR_SEC

TMR_TENTHS

TMR_THOUS

For details, refer to Timers in Section 4.

CPU Programmer’s Reference Manual Section 5
GFK-2950M Dec 2024

Function Block Diagram (FBD) 301

5.11.2 Standard Timer Function Blocks
These functions blocks use Structure Variable instance data. Each invocation of a timer

has associated instance data that persists f rom one execution of the timer to the next.

Instance variables are automatically located in symbolic memory. (You cannot specify

an address.) You can specify a stored value for each element. The user logic cannot

modify the values.

Function Description

Timer Off Delay. When the input IN transitions from ON to OFF, the timer

starts timing until a specified period of time has elapsed, then sets the

output Q to OFF.

For details, refer to Timers in Section 4.

Timer On Delay. When the input IN transitions from OFF to ON, the timer

starts timing until a specified period of time has elapsed, then sets the

output Q to ON.

For details, refer to Timers in Section 4.

Timer Pulse. When the input IN transitions from OFF to ON, the timer sets

the output Q to ON for a specified time interval.

For details, refer to Timers in Section 4.

CPU Programmer’s Reference Manual Section 5
GFK-2950M Dec 2024

Function Block Diagram (FBD) 302

5.12 Type Conversion Functions
The Conversion functions change a data item f rom one number format (data type) to

another. Many programming instructions, such as math functions, must be used with

data of one type. As a result, data conversion is of ten required before using those

instructions.

Function Description

Convert Angles

DEG_TO_RAD: Converts degrees to radians.

RAD_TO_DEG: Converts radians to degrees.

For details, refer to Conversion Functions in Section 4.

Convert to BCD4 (4-digit Binary-Coded-Decimal)

UINT_TO_BDC4: Converts UINT (16-bit unsigned integer) to BCD4.

INT_TO_BCD4: Converts INT (16-bit signed integer) to BCD4.

For details, refer to Conversion Functions in Section 4.

Convert to BCD8 (8-digit Binary-Coded-Decimal)

DINT_TO_BD8: Converts DINT (32-bit signed integer) to BCD8.

For details, refer to Conversion Functions in Section 4.

Convert to INT (16-bit signed integer)

BCD4_TO_INT: Converts BCD to INT.

UINT_TO_INT: Converts UINT to INT

DINT_TO_INT: Converts DINT to INT..

REAL_TO_INT: Converts REAL to INT.

For details, refer to Conversion Functions in Section 4.

Converts a 16-bit string (WORD) value to INT.

For details, refer to Convert WORD to INT below.

Convert to UINT (16-bit unsigned integer)

BCD4_TO_UINT: Converts BCD4 to UINT.

INT_TO_UINT: Converts INT to UINT.

DINT_TO_UINT: Converts DINT to UINT.

REAL_TO_UINT: Converts REAL to UINT.

For details, refer to Conversion Functions in Section 4.

WORD_TO_UINT: Converts a 16-bit string (WORD) value to UINT.

For details, refer to Convert DWORD to DINT below.

Convert to DINT (32-bit signed integer)

CPU Programmer’s Reference Manual Section 5
GFK-2950M Dec 2024

Function Block Diagram (FBD) 303

Function Description

BCD8_TO_DINT: Converts BCD8 to DINT.

UINT_TO_DINT: Converts UINT to DINT.

For details, refer to Conversion Functions in Section 4.

INT_TO_DINT: Converts INT to DINT.

REAL_TO_DINT: Converts REAL (32-bit signed real or floating-point

values) to DINT.

For details, refer to Conversion Functions in Section 4.

DWORD_TO_DINT: Converts a 32-bit bit string (DWORD) value to DINT.

For details, refer to Convert DWORD to DINT below.

Convert to REAL (32-bit signed real or floating-point values)

BCD4_TO_REAL: Converts BCD4 to REAL.

BCD8_TO_REAL: Converts BCD8 to REAL.

UINT_TO_REAL: Converts UINT to REAL.

INT_TO_REAL: Converts INT to REAL.

DINT_TO_REAL: Converts DINT to REAL.

LREAL_TO_REAL: Converts LREAL to REAL.

For details, refer to Conversion Functions in Section 4.

Convert to LREAL(64-bit signed real or floating-point values)

Converts a REAL value to LREAL.

For details, refer to Conversion Functions” in Section 4.

Convert to WORD (16-bit string)

Converts an INT (16-bit signed integer) value to a WORD value.

For details, refer to Convert INT or UINT to WORD below.

Converts an unsigned single-precision integer (UINT) to WORD.

For details, refer to Convert INT or UINT to WORD below.

Convert to DWORD (32-bit bit string)

Converts a double-precision signed integer (DINT) value to DWORD.

For details, refer to Convert DINT to DWORD below.

Truncate

CPU Programmer’s Reference Manual Section 5
GFK-2950M Dec 2024

Function Block Diagram (FBD) 304

Function Description

Rounds a REAL (32-bit signed real or floating-point) number down to a

DINT number

For details, refer to Conversion Functions in Section 4.

Rounds a REAL (32-bit signed real or floating-point) number down to an

INT number

For details, refer to Conversion Functions in Section 4.

5.12.1 Convert WORD to INT

Figure 208

Converts the input data into the equivalent single-precision signed integer (INT) value,

which it outputs to Q. This function does not change the original input data. The output

data can be used directly as input for another program function, as in the examples.

The function passes data to Q, unless the data is out of range (0 through +65,535).

Operands

Parameter Description Allowed

Types

Allowed

Operands

Optional

Solve Order Calculated by the FBD editor. NA NA No

IN The value to convert to INT. WORD All except S, SA,

SB, and SC

No

Q The INT equivalent value of the

original value in IN.

INT All except S, SA,

SB, SC and

constant

No

5.12.2 Convert WORD to UINT

Figure 209

These functions convert the input data into the equivalent single-precision unsigned

integer (UINT) value, which it outputs to Q.

The conversion to UINT does not change the original data. The output data can be used

directly as input for another program function, as in the example.

CPU Programmer’s Reference Manual Section 5
GFK-2950M Dec 2024

Function Block Diagram (FBD) 305

The function passes the converted data to Q, unless the resulting data is outside the

range 0 to +65,535.

Operands

Parameter Description Allowed

Types

Allowed

Operands

Optional

Solve Order Calculated by the FBD editor. NA NA No

IN The value to convert to UINT. WORD All except S, SA, SB,

and SC

No

Q The UINT equivalent value of the

original input value in IN.

UINT All except S, SA, SB,

SC and constant

No

5.12.3 Convert DWORD to DINT

Figure 210

Converts DWORD data into the equivalent signed double-precision integer (DINT) value

and stores the result in Q. The conversion to DINT does not change the original data.

The output data can be used directly as input for another program function. The function

passes data to Q unless the data is out of range.

CPU Programmer’s Reference Manual Section 5
GFK-2950M Dec 2024

Function Block Diagram (FBD) 306

Operands

Parameter Description Allowed

Types

Allowed

Operands

Optional

Solve Order Calculated by the FBD editor. NA NA No

IN The value to convert to DINT. DWORD All except S, SA,

SB, and SC

No

Q The DINT equivalent value of the

original input value in IN.

UINT All except S, SA,

SB, SC and

constant

No

5.12.4 Convert INT or UINT to WORD

Figure 211

Converts an unsigned single-precision integer (UINT) operand IN to a 16-bit bit string

(WORD) value and stores the result in the variable assigned to Q.

Figure 212

Converts a 16-bit signed integer (INT) operand IN to a 16-bit bit string (WORD) value

and stores the result in the variable assigned to Q.

The output data can be used directly as input for another program function. The function

passes data to Q unless the data is out of range.

Operands

Parameter Description Allowed Types Allowed

Operands

Optional

Solve Order Calculated by the FBD editor. NA NA No

IN The value to convert to WORD. INT or UINT,

depending on

function

All except S, SA,

SB, and SC

No

Q The WORD equivalent value of the

original value in IN. 0  Q  65,535.

WORD All except S, SA,

SB, SC and

constant

No

5.12.5 Convert DINT to DWORD

Figure 213

CPU Programmer’s Reference Manual Section 5
GFK-2950M Dec 2024

Function Block Diagram (FBD) 307

When DINT_TO_DWORD receives data, it converts the input double-precision signed

integer (DINT) data into the equivalent DWORD (32-bit bit string) value, which it outputs

to Q. DINT_TO_DWORD does not change the original DINT data.

The output data can be used directly as input for another program function. The function

passes data to Q unless the data is out of range.

Operands

Parameter Description Allowed

Types

Allowed

Operands

Optional

Solve Order Calculated by the FBD editor. NA NA No

IN The value to convert to DWORD. DINT All except S, SA,

SB, and SC

No

Q The DWORD equivalent value of

the original value in IN. 0  Q 

4,294,967,295.

DWORD All except S, SA,

SB, SC and

constant

No

5.13 PACSystems Simulator Function Block

Diagram (FBD)
The following sections outline Function Block Diagram (FBD) functionality differences for

the PACSystems Simulator.

5.13.1 Math Functions
Refer to Section 4.14.1 Math Functions.

5.13.2 Control Functions
Refer to Section 4.14.3 Control Functions.

5.13.3 Data Move Functions
Refer to Section 4.14.4 Data Move Functions .

5.13.4 Timers

5.13.5 Refer to Section 4.14.5 Timers.Communication Blocks
Refer to Section 4.14.7 Communication Blocks .

CPU Programmer’s Reference Manual Section 6
GFK-2950M Dec 2024

Service Request Function 308

Section 6 Service Request Function
Use a Service Request function to request one of the following control system services:
• SVC_REQ 1: Change/Read Constant Sweep Timer

• SVC_REQ 2: Read Window Modes and Time Values

• SVC_REQ 3: Change Controller Communications Window Mode

• SVC_REQ 4: Change Backplane Communications Window Mode and Timer Value

• SVC_REQ 5: Change Background Task Window Mode and Timer Value

• SVC_REQ 6: Change/Read Number of Words to Checksum

• SVC_REQ 7: Read or Change the Time-of-Day Clock

• SVC_REQ 8: Reset Watchdog Timer

• SVC_REQ 9: Read Sweep Time f rom Beginning of Sweep

• SVC_REQ 10: Read Target Name

• SVC_REQ 11: Read Controller ID

• SVC_REQ 12: Read Controller Run State

• SVC_REQ 13: Shut Down (STOP) CPU

• SVC_REQ 14: Clear Controller or I/O Fault Table

• SVC_REQ 15: Read Last-Logged Fault Table Entry

• SVC_REQ 16: Read Elapsed Time Clock

• SVC_REQ 17: Mask/Unmask I/O Interrupt

• SVC_REQ 18: Read I/O Forced Status

• SVC_REQ 19: Set Run Enable/Disable

• SVC_REQ 20: Read Fault Tables

• SVC_REQ 21: User-Def ined Fault Logging

• SVC_REQ 22: Mask/Unmask Timed Interrupts

• SVC_REQ 23: Read Master Checksum

• SVC_REQ 24: Reset Module

• SVC_REQ 25: Disable/Enable EXE Block and Standalone C Program Checksums

• SVC_REQ 29: Read Elapsed Power Down Time

• SVC_REQ 32: Suspend/Resume I/O Interrupt

• SVC_REQ 45: Skip Next I/O Scan

• SVC_REQ 50: Read Elapsed Time Clock

• SVC_REQ 51: Read Sweep Time f rom Beginning of Sweep

• SVC_REQ 56: Logic Driven Read of Nonvolatile Storage

• SVC_REQ 57: Logic Driven Write to Nonvolatile Storage

• SVC_REQ 63: Logic Driven Write of Reference Memory

CPU Programmer’s Reference Manual Section 6
GFK-2950M Dec 2024

Service Request Function 309

The following Service Requests are used in CPU HSB redundancy applications.

Refer to the PACSystems Hot Standby CPU Redundancy User’s Guide, GFK -2308.

For non-HSB applications, refer to PACSystems RX7i, RX3i and RSTi-EP TCP/IP

Ethernet Communications User Manual, GFK-2224.

• SVC_REQ 26: Role switch (redundancy)

• SVC_REQ 27: Write to reverse transfer area (Hot Standby Redundancy)

• SVC_REQ 28: Read f rom reverse transfer area (Hot Standby Redundancy)

• SVC_REQ 43: Disable data transfer copy in backup unit (Hot Standby Redundancy)

• SVC_REQ 55: Set application redundancy mode (non-Hot Standby Redundancy)

6.1 Operation of SVC_REQ Function
PACSystems supports the Service Request function in LD and FBD.

6.1.1 Ladder Diagram

Figure 214

When SVC_REQ receives power flow, it requests the CPU to perform the special service

identif ied by the FNC operand.

Parameters for SVC_REQ are in the parameter block, which begins at the reference

identified by the PRM operand. The number of 16-bit references required depends on

the type of special controller service being requested. The parameter block is used to

store both the function's inputs and outputs.

SVC_REQ passes power f low unless an incorrect function number, incorrect

parameters, or out-of-range references are specified. Specific SVC_REQ functions may

have additional causes for failure.

Because the service request continues to be invoked each time power flow is enabled to

the function, additional enable/disable logic preceding the request may be necessary,

depending upon the application. (For example, repeated calling of SVC_REQ 24 would

continually reset a module, probably not the intended behavior.) In many cases a

transition contact or coil will be enough. Alternatively, you could use more complex logic,

such as having the function contained within a block that is only called a single t ime.

Operands

Note: Indirect referencing is available for all register references (%R, %P, %L, %W, %AI,

and %AQ).

CPU Programmer’s Reference Manual Section 6
GFK-2950M Dec 2024

Service Request Function 310

Operand Data Type Memory Area Description

FNC INT variable or

constant

All except %S - %SC Function number; Service Request

number. The constant or reference

that identifies the requested service.

PRM WORD variable All except flow, %S - %SC

and constant

The first WORD in the parameter

block for the requested service.

Successive 16-bit locations store

additional parameters.

Example

Figure 215

When the enabling input %I0001 is ON, SVC_REQ function number 7 is called, with the

parameter block starting at %R0001. If the operation succeeds, output coil %Q0001 is

set ON.

CPU Programmer’s Reference Manual Section 6
GFK-2950M Dec 2024

Service Request Function 311

6.1.2 Function Block Diagram

Figure 216

The SVC_REQ function requests the CPU to perform the special service identified by

the FNC operand.

Parameters for SVC_REQ are in the parameter block, which begins at the reference

identified by the PRM operand. The number of 16-bit references required depends on

the type of special controller service being requested. The parameter block is used to

store both the function's inputs and outputs.

Operands

Note: Indirect referencing is available for all register references (%R, %P, %L, %W, %AI,

and %AQ.

Parameter Description Allowed

Types

Allowed Operands Optional

Solve Order Calculated by the FBD editor. NA NA No

EN Enable input. When set to ON, the

SVC_REQ executes

BOOL data flow, I, Q, M, T, G, S, SA, SB, SC,

discrete symbolic, I/O variable

No

Bit reference in a

non-BOOL variable

I, Q, M, T, G, R, P, L, AI, AQ, W,

non-discrete symbolic, I/O variable

FNC Function number; Service Request

number. The constant or variable that

identifies the requested service.

INT, DINT, UINT,

WORD, DWORD

All except %S - %SC

You can use data flow only if the

parameter block requires only one WORD

If you use a symbolic variable or an I/O

variable, ensure that its Array Dimension

1 property is set to a value large enough

to contain the entire parameter block.

No

PRM The first word in the parameter block

for the requested service. Successive

16-bit locations store additional

parameters.

INT, DINT, UINT,

WORD, DWORD

All except flow, %S - %SC and constant No

ENO Set to ON unless an incorrect function

number, incorrect parameters, or out-

of-range references are specified.

Specific SVC_REQ functions may

have additional causes for failure.

BOOL data flow, I, Q, M, T, G, non-discrete

symbolic, I/O variable

Yes

Bit reference in a

non-BOOL variable.

I, Q, M, T, G, R, P, L, AI, AQ, W,

non-discrete symbolic, I/O variable

6.2 SVC_REQ 1: Change/Read Constant Sweep

Timer
Use SVC_REQ function 1 to:

• Disable Constant Sweep mode

• Enable Constant Sweep mode and use the old Constant Sweep timer value

CPU Programmer’s Reference Manual Section 6
GFK-2950M Dec 2024

Service Request Function 312

• Enable Constant Sweep mode and use a new Constant Sweep timer value

• Set a new Constant Sweep timer value only

• Read Constant Sweep mode state and timer value.

The parameter block has a length of two words used for both input and output.

SVC_REQ executes successfully unless:

• A number other than 0, 1, 2, or 3 is entered as the requested operation:

• The scan time value is greater than 2550ms (2.55 seconds)

• Constant sweep time is enabled with no timer value programmed or with an old value

of 0 for the timer.

6.2.1 To disable Constant Sweep mode:
Enter SVC_REQ 1 with this parameter block:

Address Description

Address 0

Address + 1 Ignored

6.2.2 To enable Constant Sweep mode and use the old

timer value:
Enter SVC_REQ 1 with this parameter block:

Address Description

Address 1

Address + 1 0

If the timer value does not already exist, entering 0 causes the function to set the OK

output to OFF.

CPU Programmer’s Reference Manual Section 6
GFK-2950M Dec 2024

Service Request Function 313

6.2.3 To enable Constant Sweep mode and use a new timer

value:
Enter SVC_REQ 1 with this parameter block:

Address Description

Address 1

Address + 1 New timer value

Note: If the timer value does not already exist, entering 0 causes the function

to set the OK output to OFF.

6.2.4 To change the timer value without changing the

selection for sweep mode state:
Enter SVC_REQ 1 with this parameter block:

Address Description

Address 2

Address + 1 New timer value

6.2.5 To read the current timer state and value without

changing either:
Enter SVC_REQ 1 with this parameter block:

Address Description

Address 3

Address + 1 ignored

Output

SVC_REQ 1 returns the timer state and value in the same parameter block references:

Address Description

Address 0 = Normal Sweep

1 = Constant Sweep

Address + 1 Current timer value

If the word address + 1 contains the hexadecimal value FFFF, no timer value has been

programmed.

CPU Programmer’s Reference Manual Section 6
GFK-2950M Dec 2024

Service Request Function 314

SVC_REQ 1 Example

If contact OV_SWP is set, the Constant Sweep Timer is read, the timer is increased by

2 ms, and the new timer value is sent back to the CPU. The parameter block is at location

%R3050. The example logic uses discrete internal coil %M0001 as a temporary location

to hold the successful result of the first rung line. On any sweep in which OV_SWP is not

set, %M00001 is turned of f .

Figure 217

6.3 SVC_REQ 2: Read Window Modes and Time

Values
Use SVC_REQ 2 to obtain the current window mode and time values for the controller

communications window and the backplane communications and the background task

window.

The parameter block has a length of three words. All parameters are output parameters.

It is not necessary to enter values in the parameter block to program this function.

Output

Address Window High Byte Low Byte

Address Controller Communications Window Mode Value in ms

Address + 1 Backplane Communications Window Mode Value in ms

Address + 2 Background Window Mode Value in ms

Note: A window is disabled when the time value is zero.

CPU Programmer’s Reference Manual Section 6
GFK-2950M Dec 2024

Service Request Function 315

Mode Values

Mode Name Value Description

Limited Mode 0 The execution time of the window is limited to its respective default

value or to a value defined using SVC_REQ 3 for the controller

communications window or SVC_REQ 4 for the systems

communications window. The window will terminate when it has no

more tasks to complete.

Constant Mode 1 Each window will operate in a Run to Completion mode, and the

CPU will alternate among the three windows for a time equal to the

sum of each window's respective time value. If one window is placed

in Constant mode, the remaining two windows are automatical ly

placed in Constant mode. If the CPU is operating in Constant

Window mode and a particular window's execution time is not

defined using the associated SVC_REQ function, the default time for

that window is used in the constant window time calculation.

Run to

Completion

Mode

2 Regardless of the window time associated with a particular window,

whether default or defined using a service request function, the

window will run until all tasks within that window are completed.

SVC_REQ 2 Example

Figure 218

When %Q00102 is set, the CPU places the current time values of the windows in the

parameter block starting at location %R0010.

CPU Programmer’s Reference Manual Section 6
GFK-2950M Dec 2024

Service Request Function 316

6.4 SVC_REQ 3: Change Controller

Communications Window Mode
Use SVC_REQ 3 to change the controller communications window mode and timer

value. The change takes place during the next CPU sweep after the function is called.

The parameter block has a length of one word.

SVC_REQ 3 executes unless a mode other than 0 (Limited) or 2 (Run to Completion) is

selected.

6.4.1 To disable the controller communications window:
Enter SVC_REQ 3 with this parameter block:

Address High Byte Low Byte

Address 0 0

6.4.2 To re-enable or change the controller communications

window mode:
Enter SVC_REQ 3 with this parameter block:

Address High Byte Low Byte

Address Mode: 0 = Limited

 2 = Run to Completion

1ms  value  255ms in 1ms

increments

SVC_REQ 3 Example

Figure 219

When enabling input %I00125 transitions on, the controller communications window is

enabled and assigned a value of 25ms. When the contact transitions off, the window is

disabled. The parameter block is in global memory location %P00051.

6.5 SVC_REQ 4: Change Backplane

Communications Window Mode and Timer

Value

CPU Programmer’s Reference Manual Section 6
GFK-2950M Dec 2024

Service Request Function 317

Use SVC_REQ 4 to change the Backplane Communications window mode and timer

value. The change takes place during the next CPU sweep after the function is called.

SVC_REQ 4 executes unless a mode other than 0 (Limited) or 2 (Run to Completion) is

selected.

The parameter block has a length of one word.

6.5.1 To disable the Backplane Communications window:
Enter SVC_REQ 4 with this parameter block:

Address High Byte Low Byte

Address 0 0

6.5.2 To enable the Backplane Communications window

mode:
Enter SVC_REQ 4 with this parameter block:

Address High Byte Low Byte

Address Mode 0 = Limited

 2 = Run to Completion

1ms  value  255ms

SVC_REQ 4 Example

When enabling output %M0125 transitions on, the mode and timer value of the

Backplane Communications window is read. If the timer value is greater than or equal to

25ms, the value is not changed. If it is less than 25ms, the value is changed to 25ms. In

either case, when the rung completes execution the window is enabled. The parameter

block for all three windows is at location %R5051. Since the mode and timer for the

Backplane Communications window is the second value in the parameter block returned

f rom the Read Window Values function (SVC_REQ 2), the location of the existing window

time for the Backplane Communications window is in the low byte of %R5052.

Figure 220

CPU Programmer’s Reference Manual Section 6
GFK-2950M Dec 2024

Service Request Function 318

6.6 SVC_REQ 5: Change Background Task

Window Mode and Timer Value
Use SVC_REQ 5 to change the Background Task window mode and timer value. The

change takes place during the next CPU sweep af ter the function is called.

SVC_REQ 5 executes unless a mode other than 0 (Limited) or 2 (Run-to-Completion) is

selected.

The parameter block has a length of one word.

6.6.1 To disable the Background Task window:
Enter SVC_REQ 5 with this parameter block:

Address High Byte Low Byte

Address 0 0

6.6.2 To enable the Background Task window mode:

Enter SVC_REQ 5 with this parameter block:

Address High Byte Low Byte

Address Mode 0 = Limited

 2 = Run to Completion

1ms  value  255ms

CPU Programmer’s Reference Manual Section 6
GFK-2950M Dec 2024

Service Request Function 319

SVC_REQ 5 Example

When enabling contact #FST_SCN is set in the f irst scan, the MOVE function establishes

a value of 20ms for the Background task window, using a parameter block beginning at

%P00050. Later in the program, when input %I00500 transitions on, the state of the

Background task window toggles on and off. The parameter block for all three windows

is at location %P00051. The time for the Background task window is the third value in

the parameter block returned f rom the Read Window Values function (function #2);

therefore, the location of the existing window time for the Background window is

%P00053.

Figure 221

CPU Programmer’s Reference Manual Section 6
GFK-2950M Dec 2024

Service Request Function 320

6.7 SVC_REQ 6: Change/Read Number of Words

to Checksum
Use SVC_REQ 6 to read the current word count in the program to be check-summed or

set a new word count. By default, 16 words are checked. The function is successful

unless some number other than 0 or 1 is entered as the requested operation.

The parameter block has a length of 2 words.

6.7.1 To read the word count:
Enter a zero in the f irst word of the parameter block.

Address Description

Address 0

Address + 1 Ignored

The function returns the current checksum (word count) in the second word of the

parameter block. No range is specified for the read function; the value returned is the

number of words currently being check-summed.

Address Description

Address 0

Address + 1 Current word count

6.7.2 To set a new word count:
Enter a one in the f irst word of the parameter block and the new word count in the second

word.

Address Description

Address 1

Address + 1 New word count

The CPU changes the number of words to be check-summed to the value given in the

second word of the parameter block, rounded up to the next multiple of 8. To disable

check-summing, set the new word count to 0.

CPU Programmer’s Reference Manual Section 6
GFK-2950M Dec 2024

Service Request Function 321

SVC_REQ 6 Example

Figure 222

When enabling contact #FST_SCN is set, the parameter blocks for the checksum task

function are built. Later in the program, when input %I00137 transitions on, the number

of words being check-summed is read from the CPU operating system. This number is

increased by 16, with the results of the ADD_UINT function being placed in the hold new

count for set parameter. The second service request block requests the CPU to set the

new word count.

The example parameter blocks are located at address %L00150. They have the following

contents:

Address Description

%L00150 0 = read current count

%L00151 hold current count

%L00152 1 = set current count

%L00153 hold new count for set

CPU Programmer’s Reference Manual Section 6
GFK-2950M Dec 2024

Service Request Function 322

6.8 SVC_REQ 7: Read or Change the Time-of-

Day Clock
Use SVC_REQ 7 to read or change the time of day clock in the CPU. The function is

successful unless:

• An invalid number is entered for the requested operation.

• An invalid data format is specif ied.

• Data is provided in an unexpected format.

6.8.1 Parameter Block Formats
In the f irst two words of the parameter block, you specify whether to read or set the time

and date, and which format to use.

Address 2-Digit Year Format 4-Digit Year Format

Address

(word 1)

0 = read time and date 0 = read time and date

1 = set time and date 1 = set time and date

Address+1

(word 2)

0 = numeric data format 80h – numeric data format

1 = BCD format 81h = BCD format

2 = unpacked BCD format 82h = unpacked BCD format

3 = packed ASCII format (with

embedded spaces and colons)

83h = packed ASCII format

4 = POSIX format n/a

Address+2

(word 3)

to the end

Data Data

Words 3 to the end of the parameter block contain output data returned by a read

function, or new data being supplied by a change function. In both cases, format of these

data words is the same. When reading the date and time, words (address + 2) to the end

of the parameter block are ignored on input.

CPU Programmer’s Reference Manual Section 6
GFK-2950M Dec 2024

Service Request Function 323

The format and length of the parameter block depends on the data format and number

of digits required for the year:

Data Format and N-digit Year Length of parameter block

(number of words)

BCD, 2-digit year 6

BCD, 4-digit year 6

POSIX format 6

Unpacked BCD 2 9

Unpacked BCD 4 10

Numeric (2 and 4-digit years) 9

Packed ASCII, 2-digit year 12

Packed ASCII, 4-digit year 13

In any format:

• Hours are stored in 24-hour format.

• Day of the week is a numeric value ranging f rom 1 (Sunday) to 7 (Saturday).

Value Day of the Week

1 Sunday

2 Monday

3 Tuesday

4 Wednesday

5 Thursday

6 Friday

7 Saturday

CPU Programmer’s Reference Manual Section 6
GFK-2950M Dec 2024

Service Request Function 324

BCD, 2-Digit Year

In BCD format, each time and date item occupy one byte, so the parameter block has

six words. The last byte of the sixth word is not used. When setting the date and time,

this byte is ignored; when reading date and time, the function returns a null character

(00).

Parameter Block

Format

Address Example

(Sun., July 3, 2005, at 2:45:30 p.m.

 = 14:45:30 in 24-hour format)

1 = change or 0 = read Address 0 (read)

1 (BCD format) Address+1 1 (BCD format)

High Byte Low Byte Address High Byte Low Byte

month year Address+2 07 (July) 05 (year)

hours day of month Address+3 14 (hours) 03 (day)

seconds minutes Address+4 30 (seconds) 45 (minutes)

(null) day of week Address+5 00 01 (Sunday)

BCD, 4-Digit Year

In this format, all bytes are used.

Parameter Block Format Address Example

(Sun., July 3, 2005, at 2:45:30 p.m.

 = 14:45:30 in 24-hour format)

1 = change or 0 = read Address 00 (read)

81h (BCD format, 4-digit) Address+1 81h (BCD format, 4-digit)

High Byte Low Byte Address High Byte Low Byte

year year Address+2 20 (year) 05 (year)

day of month month Address+3 03 (day) 07 (July)

minutes hours Address+4 45 (minutes) 14 (hours)

day of week seconds Address+5 01 (Sunday) 30 (seconds)

CPU Programmer’s Reference Manual Section 6
GFK-2950M Dec 2024

Service Request Function 325

POSIX

The POSIX format of the Time-of-Day clock uses two signed 32-bit integers (two DINTs)

to represent the number of seconds and nanoseconds since midnight January 1, 1970.

Reading the clock in POSIX format might make it easier for your application to calculate

time differences. This format can also be useful if your application communicates to other

devices using the POSIX time format. To read and/or change the date and time using

POSIX format, enter SVC_REQ 7 with this parameter block:

Parameter Block Format Address Example: December 1, 2000 at 12 noon

1 = change or 0 = read Address 0

4 (POSIX format) Address+1 4

seconds (LSW) Address+2 975,672,000

(MSW) Address+3

nanoseconds (LSW) Address+4 0

(MSW) Address+5

The PACSystems CPU’s maximum POSIX clock value is F48656FE (hexadecimal)

seconds and 999,999,999 (decimal) nanoseconds, which corresponds to December

31st, 2099 at 11:59 pm. This is the maximum POSIX value that SVC_REQ 7 will accept

for changing the clock. This is also the maximum POSIX value SVC_REQ 7 will return

once the Time-Of-Day clock passes this date.

If SVC_REQ 7 receives an invalid POSIX time to write to the clock, it does not change

the Time-Of-Day clock and disables its power-f low output.

Note:

• When reading the PACSystems CPU clock in POSIX format, the data returned is

not easily interpreted by a human viewer. If desired, it is up to the application logic

to convert the POSIX time into year, month, day of month, hour, and seconds.

• At 03:14:08 UTC on 19 January 2038, 32-bit versions of the Unix time stamp will

cease to work, as it will overflow the largest value that can be held in a signed 32-

bit number (7FFFFFFF16 or 2,147,483,647). Before this moment, software using

32-bit time stamps will need to adopt a new convention for time stamps, and file

formats using 32-bit time stamps will need to be changed to support larger time

stamps or a different epoch.

CPU Programmer’s Reference Manual Section 6
GFK-2950M Dec 2024

Service Request Function 326

Unpacked BCD (2-Digit Year)

In Unpacked BCD format, each digit of the time and date items occupies the low-order

four bits of a byte. The upper four bits of each byte are always zero. This format requires

nine words. Values are hexadecimal.

Parameter Block Format Address Example

(Thurs., Dec. 8, 2002, at 9:34:57 a.m.)

1 = change or 0 = read Address 0h

2 (Unpacked BCD format) Address+1 2h

High Byte Low Byte Address High Byte Low Byte

 year Address+2 00h 02h

 month Address+3 01h 02h

 day of month Address+4 02h 08h

 hours Address+5 00h 09h

 minutes Address+6 03h 04h

 seconds Address+7 05h 07h

 day of week Address+8 00h 05h

Unpacked BCD (4-Digit Year)

In Unpacked BCD format, each digit of the time and date items occupies the low-order

four bits of a byte. The upper four bits of each byte are always zero. This format requires

nine words. Values are hexadecimal.

Parameter Block Format Address Example

(Thurs., Dec. 8, 2002, at 9:34:57 a.m.)

1 = change or 0 = read Address 0h

82h (Unpacked 4-digit BCD format) Address+1 82h

High Byte Low Byte Address High Byte Low Byte

 year Address+2 00h 02h

 month Address+3 01h 02h

 day of month Address+4 00h 08h

 hours Address+5 00h 09h

 minutes Address+6 03h 04h

 seconds Address+7 05h 07h

 day of week Address+8 00h 05h

Numeric, 2-Digit Year

In numeric format, the year, month, day of month, hours, minutes, seconds and day of

week each occupy one unsigned integer. To read and/or change the date and time using

the numeric format, enter SVC_REQ function #7 with this parameter block:

CPU Programmer’s Reference Manual Section 6
GFK-2950M Dec 2024

Service Request Function 327

Parameter Block Format Address
Example

Wed., June 15, 2005, at 12:15:30 a.m.

1 = change or 0 = read Address 0

0 (Numeric format, 2-digit year) Address+1 0

High Byte Low Byte Address Value

 year Address+2 05

 month Address+3 06

 day of month Address+4 15

 hours Address+5 12

 minutes Address+6 15

 seconds Address+7 30

 day of week Address+8 04

Numeric, 4-Digit Year

In numeric format, the year, month, day of month, hours, minutes, seconds and day of

week each occupy one unsigned integer. To read and/or change the date and time using

the numeric format, enter SVC_REQ function #7 with this parameter block:

Parameter Block Format Address
Example: Wed., June 15, 2005, at 12:15:30

a.m.

1 = change or 0 = read Address 0

80h (Numeric format, 4 digit year) Address+1 80h

High Byte Low Byte Address Value

 year Address+2 2005

 month Address+3 06

 day of month Address+4 15

 hours Address+5 12

 minutes Address+6 15

 seconds Address+7 30

 day of week Address+8 04

Packed ASCII, 2-Digit Year

In Packed ASCII format, each digit of the time and date items is an ASCII formatted byte.

Spaces and colons are embedded into the data to format it for printing or display. ASCII

format for a 2-digit year requires 12 words in the parameter block. Values are

hexadecimal.

Parameter Block Format Address

Example

(Mon., Oct. 5, 2005, at 11:13:25 p.m. =

23:13:25 in 24-hour format)

1 = change or 0 = read Address 0h (read)

3 (ASCII format) Address+1 3h (ASCII format)

CPU Programmer’s Reference Manual Section 6
GFK-2950M Dec 2024

Service Request Function 328

High Byte Low Byte Address High Byte Low Byte

year year Address+2 35h (5) 30h (0)

month (space) Address+3 31h (1) 20h (space)

(space) month Address+4 20h (space) 30h (0)

day of month day of month Address+5 35h (5) 30h (leading 0)

hours (space) Address+6 32h (2) 20h (space)

: (colon) hours Address+7 3Ah (:) 33h (3)

minutes minutes Address+8 33h (3) 31h (1)

seconds : (colon) Address+9 32h (2) 3Ah (:)

(space) seconds Address+10 20h (space) 35h (5)

day of week day of week Address+11 32h (2 = Mon.) 30h (leading 0)

CPU Programmer’s Reference Manual Section 6
GFK-2950M Dec 2024

Service Request Function 329

Packed ASCII, 4-Digit Year

ASCII format for a 4-digit year requires 13 words in the parameter block. Values are

hexadecimal.

Parameter Block Format Address

Example

(Mon., Oct. 5, 2005, at 11:13:25 p.m. =

23:13:25 in 24-hour format)

1 = change or 0 = read Address 0h (read)

83 (ASCII format) Address+1 83h (ASCII format, 4-digit)

High Byte Low Byte Address High Byte Low Byte

year (hundreds) year (thousands) Address+2 30h (0) 32h (2)

year (ones) year (tens) Address+3 35h (5) 30h (0)

month (tens) (space) Address+4 31h (1) 20h (space)

(space) month (ones) Address+5 20h (space) 30h (0)

day of month

(ones)

day of month (tens) Address+6 35h (5) 30h (leading 0)

hours (tens) (space) Address+7 32h (2) 20h (space)

: (colon) hours (ones) Address+8 3Ah (:) 33h (3)

minutes (ones) minutes (tens) Address+9 33h (3) 31h (1)

seconds (tens) : (colon) Address+10 32h (2) 3Ah (A)

(space) seconds (ones) Address+11 20 (space) 35 (5)

day of week (ones) day of week (tens) Address+12 32h (2 = Mon.) 30h (leading 0)

SVC_REQ 7 Example

In this example, the time of day is set to 12:00 pm without changing the current year,

BCD format requires six contiguous memory locations for the parameter block.

Rung 1 sets up the new time of day in two-digit year BCD format. It writes the value 4608

(equivalent to 12 00 BCD) to NOON and the value 0 to MIN_SEC.

Rung 2 requests the current date and time using the parameter block located at

%P00300.

Rung 3 moves the new time value into the parameter block starting at R00300. It uses

AND and ADD operations to retrieve the current clock value from %P00303 and replace

the hours, minutes and seconds portion of the value with the values in NOON and

MIN_SEC.

Rung 4 uses the parameter block beginning at %R00300 to set the new time.

Figure 223

CPU Programmer’s Reference Manual Section 6
GFK-2950M Dec 2024

Service Request Function 330

6.9 SVC_REQ 8: Reset Watchdog Timer
Use SVC_REQ 8 to reset the watchdog timer during the scan.

Ordinarily, when the watchdog timer expires, the CPU stops and goes into an error state

without warning. SVC_REQ 8 allows the timer to keep going during a time-consuming

task (for example, while waiting for a response f rom a communications line).

 WARNING

Be sure that resetting the watchdog timer does not adversely affect the controlled process.

SVC_REQ 8 has no associated parameter block; however, you must specify a dummy

parameter, which SVC_REQ 8 will not use.

SVC_REQ 8 Example

Figure 224

In the LD example at right, power flow through enabling output %Q0127 or input %I1476

or internal coil %M00010 causes the watchdog timer to be reset.

6.10 SVC_REQ 9: Read Sweep Time from

Beginning of Sweep
Use SVC_REQ 9 to read the time in milliseconds since the start of the sweep. The data

format is unsigned 16-bit integer.

CPU Programmer’s Reference Manual Section 6
GFK-2950M Dec 2024

Service Request Function 331

Output

The parameter block is an output parameter block only; it has a length of one word.

Address Description

Address time since start of scan

SVC_REQ 9 Example

Figure 225

Note: Higher resolution (in nanoseconds) can be obtained by using SVC_REQ 51:

Read Sweep Time from Beginning of Sweep.

CPU Programmer’s Reference Manual Section 6
GFK-2950M Dec 2024

Service Request Function 332

6.11 SVC_REQ 10: Read Target Name
Use SVC_REQ 10 to read the name of the currently executing target.

Output

The output parameter block has a length of four words. It returns eight ASCII characters:

the target name (f rom one to seven characters) followed by null characters (00h). The

last character is always a null character. If the target name has fewer than seven

characters, null characters are appended to the end.

Address Low Byte High Byte

Address character 1 character 2

Address+1 character 3 character 4

Address+2 character 5 character 6

Address+3 character 7 00

SVC_REQ 10 Example

Figure 226

When enabling input %I0301 goes ON, register location %R0099 is loaded with the value

10, which is the function code for the Read Target Name function. The program block

READ_ID is then called to retrieve the target name. The parameter block is located at

address %R0100.

Figure 227

Program block READ_ID:

CPU Programmer’s Reference Manual Section 6
GFK-2950M Dec 2024

Service Request Function 333

6.12 SVC_REQ 11: Read Controller ID
Use SVC_REQ 11 to read the name of the controller executing the program.

Output

The output parameter block has a length of four words. It returns eight ASCII characters:

the Controller ID (f rom one to seven characters) followed by null characters (00h). The

last character is always a null character

If the Controller ID has fewer than seven characters, null characters are appended to the

end.

Address Low Byte High Byte

Address character 1 character 2

Address+1 character 3 character 4

Address+2 character 5 character 6

Address+3 character 7 00

SVC_REQ 11 Example

Figure 228

When enabling input %I0303 is ON, register location %R0099 is loaded with the value

11, which is the function code for the Read Controller ID function. The program block

READ_ID is then called to retrieve the ID. The parameter block is located at address

%R0100.

Figure 229

Program Block READ_ID:

CPU Programmer’s Reference Manual Section 6
GFK-2950M Dec 2024

Service Request Function 334

6.13 SVC_REQ 12: Read Controller Run State
Use SVC_REQ 12 to read the current RUN state of the CPU.

Output

The output parameter block has a length of one word.

Address Description

Address 1 = run/disabled

2 = run/enabled

SVC_REQ 12 Example

Figure 230

When contact V_I00102 is ON, the CPU run state is read into location %R4002. If the

state is Run/Disabled, the CALL function calls program block DISPLAY.

CPU Programmer’s Reference Manual Section 6
GFK-2950M Dec 2024

Service Request Function 335

6.14 SVC_REQ 13: Shut Down (STOP) CPU
Use SVC_REQ 13 to stop the CPU af ter the specified number of scans has been

performed. All outputs go to their designated default states at the start of the next CPU

scan. An informational Shut Down Controller fault is placed in the Controller Fault Table.

The I/O scan continues as conf igured.
SVC_REQ 13 has an input parameter block with a length of one word.

Address Description

Address Number of scans. Valid values:

-1: The CPU uses the Number of Last Scans value configured in the Hardware

Configuration Scan tab to determine when to transition to STOP Mode. For details

on Hardware Configuration parameters, refer to PACSystems RX7i, RX3i and

RSTi-EP CPU Reference Manual, GFK-2222.

1 through 5: The CPU finishes executing this scan, then executes this number of

scans –1, and transitions to STOP Mode.

Note: For CPUs with firmware version earlier than 2.00, the value must be set to 0;

otherwise the CPU does not stop.

SVC_REQ 13 Example
When a Loss of I/O Module fault occurs, the #LOS_IOM contact turns ON and SVC_REQ

13 executes.

In this example, if the Shut Down CPU function executes, the JUMPN to the end of the

program prevents the logic that follows the JUMPN from executing in the current sweep.

Figure 231

The block's last instruction is a LABELN:

Figure 232

6.15 SVC_REQ 14: Clear Controller or I/O Fault

Table
Use SVC_REQ 14 to clear either the Controller Fault Table or the I/O Fault Table. The

SVC_REQ output is set ON unless some number other than 0 or 1 is entered as the

requested operation.

CPU Programmer’s Reference Manual Section 6
GFK-2950M Dec 2024

Service Request Function 336

The parameter block has a length of 1 word. It is an input parameter block only. There is

no output parameter block.

Address Description

Address 0 = clear Controller Fault Table

1 = clear I/O Fault Table

SVC_REQ 14 Example

When inputs %I0346 and %I0349 are on, the Controller Fault Table is cleared. When

inputs %I0347 and %I0349 are on, the I/O Fault Table is cleared. When input %I0348 is

on and input %I0349 is on, both are cleared. Positive transition coils V_M00001 and

V_M00002 are used to trigger these service requests to prevent the fault tables from

being cleared multiple times.

The parameter block for the Controller Fault Table is located at %R0500; for the I/O Fault

Table the parameter block is located at %R0550.

Note: Both parameter blocks are set up elsewhere in the program.

Figure 233

CPU Programmer’s Reference Manual Section 6
GFK-2950M Dec 2024

Service Request Function 337

6.16 SVC_REQ 15: Read Last-Logged Fault Table

Entry
Use SVC_REQ 15 to read the last entry logged in the Controller Fault Table or the I/O

Fault Table. The SVC_REQ output is set ON unless some invalid number is entered as

the requested operation or the fault table is empty.

The non-extended parameter block has a length of 22 words and the extended

parameter block has a length of 24 words.

Input Parameter Block

Address Format

Address+0 0 = Read Controller Fault Table

1 = Read I/O Fault Table

80h = Read extended Controller Fault Table

81h = Read extended I/O Fault Table

Output Parameter Block
The format of the output parameter block depends on whether SVC_REQ 15 reads the

Controller Fault Table, the extended Controller Fault Table, the I/O Fault Table or the

extended I/O Fault Table.

Controller Fault Table Output Format
Address

I/O Fault Table Output

Format

High Byte Low Byte High Byte Low Byte

 0 Address+0 1

unused long/short (always 01) Address+1 reference address

memory type

long/short

(always 03)

unused unused Address+2 reference address offset

slot rack Address+3 slot rack

 task Address+4 block bus

fault action fault group Address+5 point

error code Address+6 fault action fault group

fault extra data

Address+7 fault type fault category

Address+8 to

 Address+18

fault extra data fault description

minutes seconds Address+19 minutes seconds

day of month hour Address+20 day of month hour

year month Address+21 year month

milliseconds (extended format only) Address+22 milliseconds (extended format only)

not used (extended format only) Address+23 not used (extended format only)

Long/Short Value

The f irst byte (low byte) of word address +1 contains a number that indicates the length

of the fault-specif ic data in the fault entry. Possible values are as follows:

Description Short Bytes Long Bytes

CPU Programmer’s Reference Manual Section 6
GFK-2950M Dec 2024

Service Request Function 338

Controller extended and non-extended fault

tables

00 = 8 bytes (short) 01 = 24 bytes (long)

I/O extended and non-extended fault tables 02 = 5 bytes (short) 03 = 21 bytes (long)

Note: PACSystems CPUs always return the Long values for both extended and non-

extended formats.

SVC_REQ 15 Example 1

Figure 234

When inputs %I0250 and %I0251 are both on, the f irst Move function places a zero (read

Controller Fault Table) into the parameter block for SVC_REQ 15. When input %I0250

is on and input %I0251 is off, the Move instruction instead places a one (read I/O Fault

Table) in the SVC_REQ parameter block. The parameter block is located at location

%R0600.

CPU Programmer’s Reference Manual Section 6
GFK-2950M Dec 2024

Service Request Function 339

SVC_REQ 15 Example 2

Figure 235

The CPU is shut down when any fault occurs on an I/O module except when the fault

occurs on modules in rack 0, slot 9 and in rack 1, slot 9. If faults occur on these two

modules, the system remains running. The parameter for table type is set up on the first

scan. The contact IO_PRES, when set, indicates that the I/O Fault Table contains an

entry. The CPU sets the normally open contact in the scan after the fault logic places a

fault in the table. If faults are placed in the table in two consecutive scans, the normally

open contact is set for two consecutive scans.

The example uses a parameter block located at %R0600. After the SVC_REQ function

executes, the second, third, and fourth words of the parameter block identify the I/O

module that faulted:

CPU Programmer’s Reference Manual Section 6
GFK-2950M Dec 2024

Service Request Function 340

 High Byte Low Byte

%R0600 1

%R0601 reference address

memory type

long/short

%R0602 reference address offset

%R0603 slot number rack number

%R0604 block (bus address) I/O bus no.

%R0605 point address

%R0606 fault data

In the program, the EQ_INT blocks compare the rack/slot address in the table to

hexadecimal constants. The internal coil %M0007 is turned on when the rack/slot where

the fault occurred meets the criteria specified above. If %M0007 is on, its normally closed

contact is off, preventing the shutdown. Conversely, if %M0007 is off because the fault

occurred on a different module, the normally closed contact is on and the shutdown

occurs.

6.17 SVC_REQ 16: Read Elapsed Time Clock
Use SVC_REQ 16 to read the system's elapsed time clock. The elapsed time clock

measures the time in seconds since the CPU was powered on. The parameter block has

a length of three words used for output only.

Output

Address Description

Address Seconds from power on (low order)

Address+1 Seconds from power on (high order)

Address+2 100 microsecond (µs) ticks

The f irst two words are the elapsed time in seconds. The last word is the number of 100

µs ticks in the current second.

The resolution of the CPU's elapsed time clock is 100 microseconds (µs). The overall

accuracy of the elapsed time clock is ±0.01%. The accuracy of an individual sample of

the elapsed time clock is approximately 105 µs.

 WARNING

The SVC_REQ instruction is not protected against operating system and user interrupts. The

timing and length of these interrupts are unpredictable. The clock sample returned by SVC_REQ

16 can sometimes be much more than 105 µs old by the time execution is returned to the LD logic.

SVC_REQ 16 Example

The following logic is used in a block that is called inf requently. The screen shot was

taken between calls to the block. The logic displayed calculates the number of seconds

that have elapsed since the last time the block was called. It performs the final operation

on rung 4 by subtracting the time obtained by SVC_REQ 16 the last time the block was

called (vetum) from the time currently obtained by SVC_REQ 16 (novum) and storing the

calculated value in the variable named dif f .

CPU Programmer’s Reference Manual Section 6
GFK-2950M Dec 2024

Service Request Function 341

On rung 2, SVC_REQ 16 returns three WORDs, stored in the 3-WORD array tempus.

The f irst two WORDs (16-bit values) are moved to a DINT (a 32-bit value). This move

amounts to a rough data type conversion that ignores the fact that the DINT type is a

signed value. Despite that, the subsequent calculations are correct until the time since

power-on reaches approximately 50 years. The DINT is converted to REAL to yield the

number of whole seconds elapsed since power-on, stored in variable sec. On rung 3, the

third word returned by SVC_REQ 16, tempus [2], is converted to REAL. This is the

number of 100 µs ticks. To obtain a f raction of a second, stored in the variable f raction,

the value is divided by 10,000. On rung 4, sec and f raction are added to express the

exact number of seconds elapsed since power-on, and this value is stored in the variable

novum. On rung 1, the previous value of novum was saved as vetum, the exact number

of seconds elapsed since power-on the last time the block was called. The last instruction

on the fourth rung subtracts vetum from novum to yield the number of seconds that have

elapsed since the last time the block was called.

CPU Programmer’s Reference Manual Section 6
GFK-2950M Dec 2024

Service Request Function 342

Figure 236

Note: Higher resolution (in nanoseconds) can be obtained by using SVC_REQ 50: Read

Elapsed Time Clock.

CPU Programmer’s Reference Manual Section 6
GFK-2950M Dec 2024

Service Request Function 343

6.18 SVC_REQ 17: Mask/Unmask I/O Interrupt
Use SVC_REQ 17 to mask or unmask an interrupt from an input/output board. When an

interrupt is masked, the CPU does not execute the corresponding interrupt block when

the input transitions and causes an interrupt.

The parameter block is an input parameter block only; it has a length of three words.

Address Description

Address 0 = unmask input

1 = mask input

Address+1 memory type

Address+2 reference (offset)

Memory type is a decimal number that resides in the low byte of word address + 1. It

corresponds to the memory type of the input:

Memory Type Description

70 %I memory in bit mode

10 %AI memory

12 %AQ memory

Successful execution occurs unless:

• Some number other than 0 or 1 is entered as the requested operation.

• The memory type of the input/output to be masked or unmasked is not %I, %AI or

%AQ memory.

• The I/O board is not a supported input/output module.

• The reference address specified does not correspond to a valid interrupt trigger

reference.

• The specif ied channel does not have its interrupt enabled in the conf iguration.

6.18.1 Masking/Unmasking Module Interrupts
During module configuration, interrupts from a module can be enabled or disabled. If a

module's interrupt is disabled, it cannot be used to trigger logic execution in the

application program, and it cannot be unmasked. However, if an interrupt is enabled in

the configuration, it can be dynamically masked or unmasked by the application program

during system operation.

The application program can mask and unmask interrupts that are enabled using Service

Request Function Block #17. To mask or unmask an interrupt from an open VME module,

the application logic should pass VME_INT_ID (17 decimal, 11H) as the memory type

and the VME interrupt id as the of fset to SVC_REQ 17.

When the interrupt is not masked, the CPU processes the interrupt and schedules the

associated program logic for execution. When the interrupt is masked, the CPU

processes the interrupt but does not schedule the associated program logic for

execution.

When the CPU transitions from STOP Mode to RUN Mode, the interrupt is unmasked.

CPU Programmer’s Reference Manual Section 6
GFK-2950M Dec 2024

Service Request Function 344

For additional information on configuring and using VME module interrupts in a

PACSystems RX7i control system, refer to PACSystems RX7i User's Guide to

Integration of VME Modules, GFK-2235.

SVC_REQ 17 Example 1

In this example, interrupts from input %I00033 are masked. The following values are

moved into the parameter block, which starts at %P00347, on the f irst scan:

Figure 237

Address Block Input Description

Address %P00347 1 Interrupts from input are masked.

Address + 1 %P00348 70 Input type is %I.

Address + 2 %P00349 33 Offset is 33.

CPU Programmer’s Reference Manual Section 6
GFK-2950M Dec 2024

Service Request Function 345

SVC_REQ 17 Example 2

Figure 238

When %T00001 transitions on, alarm interrupts f rom input %AI0006 are masked. The

parameter block at %R00100 is set up on the f irst scan.

6.19 SVC_REQ 18: Read I/O Forced Status
Use SVC_REQ 18 to read the current status of forced values in the CPU's %I and %Q

memory areas.

Note: SVC_REQ 18 does not detect overrides in %G or %M memory types. Use %S0011

(#OVR_PRE) to detect overrides in %I, %Q, %G, %M, and symbolic memory types.

The parameter block has a length of one word used for output only.

Output

Address Description

Address 0 = No forced values are set

1 = Forced values are set

SVC_REQ 18 Example

Figure 239

SVC_REQ reads the status of I/O forced values into location %R1003. If the returned

value in %R1003 is 1, there is a forced value, and EQ INT turns the %T0001 coil ON.

6.20 SVC_REQ 19: Set Run Enable/Disable
Use SVC_REQ 19 to permit the LD program to control the RUN mode of the CPU.

CPU Programmer’s Reference Manual Section 6
GFK-2950M Dec 2024

Service Request Function 346

The parameter passed indicates which function to perform. The OK output is turned ON

if the function executes successfully. It is set OFF if the requested operation is not SET

RUN DISABLE mode (1) or SET RUN ENABLE mode (2).

The parameter block is an input parameter block only with this format:

Address Description

Address 1 = SET RUN DISABLE mode

2 = SET RUN ENABLE mode

SVC_REQ 19 Example

When input %I00157 transitions to on, the RUN DISABLE mode is set. When the

SVC_REQ function successfully executes, coil %Q00157 is turned on. When %Q00157

is on and register %R00099 is greater than zero, the mode is changed to RUN ENABLE

mode. When the SVC_REQ successfully executes, coil %Q00157 is turned of f .

Figure 240

CPU Programmer’s Reference Manual Section 6
GFK-2950M Dec 2024

Service Request Function 347

6.21 SVC_REQ 20: Read Fault Tables
Use SVC_REQ 20 to retrieve the entire Controller or I/O Fault Table and return it to the

LD program in designated registers.

The f irst input parameter designates which table is to be read. A second input parameter

(always zero for the standard Read Fault Tables) is used by the extended format to read

a designated fault entry or to read a range of fault entries. The fault table data is placed

in the parameter block following the input parameters.

The OK output is turned on if the function executes successfully. It is off if the requested

operation is not Read Controller Fault Table (00h), Read I/O Fault Table (01h), Read

Extended Controller Fault Table (80h), Read Extended I/O Fault Table (81h), Read I/O

Fault Table with Remote Fault Record (41h), or Read Extended I/O Fault Table with

Remote Fault Record (C1h). The OK output is also turned off if there is insufficient space

in the specified memory reference to accommodate the requested fault data. If the

specified fault table is empty, the function sets the OK output on, but returns only the

fault table header information.

The parameter block is an input and output parameter block. The parameter block comes

in two formats:

• Non-Extended: Read Controller Fault Table (00h), Read I/O Fault Table (01h) or

Read I/O Fault Table with Remote Fault Record (41h)6

• Extended: Read Extended Controller Fault Table (80h), Read Extended I/O Fault

Table (81h) or Read Extended I/O Fault Table with Remote Fault Record (C1h)6.

6.21.1 Non-Extended Formats

Input Parameter Block Format

 Amount of Retuned Data

Address + 0 00h = Read Controller Fault Table

01h = Read I/O Fault Table

41h = Read I/O Fault Table with

Remote Fault Record

693 registers required for resulting output

693 registers required for resulting output

757 registers required for resulting output

Address + 1 Always 0

6 I/O Fault Table with Remote Fault Record requires RX3i CPU firmware 9.40 or later.

CPU Programmer’s Reference Manual Section 6
GFK-2950M Dec 2024

Service Request Function 348

Non-Extended Output Parameter Block Format

Controller Fault Table Output
Format Address

I/O Fault Table Output
Format

High Byte Low Byte High Byte Low Byte

2018

Unused

00h = Controller Fault

Table
Address+0 Unused

01h = I/O Fault

Table

Unused Always zero (0) Address+1 Unused Always zero (0)

Unused Unused Address+2 Unused Unused

Unused Unused
Address+3—

Address+14
Unused Unused

Minutes Seconds Address+15—

Address+17

(Time Since Last
Clear,

 in BCD Format)

Minutes Seconds

Day of Month Hour Day of month Hour

Year Month Year Month

Number of faults since last clear Address+18 Number of faults since last clear

Number of faults in queue Address+19 Number of faults in queue

Number of faults read Address+20 Number of faults read

Start of fault data Address+21 Start of fault data

Address I/O Fault Table Output Format

High Byte Low Byte

Address+0 Unused 41h = I/O Fault Table with Remote

Fault Record

Address+1 Starting index of faults to be read

Address+2 Number of faults to be read

Address+3— Address+14 Unused Unused

Address+15—

Address+17
(Time Since Last Clear,

 in BCD Format)

Minutes Seconds

Day of month Hour

Year Month

Address+18 Number of faults since last clear

Address+19 Number of faults in queue

Address+20 Number of faults read

Address+21 Start of fault data

For the non-extended formats, the returned data for each fault consists of 21 words (42
bytes) for 00h and 01h and 23 words (46 bytes) for 41h. This request returns 16
Controller Fault Table entries or 32 I/O Fault Table entries, or the actual number of
faults, if fewer. If the fault table read is empty, no data is returned.

CPU Programmer’s Reference Manual Section 6
GFK-2950M Dec 2024

Service Request Function 349

Format of Returned Data for Fault Table Entries

Format for Parameter Setting 00h or 01h

Controller Fault Table (00h)

Output Format Address

I/O Fault Table (01h) Output

Format

High Byte Low Byte High Byte Low Byte

Unused Long/short Address+21 Memory type Long/Short
7

Unused Unused Address+22 Offset

Slot Rack Address+23 Slot Rack

Task Address+24 Bus address I/O Bus Number (block)

Fault action Fault group Address+25 Point

Error code Address+26 Fault action Fault group

Fault extra data

Address+27 Fault type Fault category

Address+28 Fault extra data Fault description

Address+29—

Address+38
Fault extra data

Minutes Seconds Address+39—

Address+41

(Time-stamp,

 in BCD Format)

Minutes Seconds

Day of month Hour Day of month Hour

Year Month Year Month

Start of next fault output parameter block Address+42 Start of next fault output parameter block

Start of next fault output parameter block

7 The Long/Short indicator in the low byte of Address + 21 specifies the amount of fault data present in the fault entry:

Fault Table Long/Short Value Fault Data Returned

Controller 00 8 bytes of fault extra data present in the fault entry

01 24 bytes of fault extra data

I/O 02 5 bytes of fault extra data

03 21 bytes of fault extra data

CPU Programmer’s Reference Manual Section 6
GFK-2950M Dec 2024

Service Request Function 350

Format for Parameter Setting 41h

Address I/O Fault Table with Remote Fault Record (0x41) Output

Format

High Byte Low Byte

Address+21 Memory type Long/Short
7

Address+22 Offset

Address+23 Slot Rack

Address+24 Remote Slot Remote Rack

Address+25 Remote Sub-Slot Remote Device ID

Address+26 Bus address I/O Bus Number (block)

Address+27 Point

Address+28 Fault action Fault group

Address+29 Fault type Fault category

Address+30 Fault extra data Fault description

Address+31—

Address+40

Fault extra data

Address+41—

Address+43

(Time-stamp,

 in BCD

Format)

Minutes Seconds

Day of month Hour

Year Month

Address+44 Start of next fault output parameter block

CPU Programmer’s Reference Manual Section 6
GFK-2950M Dec 2024

Service Request Function 351

6.21.2 Extended Formats
Each extended format request can read a maximum of 64 faults, or the size of the fault

table if it contains fewer than 64 faults.

For extended formats (Read Extended Controller Fault Table (80h), Read Extended I/O

Fault Table (81h) or Read Extended I/O Fault Table with Remote Fault Record (C1h)),

the controller calculates the number of entries being read. Be sure that enough register

space is available to accommodate the number of fault entries requested. If the amount

of data requested exceeds the register space available, the CPU returns a fault indicating

that reference memory is out of range.

The total size of the fault table for the extended fault format is

Header Size + ((# fault entries) × (size of fault entry))

Input Parameter Block Format

 Amount of Retuned Data

Address+0 80h = Read Extended Controller Fault

Table

81h = Read Extended I/O Fault Table

C1h = Read Extended I/O Fault Table with

Remote Fault Record

23 words (46 bytes) for each fault entry

23 words (46 bytes) for each fault entry

25 words (50 bytes) for each fault entry

Address+1 Starting index of faults to be read

Address+2 Number of faults to be read

Extended Format Output Parameter Block Format

Controller Fault Table Output

Format Address

I/O Fault Table Output

Format

High Byte Low Byte High Byte Low Byte

Unused

80h = Extended

Controller Fault

Table

Address Unused
81h = Extended

I/O Fault Table

Starting index of faults to be read Address+1 Starting index of faults to be read

Number of faults to be read Address+2 Number of faults to be read

Unused Unused Address+3—Address+14 Unused Unused

Minutes Seconds Address+15—Address+17

(Time Since Last Clear,

 in BCD Format)

Minutes Seconds

Day of Month Hour Day of month Hour

Year Month Year Month

Number of faults since last clear Address+18 Number of faults since last clear

Number of faults in queue Address+19 Number of faults in queue

Number of faults read Address+20 Number of faults read

Unused Address+21—Address+36 Unused

Start of fault data Address+37 Start of fault data

CPU Programmer’s Reference Manual Section 6
GFK-2950M Dec 2024

Service Request Function 352

Address I/O Fault Table Output Format

High Byte Low Byte

Address Unused C1h = Extended I/O Fault Table with

Remote Fault Record

Address+1 Starting index of faults to be read

Address+2 Number of faults to be read

Address+3—Address+14 Unused Unused

Address+15—Address+17

(Time Since Last Clear,

 in BCD Format)

Minutes Seconds

Day of month Hour

Year Month

Address+18 Number of faults since last clear

Address+19 Number of faults in queue

Address+20 Number of faults read

Address+21—Address+36 Unused

Address+37 Start of fault data

CPU Programmer’s Reference Manual Section 6
GFK-2950M Dec 2024

Service Request Function 353

Format of Returned Data for Fault Table Entries

Format for Parameter Setting 0x80h & 0x81h

Controller Fault Table (0x80)

Output Format Address

I/O Fault Table (0x81) Output

Format

High Byte Low Byte High Byte Low Byte

Unused Long/Short Address+37

Reference

address memory

type

Long/Short Value

Unused Unused Address+38 Reference address offset

Slot Rack Address+39 Slot Rack

Task Address+40 Bus address I/O bus number (block)

Fault action Fault group Address+41 point

Error code Address+42 Fault action Fault group

Fault extra data

Address+43 Fault type Fault category

Address+44 Fault extra data Fault description

Address+45—

Address+54
Fault extra data

Minutes Seconds
Address+55—

Address+58

(Time-stamp

 in BCD Format)

Minutes Seconds

Day of month Hour Day of month Hour

Year Month Year Month

Milliseconds Milliseconds

Not used Address+59 Not used

Start of next fault output parameter block Address+60 Start of next fault output parameter block

CPU Programmer’s Reference Manual Section 6
GFK-2950M Dec 2024

Service Request Function 354

Format for Parameter Setting 0xC1h

Address

I/O Fault Table with Remote Fault Record (0xC1) Output

Format

High Byte Low Byte

Address+37 Reference address memory type Long/Short Value

Address+38 Reference address offset

Address+39 Slot Rack

Address+40 Remote Slot Remote Rack

Address+41 Remote Sub-Slot Remote Device ID

Address+42 Bus address I/O bus number (block)

Address+43 point

Address+44 Fault action Fault group

Address+45 Fault type Fault category

Address+46 Fault extra data Fault description

Address+47—Address+56 Fault extra data

Address+57—Address+60

(Time-stamp

 in BCD Format)

Minutes Seconds

Day of month Hour

Year Month

Milliseconds

Address+61 Not used

Address+62 Start of next fault output parameter block

CPU Programmer’s Reference Manual Section 6
GFK-2950M Dec 2024

Service Request Function 355

SVC_REQ 20 Example 1: Non-Extended Format

When Read_PLC transitions on, a value of 0 is moved to the parameter block, which is

located at %R00500, and the Controller Fault Table is read. When Read_IO transitions

on, a value of 1 is moved to the parameter block and the I/O Fault Table is read. When

the SVC_REQ function successfully executes, coil OK is turned on.

Figure 241

SVC_REQ 20 Example 2: Extended Format

When Read_PLC_Xt transitions on, the Extended Controller Fault Table is read. The

parameter block begins at %R00500. %R00500 contains the fault table type (Controller

Extended); %R00501 contains the starting fault to read, and %R00502 contains the

number of faults to read starting with the fault number in %R00501. When the SVC_REQ

function successfully executes, coil OK is turned on.

Figure 242

CPU Programmer’s Reference Manual Section 6
GFK-2950M Dec 2024

Service Request Function 356

6.22 SVC_REQ 21: User-Defined Fault Logging
Use SVC_REQ 21 to def ine a fault that can be displayed in the Controller Fault Table.

The fault contains binary information or an ASCII message. The user-defined fault codes

start at 0 hex.

The error code information for the fault must be within the range 0 to 2047 for an

Application Msg: to be displayed. If the error code is in the range 81 to 112 decimal, the

CPU sets a fault bit of the same number in %SA system memory. This allows up to 32

bits to be individually set.

Error Code Status Bit

Errors 0—80 No bit set

Errors 81—112 Sets %SA

Errors 113—2047 No bit set

Errors 2048—32,767 Reserved

When EN is active, the fault data array referenced by IN is logged as a fault to the

Controller Fault Table. If EN is not enabled, the ok bit is cleared. If the error code is out

of range, the ok bit is cleared, and the fault will not be logged as requested.

The parameter block is an input parameter block only with this format:

Parameter

address

Error code

MSB LSB

Address+1 Text2 Text1

Address+2 Text4 Text3

Address+3 Text6 Text5

Address+4 Text8 Text7

Address+5 Text10 Text9

Address+6 Text12 Text11

Address+7 Text14 Text13

Address+8 Text16 Text15

Address+9 Text18 Text17

Address+10 Text20 Text19

Address+11 Text22 Text21

Address+12 Text24 Text23

The input parameter data allows you to select an error code in the range 0 to 2047 and

text information that will be placed in the fault extra data portion of a long controller fault.

The controller fault address, fault group, and fault action are f illed in by the function block.

The fault text bytes 1 – 24 can be used to pass binary or ASCII data with the fault. If the

f irst byte of the fault text data is non-zero, the data will be an ASCII message string. This

message will then be displayed in the fault description area of the fault table. If the

message is less than 24 characters, the ASCII string must be NULL byte-terminated.

The programmer will display Application Msg: and the ASCII data will be displayed as a

message immediately following Application Msg:. If the error code is between 1 and

2047, the error code number will be displayed immediately af ter Msg: in the

Application Msg: string. (If the error code is greater than 2047, the function is ignored,

and its output is set to OFF.)

CPU Programmer’s Reference Manual Section 6
GFK-2950M Dec 2024

Service Request Function 357

If the f irst byte of text is zero, then only Application Msg: will display in the fault

description. The next 1-23 bytes will be considered binary data for user data logging.

This data is displayed in the Controller Fault Table.

Note: When a user-defined fault is displayed in the Controller Fault Table, a value

of -32768 (8000 hex) is added to the error code. For example, the error code 5 will

be displayed as -32763.

SVC_REQ 21 Example

Figure 243

The value passed to IN1 is the fault error code. The value passed in, 16x0057, represents

an error code of 87 decimal and will appear as part of the fault message. The values of

the next inputs give the ASCII codes for the text of the error message. For IN2, the input

is 2D45. The low byte, 45, decodes to the letter E and the high byte, 2D, decodes to -.

Continuing in this manner, the string continues with S T O P O and N. The f inal character,

00, is the null character that terminates the string. In summary, the decoding yields the

string message E_STOP ON.

6.23 SVC_REQ 22: Mask/Unmask Timed

Interrupts
Use SVC_REQ 22 to mask or unmask timed interrupts and to read the current mask.

When the interrupts are masked, the CPU does not execute any timed interrupt block

timed program that is associated with a timed interrupt. Timed interrupts are

masked/unmasked as a group. They cannot be individually masked or unmasked.

CPU Programmer’s Reference Manual Section 6
GFK-2950M Dec 2024

Service Request Function 358

Successful execution occurs unless some number other than 0 or 1 is entered as the

requested operation or mask value.

The parameter block is an input and output parameter block.

To determine the current mask, use this format:

Address 0 = Read interrupt mask

The CPU returns this format:

Address 0 = Read interrupt mask

Address+1 0 = Timed interrupts are unmasked

1 = Timed interrupts are masked

To change the current mask, use this format:

Address 1 = Mask/unmask interrupts

Address+1 0 = Unmask timed interrupts

1 = Mask timed interrupts

SVC_REQ 22 Example

When input %I00055 transitions on, timed interrupts are masked.

Figure 244

CPU Programmer’s Reference Manual Section 6
GFK-2950M Dec 2024

Service Request Function 359

6.24 SVC_REQ 23: Read Master Checksum
Use SVC_REQ 23 to read master checksums for the set of user program(s) and the

conf iguration, and to read the checksum for the block f rom which the service request is

made.

There is no input parameter block for this service request. The output parameter block

requires 15 words of memory.

Output

When a RUN Mode Store is active, the program checksums may not be valid until the

store is complete. To determine when checksums are valid, three f lags (one each for

Program Block Checksum, Master Program Checksum, and Master Conf iguration

Checksum) are provided at the beginning of the output parameter block.

Address Description

Address Program Checksum Valid (0 = not valid, 1 = valid)

Address + 1 Master Program Checksum Valid (0 = not valid, 1 = valid)

Address + 2 Master Configuration Checksum Valid (0 = not valid, 1 = valid)

Address + 3 Number of LD/SFC Blocks (including _MAIN)

Address + 4 Size of User Program in Bytes (DWORD data type)

Address + 6 Program Set Additive Checksum

Address + 7 Program CRC Checksum (DWORD data type)

Address + 9 Size of Configuration Data in Kbytes

Address + 10 Configuration Additive Checksum

Address + 11 Configuration CRC Checksum (DWORD data type)

Address + 13
high byte: always zero

low byte: Currently Executing Block’s Additive Checksum

Address + 14 Currently Executing Block’s CRC Checksum

CPU Programmer’s Reference Manual Section 6
GFK-2950M Dec 2024

Service Request Function 360

SVC_REQ 23 Example

Figure 245

When the timer using registers %P00013 through %P00015 expires, the checksum read

is performed. The checksum data returns in registers %P00016 through %P00030. The

master program checksum in registers %P00022 and %P00023 (the program checksum

is a DWORD data type and occupies two adjacent registers) is compared with the last

saved master program checksum. If these are different, coil %M00055 is latched on. The

current master program checksum is then saved in registers %P00031 and %P00032.

CPU Programmer’s Reference Manual Section 6
GFK-2950M Dec 2024

Service Request Function 361

6.25 SVC_REQ 24: Reset Module
Use SVC_REQ 24 to reset a daughterboard or some modules. Modules that support

SVC_REQ 24 include:

RX3i IC693BEM331, IC694BEM331, IC693APU300, IC694APU300,

IC695ETM001, IC693ALG2222, IC694ALG2222, IC695PNC001

RX7i: Embedded Ethernet Interface module, IC697BEM731, IC698BEM731,

IC697HSC700, IC697ALG230, IC698ETM001

The SVC_REQ output is set ON unless one of the following conditions exists:

— An invalid number for rack and/or slot is entered.

— There is no module at the specif ied location.

— The module at the specif ied location does not support a runtime reset.

— The CPU was unable to reset the module at the specif ied location.

For this function, the parameter block has a length of 1 word. It is an input parameter

block only.

Address Description

Address Module slot (low byte)

Module rack (high byte)

Rack 0, Slot 1 indicates that a reset is to be sent to the daughterboard.

Notes:

• It is important to invoke SVC_REQ #24 for a given module for only one sweep at a time.

Each time this function executes, the target module will be reset regardless of whether it has

finished starting up from a previous reset.

• After sending a SVC_REQ #24 to a module, you must wait a minimum of 5 seconds before

sending another SVC_REQ #24 to the same module. This ensures that the module has time

to recover and complete its startup.

CPU Programmer’s Reference Manual Section 6
GFK-2950M Dec 2024

Service Request Function 362

SVC_REQ 24 Example

Figure 246

This example resets the module in rack0/slot 2.

In rung 1, when contact %I00200 is closed, the positive transition coil sets %I00250 to

ON for one sweep.

The MOVE_WORD instruction in rung 2 receives power flow and moves the value 2 into

%R00500.

The SVC_REQ function in rung 3 then receives power f low and resets the module

indicated by the rack/slot value in %R00500.

CPU Programmer’s Reference Manual Section 6
GFK-2950M Dec 2024

Service Request Function 363

6.26 SVC_REQ 25: Disable/Enable EXE Block and

Standalone C Program Checksums
Use SVC_REQ 25 to enable or disable the inclusion of EXE in the background checksum

calculation. The default is to include the checksums.

This service request uses only an input parameter block.

Address Description

Address 0 = Disable C applications inclusion in checksum calculation

1 = Enable C application inclusion in checksum calculation

The parameter block is unchanged af ter execution of the service request.

SVC_REQ 25 Example

When the coil TEST transitions from OFF to ON, SVC_REQ 25 executes to disable the

inclusion of EXE blocks in the background checksum calculation. When coil TEST

transitions from ON to OFF, the SVC_REQ executes to again include EXE blocks in the

background checksum calculation.

Figure 247

CPU Programmer’s Reference Manual Section 6
GFK-2950M Dec 2024

Service Request Function 364

6.27 SVC_REQ 29: Read Elapsed Power Down

Time
Use SVC_REQ 29 to read the amount of time elapsed between the last power-down and

the most recent power-up. If the watchdog timer expired before power-down, the CPU is

not able to calculate the power down elapsed time, so the time is set to 0 .

This service request cannot be accessed f rom a C block.

Note: This service request will only work when a PME project is stored to the user

flash and the Logic source is set to Always Flash or Conditional Flash and the

Data Power-Up source is set to Conditional Flash.

This function has an output parameter block only. The parameter block has a length of

three words.

Address Description

Address Power-down elapsed seconds (low order)

Address + 1 Power-down elapsed seconds (high order)

Address + 2 100µS ticks

The f irst two words are the power-down elapsed time in seconds. The last word is the

number of 100 µs ticks in the current second.

Note: Although this request responds with a resolution of 100 µS, the actual accuracy is

1 second. The battery-backed clock, which is used when the controller is powered

down, is accurate to within 1 second.

SVC_REQ 29 Example

When input %I0251 is ON, the elapsed power-down time is placed into the parameter

block that starts at %R0050. The output coil (%Q0001) is turned on.

Figure 248

CPU Programmer’s Reference Manual Section 6
GFK-2950M Dec 2024

Service Request Function 365

6.28 SVC_REQ 32: Suspend/Resume I/O Interrupt
Use SVC_REQ 32 to suspend a set of I/O interrupts and cause occurrences of these

interrupts to be queued until these interrupts are resumed. The number of I/O interrupts

that can be queued depends on the I/O module’s capabilities. The CPU informs the I/O

module that its interrupts are to be suspended or resumed. The I/O module’s default is

resumed. The Suspend applies to all I/O interrupts associated with the I/O module.

Interrupts are suspended and resumed within a single scan.

SVC_REQ 32 uses only an input parameter block. Its length is three words.

Address Description

Address 0 = resume interrupt

1 = suspend interrupt

Address + 1 memory type

Address + 2 reference (offset)

Successful execution occurs unless:

• Some number other than 0 or 1 is passed in as the f irst parameter.

• The memory type parameter is not 70 (%I memory).

• The I/O module associated with the specified address is not an appropriate module

for this operation.

• The reference address specified is not the f irst %I reference for the High-Speed

Counter.

• Communication between the CPU and this I/O module has failed. (The board is not

present, or it has experienced a fatal fault.)

Note: I/O interrupts, unless suspended or masked, can interrupt the execution of a function

block. The most often used application of this Service Request is to prevent the

effects of the interrupts for diagnostic or other purposes.

CPU Programmer’s Reference Manual Section 6
GFK-2950M Dec 2024

Service Request Function 366

SVC_REQ 32 Example

Figure 249

Interrupts f rom the high-speed counter module whose starting point reference address

is %I00065 will be suspended while the CPU solves the logic of the second rung. Without

the Suspend, an interrupt f rom the HSC could occur during execution of the third rung

and %T00006 could be set while %R000001 has a value other than 3,400. (%AI00001

is the f irst non-discrete input reference for the High Speed Counter.)

CPU Programmer’s Reference Manual Section 6
GFK-2950M Dec 2024

Service Request Function 367

6.29 SVC_REQ 45: Skip Next I/O Scan
Use the SVC_REQ function #45 to skip the next output and input scans. Any changes to

the output reference tables during the sweep in which the SVC_REQ #45 was executed

will not be reflected on the physical outputs of the corresponding modules. Any changes

to the physical input data on the modules will not be reflected in the corresponding input

references during the sweep after the one in which the SVC_REQ #45 was executed.

This function has no parameter block.

Note:

• This service request is provided for conversion of Series 90-30 applications. The

Suspend I/O (SUS_IO) function block, which is supported by all PACSystems firmware

versions, should be used in new applications.

• The DOIO Function Block is not affected by the use of SVC_REQ #45. It will still update

the I/O when used in the same logic program as the SVC_REQ #45.

SVC_REQ 45 Example

Figure 250

In the following LD example, when the Idle contact passes power flow, the next Output

and Input Scan are skipped.

CPU Programmer’s Reference Manual Section 6
GFK-2950M Dec 2024

Service Request Function 368

6.30 SVC_REQ 50: Read Elapsed Time Clock
Use SVC_REQ 50 to read the system’s elapsed time clock. The elapsed time clock

measures the time in seconds since the CPU was powered on. The parameter block has

a length of four words used for output only.

Output

Address Description

Address Seconds from power on (low order)

Address+1 Seconds from power on (high order)

Address+2 nanosecond ticks (low order)

Address+3 nanosecond ticks (high order)

The f irst two words are the elapsed time in seconds. The second two words are the

number of nanoseconds elapsed in the current second.

The resolution of the CPU’s elapsed time clock is 100 µs. The overall accuracy of the

elapsed time clock is ±0.01%. The accuracy of an individual sample of the elapsed time

clock is approximately 105 µs.

 WARNING

The SVC_REQ instruction is not protected against operating system and user interrupts. The

timing and length of these interrupts are unpredictable. The clock sample returned by SVC_REQ

50 can sometimes be much more than 105 µs old by the time execution is returned to the LD logic.

CPU Programmer’s Reference Manual Section 6
GFK-2950M Dec 2024

Service Request Function 369

SVC_REQ 50 Example

The following logic is used in a block that is called occasionally. The screen shot was

taken between calls to the block. The second rung of logic calculates the number of

seconds that have elapsed since the last time the block was called. The third rung

calculates the number of nanoseconds to be added to, or subtracted f rom, the number

of seconds. The f irst rung saves the previous value of novum [0] and novum[1] into

vetum[0] and vetum[1] before the second rung of logic places the current time values in

novum[0] and novum[1].

Figure 251

CPU Programmer’s Reference Manual Section 6
GFK-2950M Dec 2024

Service Request Function 370

6.31 SVC_REQ 51: Read Sweep Time from

Beginning of Sweep
Use SVC_REQ 51 to read the time in nanoseconds since the start of the sweep. The

data is unsigned 32-bit integer.

Output

The parameter block is an output parameter block only; it has a length of two words.

Address Description

Address time (nanoseconds) since start of scan – low order

Address+1 time (nanoseconds) since start of scan – high order

SVC_REQ 51 Example

The elapsed time from the start of the scan is read into locations %R00200 and %R00201

if it is greater than 10,020ns, internal coil %M0200 is turned on.

Figure 252

CPU Programmer’s Reference Manual Section 6
GFK-2950M Dec 2024

Service Request Function 371

6.32 SVC_REQ 56: Logic Driven Read of

Nonvolatile Storage

 CAUTION

This Service Request is not supported on CPE330 and CPE400/CPL410/CPS400 CPUs.

PACSystems controllers support a 64 KB nonvolatile flash memory area, which can be

accessed by the logic-driven read/write service requests. Values are stored in the

nonvolatile storage area using SVC_REQ 57: Logic Driven Write to Nonvolatile Storage.

These values are applied to the controller user memory on power-up.

If you want only to write to nonvolatile storage and have the values restored on a power

cycle, you may not need to use SVC_REQ 56. However, a logic driven read from

nonvolatile storage can be commanded as needed. For example, you can use

#FST_SCN with SVC_REQ 56 calls to force a reload on each STOP Mode to RUN Mode

transition.

SVC_REQ 56 specifies a read operation from nonvolatile storage when the PACSystems

is running. You can specify which reference address range to read and optionally a

dif ferent destination memory location in CPU memory in which to place the read data.

Using different memory locations enables you to set up a comparison between existing

values in CPU memory with values in nonvolatile storage.

SVC_REQ 56 execution time will vary depending on the number of values stored in

nonvolatile storage, as it will f ind the most recent value for the requested reference

address range.

You can read up to 32 words (64 bytes) inclusively per invocation of SVC_REQ 56.

6.32.1 Discrete Memory
Discrete memory can be read as individual bits or as bytes. For more information, refer

to section Memory Type Codes.

If a discrete memory destination is forced, the forced value remains intact in CPU

memory even though the count in word 10 (address + 10) indicates that all the data was

read and transferred.

If a memory location has an associated transition bit and SVC_REQ 56 causes a

transition on that value, the transition bit is set.

6.32.2 Restoring data values on CPE200 Series

Criteria for a successful restoration f rom removable media to internal PLC storage:

• The data must be f rom the same family of PLC (CPE200 Series)

• The data to be restored must match the PLC target name of the original writer

• The data on the removable media cannot be modif ied

• Restore only performed on PLC power up

CPU Programmer’s Reference Manual Section 6
GFK-2950M Dec 2024

Service Request Function 372

Note: These checks will prevent the user f rom accidently restoring the data to the
incorrect PLC or restoring modif ied data.

Steps to restore data values saved to micro SD card onto replacement PLC:

• PLC powered up.

• Either download PME project or perform a RDSD download to PLC.

• Insert micro SD card with previously stored data (see criteria above).

• Power cycle PLC which will restore the data values f rom micro SD card to
internal storage (see criteria above) and reference memory.

• PLC fault table will contain an informational fault indicating the restoration was

successful or if it failed.

Fault Group 140, 701 – Restore Success, 702 – Restore Failed

• The restored data values will be restored prior to the f irst execution of logic

For more information on Fault Group 140, see section Non-Critical CPU Sof tware
Event (Group 140)

6.32.3 Storage Disabled Conditions
By default, the following write operations disable SVC_REQ 56 until logic is written to

nonvolatile storage:

• RUN Mode Store (RMS), even if a second RMS reverts everything to the

original state.

• Test-Edit session, even when you cancel your edits.

• Word-for-word change.

• Downloading to RAM only of a stopped PACSystems CPU, even if the downloaded

contents are equal to the contents already on the nonvolatile storage. Setting bit 0 of

input word 8 (address + 7) to a value of 1 enables SVC_REQ 56 despite the above

conditions.

6.32.4 Maximum of One Active Instruction
When SVC_REQ 56 is active, it does not support an interrupt that attempts to activate

SVC_REQ 57 or a second instance of SVC_REQ 56. If an attempt fails, an error

indicating that another instance is active will be returned.

6.32.5 ENO and Power Flow To The Right
If the status is Success or Partial Read (see address+9), on the SVC_REQ instruction,

ENO is set to True in FBD and ST, and power f low passes to the right in LD.

6.32.6 Parameter Block

Address Description

Address+0 Memory type. Refer to

Memory Type Codes below.

Address+1

CPU Programmer’s Reference Manual Section 6
GFK-2950M Dec 2024

Service Request Function 373

Address Description

Address+2 The zero-based offset N to read from nonvolatile storage. Contains the complete offset

for any memory area except %W, which also requires the use of address + 2 for offsets

greater than 65,535.

• For %I, %Q, %M, %T, and %G memory in byte mode, N = (Ra - 1) / 8, where

Ra = one-based reference address. For example, to read from the one-based bit

reference address %T33, enter the byte offset 4: (33 - 1) / 8 = 4.

• For %W, %R, %AI, and %AQ memory, and for %I, %Q, %M, %T, and %G

memory in bit mode, N = Ra - 1. For example, to read from the one-based

reference address %R200, enter the zero-based reference offset 199; to read

from %I73 in bit mode, enter offset 72. For memory in bit mode, the offset must

be set on a byte boundary, that is, a number exactly divisible by 8: 0, 8, 16, 24,

and so on.

Address+3 Length. The number of items to read from nonvolatile storage beginning at the reference

address calculated from the offset defined at [address + 1 and address + 2]. The length

can be one of the following:

Description Valid range

The number of words (16-bit registers) to read from

%W, %R, %AI, or %AQ nonvolatile storage

1 through 32 words

The number of bytes to read from %I, %Q, %M, %T,

or %G in byte mode nonvolatile storage

1 through 64 bytes

The number of bits to read from %I, %Q, %M, %T,

or %G in bit mode nonvolatile storage

1 through 512 bits in

increments of 8 bits

The value must reside in the low byte of address + 3. The high byte must be set to zero.

Address + 4 Destination memory. The CPU memory area to write the read data to. This does not

need to be the same memory area as specified at [address]. Writing to a different

memory area enables you to compare the values that were already in the CPU with the

values read from nonvolatile storage.

Address+5 The zero-based offset N in CPU memory to start writing the read data to. Address + 5,

the least significant word, contains the complete offset for any memory area except %W,

which also requires the use of address + 6 for offsets greater than 65,535.

• For %I, %Q, %M, %T, and %G memory in byte mode, N = (Ra - 1) / 8, where Ra =

one-based reference address. For example, to write to the one-based bit reference

address %T33, enter the byte offset 4: (33 - 1) / 8 = 4.

• For %W, %R, %AI, and %AQ memory, and for %I, %Q, %M, %T, and %G memory

in bit mode, N = Ra - 1. For example, to write to the one-based reference address

%R200, enter the zero-based reference offset 199; to write to %I73 in bit mode,

enter offset 72.

Address+6

Address+7 • When bit 0 is set to 1, storage disabled conditions are ignored. A read is allowed

even if the logic in RAM has changed since nonvolatile storage was read or written.

• Bits 1 through 15 must be set to zero; otherwise, the read fails.

Address+8 Reserved. Must be set to zero; otherwise, the read fails.

Address+9 Response status. The status read from nonvolatile storage. The low byte contains the

major error code; the high byte contains the minor error code.

For definitions, refer to Response Status Codes for SVC_REQ 56.

Address+10 Response Count. The number of words, bytes, or bits copied.

CPU Programmer’s Reference Manual Section 6
GFK-2950M Dec 2024

Service Request Function 374

CPU Programmer’s Reference Manual Section 6
GFK-2950M Dec 2024

Service Request Function 375

Memory Type Codes

Type Decimal Value Type Decimal Value

%R 8 %G (byte mode) 56

%AI 10 %I (bit mode) 70

%AQ 12 %Q (bit mode) 72

%I (byte mode) 16 %T (bit mode) 74

%Q (byte mode) 18 %M (bit mode) 76

%T (byte mode) 20 %G (bit mode) 86

%M (byte mode) 22 %W 196

Response Status Codes for SVC_REQ 56

Minor Major Description

00 01 Success. All values requested were found and copied.

01 01 Partial Read. All values found were copied, but some or all values were not

in storage.

01 02 Insufficient Destination Memory. The Destination memory location is not

large enough to store the requested values.

02 02 Invalid Length. The length requested is larger than 64 bytes or less than 1

byte or the number of bits is not an exact multiple of 8.

03 02 Invalid storage or destination reference address. A specified memory area

is not %I, %Q, %T, %M, %G, %R, %AI, %AQ, or %W, or the offset is out

of range, or the offset is not byte-aligned for discrete memory in bit mode.

04 02 Invalid request. Spare bits or spare words in parameter block are not set

to zero.

01 03 Storage Busy. A SVC_REQ 57 or another SVC_REQ 56 instruction is

active. For example, an interrupt block is attempting to execute SVC_REQ

56 when the block it interrupted was executing SVC_REQ 56.

01 04 Storage Disabled. The logic in RAM differs from the logic in nonvolatile

storage. See Storage disabled conditions.

02 04 Storage Closed. Either the storage has not been created or a previous

corruption error or unexpected read/write failure closed the storage.

01 05 Unexpected Read Failure. A command to the storage hardware failed

unexpectedly.

02 05 Corrupted storage. A corrupted checksum or storage header caused a read

to fail.

CPU Programmer’s Reference Manual Section 6
GFK-2950M Dec 2024

Service Request Function 376

SVC_REQ 56 Example

The following LD logic reads ten continuous bytes written to nonvolatile storage from

%G1—%G80 into %G193—%G273. The value applied to IN1, 56, selects byte mode.

The parameter block starts at %R00040. The response words are returned to %R00049

and %R00050.

Figure 253

Parameter Block for SVC_REQ 56 Example

Address +

Offset

Address Input

Value

Definition

Address+0 %R00040 56 Data type = %G (byte mode)

Address+1 %R00041 0 Address written from, low word

Address+2 %R00042 0 Address written from, high word

Address+3 %R00043 10 Length = 10 bytes

Address+4 %R00044 56 Data type to write to = %G (byte mode)

Address+5 %R00045 24 Address to write to, low word

Address+6 %R00046 0 Address to write to, high word

Address+7 %R00047 0 Storage disabled conditions are enforced

Address+8 %R00048 0 Reserved, must be set to 0

Address+9 %R00049 NA Response status.

Address+10 %R00050 NA Response count.

6.33 SVC_REQ 57: Logic Driven Write to

Nonvolatile Storage
PACSystems controllers support a 64 KB nonvolatile f lash memory area that can be

accessed by the logic-driven read/write service requests. Values are stored in the

CPU Programmer’s Reference Manual Section 6
GFK-2950M Dec 2024

Service Request Function 377

nonvolatile storage area using SVC_REQ 57. These values are applied to the controller

user memory on power up.

SVC_REQ 57 specifies a range of reference addresses to read f rom a running

PACSystems CPU and write to nonvolatile storage. This feature is intended to retain a

limited set of values, such as set points or tuning parameters that need to change when

the PACSystems is running.

This feature uses 64 KB of nonvolatile storage. But not all of this memory is available for

the actual data being written by the service request. Some of the memory is used

internally by the controller to maintain information about the data being stored.

Note: Nonvolatile storage is intended for storing values that do not change frequently .

Once the nonvolatile storage area fills up, a power cycle or STOP Mode Store is

required to store more values. The logic-driven write is not a replacement for battery

backed RAM for values that change frequently or during every sweep. (Refer to

Section 6.33.11, When nonvolatile storage is full.)

RSTi-EP CPE205/CPE210/CPE215/CPE220/CPE240 controllers allow users to
backup the data on a removable microSD card (μSD) during a write request. Users are

able to restore the data f rom the removable media to the internal storage. To
successfully restore the data, the PLCs must be powered up with the removable media
present. For further information, see section 6.32.2, Restoring data values on CPE200
Series.

Note: A read request (SVC_REQ 56) will not restore the data f rom the removable
media to the internal storage.

6.33.1 Length of Data Written
SVC_REQ 57 scans the nonvolatile storage to find the most recent values stored for the

specified range. If it f inds no values for the range or the most recent stored values are

dif ferent, the new values are written to nonvolatile storage.

SVC_REQ 57 reports the length of data written in word 8 (starting address + 7) of the

parameter block. The number of words written is calculated f rom the f irst word that

changed to the end of the array. For example, if you specify 8 words to be written, but

only the values of words 3 and 4 are changed, the SVC_REQ identifies the f irst mismatch

at word 3 and writes the values of words 3 through 8 (a length of 6 words).

You can write up to 32 words (64 bytes) inclusively per invocation of SVC_REQ 57. Each

invocation requires 4 words of command data (8 bytes). A 1-byte write requires 9 bytes

whereas a 64-byte write requires 72 bytes. You can generally make the most efficient

use of nonvolatile storage by transferring data in 56-byte increments, since this will

actually write 64 bytes to the device. Given the bookkeeping overhead required by the

Controller and possible fragmentation, at least 54,912 bytes and no more than 64,000

bytes will be available for the reference data and the 8 bytes of command data for each

invocation. For additional information, refer to Fragmentation below.

6.33.2 Write Frequency
Multiple calls to SVC_REQ 57 in a single sweep may cause CPU watchdog timeouts.

The number of calls to SVC_REQ 57 that can be made requires consideration of many

variables:

• sof tware watchdog timeout value

CPU Programmer’s Reference Manual Section 6
GFK-2950M Dec 2024

Service Request Function 378

• the amount of data being written

• sweep time

• age of nonvolatile storage (f lash)

If the application attempts to write to f lash too frequently, the CPU could experience a

watchdog timeout while waiting for a preceding write operation to complete.

The Logic Driven Read/Write to Flash service requests are not intended for high

f requency use. We recommend limiting the number of calls to SVC_REQ 57 to avoid the

potential for causing a watchdog timeout.

6.33.3 Nonvolatile Storage Life Span
The nonvolatile storage device on the PACSystems CPU is rated for a limited number of

write cycles that can be performed before the nonvolatile storage wears out and a write

request returns an error. Write cycles occur when SVC_REQ 57 is called or when flash

compaction is performed af ter a power cycle when f lash memory allotted for

SVC_REQ 57 has become full. Therefore, we recommend limiting the number of calls to

SVC_REQ 57 to the minimum number necessary to save the limited set of updated

values to nonvolatile storage. For example, SVC_REQ 57 should not be called every

sweep.

CPU Programmer’s Reference Manual Section 6
GFK-2950M Dec 2024

Service Request Function 379

6.33.4 Discrete Memory
Discrete memory can be written to as individual bits or as bytes. For more information,

see Address.

Force and transition information is not written to nonvolatile storage.

6.33.5 Creating a Removable Nonvolatile Storage Backup

On PACSystems controllers that support creation of backup data on removeable
media, the user only needs to execute a write service request with the removable
media present. (If the removable media is not present, then the controller will update
the internal storage. To enable removable media in CPU, set ‘MicroSD’ parameter
value to ‘Enabled’ in the CPU settings tab.) The card can be inserted at any time before
the write service request is executed; however, it is not advised to insert the removable
device while the controller is in RUN Mode.

The CPU will indicate an informational fault code when the removable media is
inserted:

Fault Group 140, 705 – Card Inserted, 707 – Card Ready, 708 – Card Not Ready

After the user has issued the write service request, the CPU will indicate an
informational fault code if the backup was successful or failed:

Fault Group 140, 703 – Backup Success, 704 – Backup Failed

The CPU will indicate an informational fault code when the removable media is
removed:

Fault Group 140, 706 – Card Removed

For more information, please see Non-Critical CPU Sof tware Event (Group 140).

Creating the backup of the data to the removable media may take 100-300 ms and the
response status should be monitored. Read and write service requests called
immediately following a write service request will fail since the storage is locked
during the backup process.

The operation of backing up data will impact the sweep time: approximately 1 ms is
added to the sweep time during the backup to the removable media.

Note: When removing the removable storage device, a logic impact of about 500μs is
observed.

CPU Programmer’s Reference Manual Section 6
GFK-2950M Dec 2024

Service Request Function 380

6.33.6 Retentiveness
Writing values to nonvolatile storage for non-retentive memory such as %T does not

make the memory retentive. For example, all values stored to %T memory are set to zero

on power-up or a STOP Mode to RUN Mode transition. You can, however, read such

values f rom storage after power-up or STOP Mode to RUN Mode transition by using

SVC_REQ 56.

6.33.7 Maximum of One Active Instruction
When SVC_REQ 57 is active, it does not support an interrupt that attempts to activate

SVC_REQ 56 or a second instance of SVC_REQ 57.

6.33.8 Storage Disabled Conditions
By default, the following write operations disable SVC_REQ 57 until logic is written to

nonvolatile storage:

• RUN Mode Store (RMS) (even if a second RMS reverts everything to the original

state)

• Test-Edit session (even when you cancel your edits)

• Word-for-word change

• Downloading to RAM only of a stopped PACSystems CPU (even if the downloaded

contents are equal to the contents already on the nonvolatile storage)

Setting bit 0 of input word 4 (address + 4) to a value of 1 enables SVC_REQ 57 despite

the above conditions.

Removable Storage Restore Disabled

The following conditions will disable SVC_REQ 57:

• CPU is configured to use Power-Up and Data source f rom Always RAM; and

• If users store the conf iguration into f lash memory to make use of the write
service request

Note: If the RAM and the Flash memory does not match, restoring from the removable
storage may fail. To ensure the RAM and Flash memory match, users will need to
conf igure the controller in PME to use the Flash memory.

6.33.9 Error Checking
When writing to nonvolatile storage, error checking is provided to ensure that logic and

the Hardware Conf iguration (HWC) in nonvolatile memory match the logic and HWC in

PACSystems RAM.

6.33.10 Fragmentation
Due to the nature of the media in PACSystems CPUs, writes may produce f ragmentation

of the memory. That is, small portions of the memory may become unavailable,

depending upon the sequence of the writes and the size of each one. Data is stored on

the device in 128 512-byte sections. Each section uses 12 bytes of bookkeeping

information, leaving a maximum of 64,000 bytes devoted to the reference data and

command data for each invocation. However, the data for a single invocation cannot be

CPU Programmer’s Reference Manual Section 6
GFK-2950M Dec 2024

Service Request Function 381

split across sections. So, if there is insuf ficient space in the currently used section to

contain the new data, the unused portion of that section becomes lost.

Example: Suppose that the current operation is writing 64 bytes of reference data and 8

bytes of command data (72 bytes total). If there are only 71 bytes remaining in the current

section, the new data will be written to a new section and the unused 71 bytes in the old

section become unavailable.

6.33.11 When nonvolatile storage is full
When logic driven user nonvolatile storage is full, a fault is logged. Before you can use

SVC_REQ 57 to write again, use one of the following solutions:

To retain the most up-to-date data and continue writing with SVC_REQ 57 to

nonvolatile storage:

1. Stop the PACSystems.

2. Power cycle the PACSystems.

A power cycle when nonvolatile storage is full triggers a compaction of existing data.

During compaction, multiple writes of the same reference memory address are removed,

which leaves only the most recent data, and contiguous reference memory addresses

are combined into the fewest number of records necessary.

If compaction cannot take place, a second fault is logged, and you need to use one of

the following two solutions.

To retain specific data from nonvolatile storage, clear nonvolatile storage, and

then return the data to nonvolatile storage:

1. While the controller is still running, use SVC_REQ 56 to read the desired

values into PACSystems memory.

2. Upload the current values f rom controller memory as initial values to your

project.

3. Stop the controller.

CPU Programmer’s Reference Manual Section 6
GFK-2950M Dec 2024

Service Request Function 382

4. Do one of the following:

Clear the f lash memory, or

Write to f lash. The f lash is erased prior to writing, which f rees up some space.

5. Download the initial values to the controller.

6. Start the controller.

7. Use SVC_REQ 57 to write the desired values f rom controller memory to

nonvolatile storage.

To write to flash to erase everything:

1. Stop the Controller.

2. Write to f lash. The f lash is erased prior to writing, which frees up some space.

6.33.12 Equality
Because data in nonvolatile storage is not considered part of the project, writing to

nonvolatile storage does not impact equality between the CPU and Logic Developer.

6.33.13 Redundancy
Redundancy systems can benefit from the use of logic driven user nonvolatile storage

as long as all of the references saved to nonvolatile storage are included in the transfer

lists. Each redundancy CPU maintains its own separate logic driven user nonvolatile

storage by means of SVC_REQ 57 during its logic scan. If the values of reference

addresses to be stored to user nonvolatile storage are synchronized, the logic driven

user nonvolatile storage data in each CPU is identical. If the values to be stored are not

synchronized, then each CPU’s user nonvolatile storage may be dif ferent.

6.33.14 ENO and Power Flow to the Right
If the status is Success or Partial Read, then on the SVC_REQ instruction, ENO is set to

True in FBD and ST, and power f low passes to the right in LD.

CPU Programmer’s Reference Manual Section 6
GFK-2950M Dec 2024

Service Request Function 383

6.33.15 Parameter Block for SVC_REQ 57
Address + Offset Description

Address+0 Memory type. Refer to

Memory Type Codes above.

Address+1 The zero-based offset N to write to nonvolatile storage. Contains the complete offset for

any memory area except %W, which also requires the use of address + 2 for offsets

greater than 65,535.

• For %I, %Q, %M, %T, and %G memory in byte mode, N = (Ra - 1) / 8, where Ra = one-

based reference address. For example, to read from the one-based bit reference

address %T33, enter the byte offset 4: (33 - 1) / 8 = 4.

• For %W, %R, %AI, and %AQ memory, and for %I, %Q, %M, %T, and %G memory in

bit mode, N = Ra - 1. For example, to read from the one-based reference address

%R200, enter the zero-based reference offset 199; to read from %I73 in bit mode, enter

offset 72. For memory-in-bit mode, the offset must be set on a byte boundary, that is,

a number exactly divisible by 8: 0, 8, 16, 24, and so on.

Address+2

Address+3 Length. The number of items to write to nonvolatile storage beginning at the reference

address calculated from the offset defined at [address + 1 and address + 2]. The length can

be one of the following:

Description Valid range

The number of words (16-bit registers)

to read from %W, %R, %AI, or %AQ

nonvolatile storage

1 through 32 words

The number of bytes to read from %I,

%Q, %M, %T, or %G in byte mode

nonvolatile storage

1 through 64 bytes

The number of bits to read from %I,

%Q, %M, %T, or %G in bit mode

nonvolatile storage

1 through 512 bits in

increments of 8 bits

The value must reside in the low byte of address + 3. The high byte must be set to zero.

Address + 4 When bit 0 is set to 1,

Storage Disabled Conditions are ignored. A write is allowed even if the logic in RAM has

changed since nonvolatile storage was read or written.

Bits 1 through 15 must be set to zero; otherwise, the write fails.

Address+5 Reserved. Value must be set to zero.

Address+6 Response status. The low byte contains the major error code; the high byte contains the

minor error code.

Address+7 Count of items written: Words, bytes or bits. Calculated from the first word that changed to

the end of the array.

Address+8
The number of bytes available in nonvolatile storage.

Address+9

Address+10
Reserved.

Address+11

Response Status Codes for SVC_REQ 57

Minor Major Description

00 01 Success. All values requested were written.

01 01 Existing values found. All values requested are in storage, but one or more values

were already stored.

CPU Programmer’s Reference Manual Section 6
GFK-2950M Dec 2024

Service Request Function 384

Minor Major Description

01 02 Insufficient source memory. Counting from the offset, not enough reference

addresses are left in the specified memory area.

02 02 Invalid length. The length requested was larger than 64 bytes or less than 1 byte

or the number of bits is not divisible by 8.

03 02 Invalid source reference address. The memory area specified is not supported, the

starting or ending offset is out of range, or the offset is not byte-aligned for discrete

memory areas.

04 02 Invalid request. Spare bits or spare words in the parameter block are not set

to zero.

01 03 Storage busy. A SVC_REQ 56 or another SVC_REQ 57 instruction is active. For

example, an interrupt block is attempting to execute SVC_REQ 57 when the block

it interrupted was executing SVC_REQ 57.

01 04 Storage disabled. The logic in RAM differs from the logic stored in nonvolatile

storage. Refer to

Storage Disabled Conditions above,

02 04 Storage closed. Either the storage has not been created or a previous corruption

error or unexpected read/write failure closed the storage.

01 05 Unexpected write failure. The command to the storage hardware failed

unexpectedly.

02 05 Corrupted storage. The write failed due to a bad checksum or corrupted storage

header information.

01 06 Write failed. Storage is full.

03 01 Success in writing Flash, but back-up to SD is disabled

CPU Programmer’s Reference Manual Section 6
GFK-2950M Dec 2024

Service Request Function 385

SVC_REQ 57 Example

The following LD logic writes ten continuous bytes to nonvolatile storage, ranging from

%G1 through %G80. The value applied to IN1, 56, determines byte mode.

The parameter block starts at %R00050. The response words are returned to

%R00056—%R00059.

Figure 254

Parameter Block for SVC_REQ 57 Example

Address + Offset Address Input Value Definition

Address+0 %R00050 56 Data type = %G (byte mode)

Address+1 %R00051 0 Address written from, low word

Address+2 %R00052 0 Address written from, high word

Address+3 %R00053 10 Length = 10 bytes

Address+4 %R00054 0 Storage disabled conditions are enforced

Address+5 %R00055 0 Reserved, must be set to 0

Address+6 %R00056 NA

Response status. The low byte contains the

major error code; the high byte contains the

minor error code.

Address+7 %R00057 NA Count of items written: Words, bytes or bits.

Address+8 %R00058 NA The number of bytes available in nonvolatile

storage. Address+9 %R00059 NA

Address+10 %R00060 NA Reserved

Address+11 %R00061 NA Reserved

6.34 SVC_REQ 63: Logic Driven Write of

Reference Memory

CPU Programmer’s Reference Manual Section 6
GFK-2950M Dec 2024

Service Request Function 386

This Service Request is supported on the CPE330 and CPE400/CPL410/CPS400 only.

However, when a CPU is configured for Hot Standby Redundancy, this Service Request

will not be available.

PACSystems controllers support four storage locations in nonvolatile memory, which can

be written to or deleted by this Service Request. Each storage location can hold an

arbitrary length of reference memory data f rom the %AI, %AQ, or %R reference tables,

up to the maximum table size conf igured in PAC Machine Edition.

This data is restored to the reference tables at power-up after initial values have been

established, but only if the data in RAM was not preserved over the power cycle. If RAM

was preserved none of the data in the four storage locations is restored. Refer to the

%S0055 system bit or the Audit Trail to determine if any reference table data was

restored at power-up.

When the data is copied to Reference memory, it is done in order of Storage Location

number, beginning with location 0. Therefore, if the stored data comes from overlapping

references, the data with the higher Storage Location number will overwrite the data with

the lower Storage Location number.

6.34.1 Write Frequency
This Service Request is not intended for high f requency use. Therefore, it will restrict

the rate at which writes may be performed.

The f irst hour af ter the CPU transitions f rom STOP mode to RUN mode is considered

development time where many writes may be performed, up to a maximum of 40 per

Storage Location. Any attempt to perform more than 40 writes in that hour will cause an

error status to be returned in the status location.

Normal mode is all the time after the first hour of RUN mode. During this time writes are

limited to 24 every 24 hours. After the 24th write, the user must wait until 24 hours have

elapsed since the f irst write before another write will be accepted.

These f requency limitations are performed on an individual storage location basis. So,

if the maximum writes have been performed in one storage location, it is still possible to

perform writes in a dif ferent storage location.

There is one other write restriction. Only one write operation may be active at a time.

Writes require multiple sweeps to be performed. During this time no other SVCREQ 63

operations may be performed. The user must wait until the write status changes f rom

the Write in Progress state to a completion state. This time is variable, based on the

sweep time of the CPU.

6.34.2 Data Deletion
The data in the storage locations can be deleted by one of several methods:

• Use of the Service Request function block in Run mode (See below.)

• Any Stop Mode store to RAM

• Any Stop Mode clear of logic in RAM

• Clearing User Flash f rom Machine Edition

• Firmware downgrade

CPU Programmer’s Reference Manual Section 6
GFK-2950M Dec 2024

Service Request Function 387

6.34.3 Equality
The data in the nonvolatile storage locations is not considered to be part of the project.

Therefore, the presence, or not, of data in the storage locations does not impact equality

between the CPU and Machine Edition.

6.34.4 Function Block Operation
When the Service Request receives power flow, it will validate the command block and

start the write or delete operation. If there is anything wrong with the command block an

error code will be written to the Status word. Otherwise, the Status will be set to the In-

progress value and the Service Request will conclude. If Service Request execution was

successful, ENO is set to True in FBD and ST, and power flow passes to the right in LD.

If an error was detected, ENO is set to False and power f low does not pass to the right.

It is recommended that the user set the Status word to zero before executing the Service

Request.

Command Block

Address +

Offset

Parameter

Name

Parameter

Type Definition

Address+0 Status WORD See below

Address+1 Storage Location WORD Storage Location ID (0-3)

Address+2 Memory Type WORD

Only these values are valid:

8 = %R

10 = %AI

12 = %AQ

Address+3 Reference Memory

Starting Offset
DWORD

1-based Starting Address

For example, for %R10, use the number 10.
Address+4

Address+5
Length DWORD The number of registers to be saved.

Address+6

There are two special values for the Length parameter. If the Length is set to zero, any

data in the specified storage location will be deleted. The Memory Type and Starting

Offset are ignored.

If the Length is set to the maximum DWORD value of 16#FFFF FFFF, then the entire

table specified by the Memory Type (Address+2) will be written to the storage location.

The actual amount of data written is based on the current Reference Table size. The

Starting Offset in Address+3 & 4 will be ignored.

Writes and deletes take place during some number of CPU sweeps af ter execution of

the Service Request. The f irst execution for each storage location will take more sweeps

than later executions as the storage location is being initialized the first time the Service

Request is executed. When the operation completes the Status Word will be updated

with the completion status. The user should monitor the Status word to know when this

happens and whether the operation was successful. That is the point at which the next

write or delete will be accepted. Multiple writes can be done to the same Storage Location

without intervening deletes. The CPU will take care of deleting the old data automatically.

CPU Programmer’s Reference Manual Section 6
GFK-2950M Dec 2024

Service Request Function 388

6.34.5 Status Word
The Status Word is the first word of the Command Block. The least-significant byte (LSB)

is the major code, and the most-significant byte (MSB) is the minor code. These are

def ined in the table below.

Minor Major Description

00 01 Success. Request completed successfully.

02 01 Operation is in-progress and will complete during a later sweep.

01 02 Insufficient source memory. Counting from the offset, not enough reference

addresses are left in the specified memory area.

03 02 Invalid source reference address. The memory area specified is not supported, or

the starting or ending offset is out of range.

05 02 The specified Memory Type is not supported. Valid values are 8, 10, and 12.

06 02 The specified Storage Location is not supported. Valid values are 0 – 3.

08 02 An internal error occurred.

01 03 The previous SVC_REQ 63 instruction is still active. Wait for the previous status

to change from 16#0201 before using SVCREQ 63 again.

02 03 The maximum number of writes have already been performed. Wait for the next

available time before attempting another write.

02 04 An error occurred within the CPU’s file system. A fault logged in the PLC Fault

Table may have more information.

03 04 The SVCREQ was executed on a PLC that is configured for redundant CPU

operation. This SVCREQ is not available with redundant configurations.

01 05 Unexpected write failure. The command to the storage hardware failed

unexpectedly.

03 05 Unexpected write failure. The data was successfully written, but the creation of a

backup copy of the data failed.

6.34.6 SVC_REQ 63 Example
In this example, Analog Inputs %AI0021 to %AI0100 are written to Storage Location 0.

The parameter block is in %R0001-%R0007. The user activates SaveData to execute

the SVCREQ for one sweep only. When the write operation completes, the variable

WrtSuccess will be On if the write was successful. The variable WrtFailed will be On if

the write failed.

CPU Programmer’s Reference Manual Section 6
GFK-2950M Dec 2024

Service Request Function 389

Parameter Block

Address +

Offset
Address Input Value Definition

Address+0 %R00001 0 Status Word. Always initialized to zero.

Address+1 %R00002 0 Writing to Storage Location 0.

Address+2 %R00003 10 Saving data from the %AI table.

Address+3 %R00004
21 Starting offset is %AI00021

Address+4 %R00005

Address+5 %R00006
80

Length is 80 registers. So, the saved data will

be %AI00021 to %AI00100. Address+6 %R00007

6.35 PACSystems Simulator Service Request

Functions
The table below indicates Service Request Functions that behave dif ferently when run

in logic on the PACSystems Simulator:

Service Request Description

SVC_REQ 17: Mask/Unmask I/O

Interrupt

This service request passes power flow for valid inputs but does

not perform its intended operation at this time.

SVC_REQ 19: Set Run Enable/Disable This service request updates the output enabled state, but there

is no output scan on the simulated target.

CPU Programmer’s Reference Manual Section 6
GFK-2950M Dec 2024

Service Request Function 390

Service Request Description

SVC_REQ 24: Reset Module This service request passes power flow for valid inputs but does

not perform its intended operation at this time.

SVC_REQ 32: Suspend/Resume I/O

Interrupt

This service request passes power flow for valid inputs but does

not perform its intended operation at this time.

SVC_REQ 45: Skip Next I/O Scan This service request passes power flow for valid inputs but does

not perform its intended operation at this time.

SVC_REQ 56: Logic Driven Read of

Nonvolatile Storage

This service request indicates failure by not passing power flow.

SVC_REQ 57: Logic Driven Write of

Nonvolatile Storage

This service request indicates success by passing power flow.

SVC_REQ 63: Logic Driven Write of

Reference Memory

This service request indicates success by passing power flow.

CPU Programmer’s Reference Manual Section 7
GFK-2950M Dec 2024

PID Built-In Function Block 391

Section 7 PID Built-In Function Block
This chapter describes the PID (Proportional plus Integral plus Derivative) built-in

function block, which is used for closed-loop process control. The PID function compares

feedback from a process variable (PV) with a desired process set point (SP) and updates

a control variable (CV) based on the error.

The PID function uses PID loop gains and other parameters stored in a 40-word

reference array of 16-bit integer words to solve the PID algorithm at the desired time

interval.

Figure 255: PID in Ladder Diagram PID in Ladder Diagram

This chapter presents the following topics:

• Operands of the PID Function

• Reference Array for the PID Function

• Operation of the PID Function

• PID Algorithm Selection (PIDISA or PIDIND) and Gain Calculations

• Determining the Process Characteristics

• Setting Tuning Loop Gains

• PID Example

CPU Programmer’s Reference Manual Section 7
GFK-2950M Dec 2024

PID Built-In Function Block 392

7.1 Operands of the PID Function

Figure 256

7.1.1 Operands for LD Version of PID Function Block

Parameter Description Allowed
Types

Allowed
Operands

Optional

(????)

Instance Variable name of the PID Parameter Block
array, which contains user-configurable and internal
parameters, described in Reference Array for the PID
Function Uses 40 words that cannot be shared.

WORD R, L, P, W
and
symbolic

No

SP The control loop or process set point. Set using
process variable counts, the PID function adjusts the
output control variable so that the process variable
matches the set point (zero error).

INT, BOOL
array of
length 16 or
more,
Constant

All except S,
SA, SB, and
SC

No

PV Process Variable input f rom the process being
controlled. Of ten a %AI input.

INT, BOOL
array of
length 16 or
more

All except S,
SA, SB, and
SC, and
constant

No

MAN While Power Flow is received, the PID function block
is held in manual mode. If no Power Flow is received
the PID function block is in Auto mode.

Power Flow NA No

UP While Power Flow is received, the Manual Command
is increased by 1 each user conf igured Sample
Period.

Power Flow NA No

DN While Power Flow is received, the Manual Command
is decreased by 1 each user conf igured Sample
Period.

Power Flow NA No

CV The control variable output to the process. Of ten a
%AQ output.

INT, BOOL
array of
length 16 or
more

All except
%S and
constant

No

CPU Programmer’s Reference Manual Section 7
GFK-2950M Dec 2024

PID Built-In Function Block 393

7.1.2 Operands for FBD Version of PID Function Block

Figure 257

Parameter Description Allowed

Types

Allowed

Operands

Optional

Control Structure

Variable

Instance Variable name of the PID Parameter Block array,

which contains user-configurable and internal parameters,
described in Reference Array for the PID Function

.Uses 40 words that cannot be shared.

WORD R, L, P, W

and symbolic

No

Function block

solve order – FBD
version

Calculated by the FBD editor. Can be changed by the user. NA NA No

SP The control loop or process set point. Set using process

variable counts, the PID function adjusts the output control
variable so that the process variable matches the set point

(zero error).

INT, BOOL

array of length
16 or more,

Constant

All except S,

SA, SB, and SC

No

PV Process Variable input from the process being controlled.

Often a %AI input.

INT, BOOL

array of length

16 or more

All except S,

SA, SB, SC and

constant

No

MAN When energized to 1 (through a contact), the PID function

block is in manual mode. If this input is 0, the PID block is

in automatic mode.

BOOL, Power

Flow
All No

UP If energized along with MAN, increases the control variable

by 1 CV count per solution of the PID function block.

BOOL, Power

Flow

All No

DN If energized along with MAN, decreases the control variable

by 1 CV count per solution of the PID function block.

BOOL, Power

Flow
All No

CV The control variable output to the process. Often a %AQ

output.

INT, BOOL

array of length
16 or more

All except %S

and constant

No

7.2 Reference Array for the PID Function
This parameter block for the PID function occupies 40 words of memory, located at the

starting Instance Variable specified in the PID function block operands. Some of the

words are configurable. Other words are used by the CPU for internal PID storage and

are normally not changed.

CPU Programmer’s Reference Manual Section 7
GFK-2950M Dec 2024

PID Built-In Function Block 394

Every PID function call must use a dif ferent 40-word memory area, even if all the

conf igurable parameters are the same.

The conf igurable words of the reference array must be specified before executing the

PID function. Zeros can be used for most default values. Once suitable PID values have

been chosen, they can be def ined as constants in BLKMOV functions so the program

can set and change them as needed.

The LD version of the PID function does not pass power f low if there is an error in the

conf igurable parameters. The function can be monitored using a temporary coil while

modifying data.

7.2.1 Scaling Input and Outputs
All parameters of the PID function are 16-bit integer words for compatibility with 16-bit

analog process variables. Some parameters must be defined in either PV counts or units

or in CV counts or units.

The SP input must be scaled over the same range as the PV, because the PID function

calculates error by subtracting these two inputs.

The process PV and control CV counts do not have to use the same scaling. Either may

be -32,000 or 0 to 32,000 to match analog scaling, or from 0 to 10,000 to display variables

as 0.00% to 100.00%. If the process PV and control CV do not use the same scaling,

scale factors are included in the PID gains.

CPU Programmer’s Reference Manual Section 7
GFK-2950M Dec 2024

PID Built-In Function Block 395

7.2.2 Reference Array Parameters

Note: Machine Edition software allows you to modify the configurable parameters for a

PID instruction in real time in online programmer mode. To customize PID

parameters, right click the PID function and select Tuning.

Words Parameter/Description
Low Bit

Units
Range

1

(Address+0)

Loop Number

Optional number of the PID block. It provides a common identification in the CPU

with the loop number defined by an operator interface device.

Integer 0 to 255 (for user

display only)

2

(Address+1)

Algorithm

1 = ISA algorithm

2 = Independent algorithm

- Set by the CPU

3

(Address+2)

Sample Period

The shortest time, in 10ms. Increments, between solutions of the PID algorithm.

For example, use a 10 for a 100ms. Sample period. Minimum time of 10ms is

enforced by the block if the sweep<10ms)

10ms. 0 (every sweep) to

65535

(10.9 Min) At least

10ms.

4,5

(Address+3,

Address+4)

Dead Band +

Dead Band –

Integral values defining the upper (+) and lower (-) Dead Band limits. If no Dead

Band is required, these values must be 0. If the PID Error (SP - PV) or (PV -

SP) is above the (-) value and below the (+) value, the PID calculations are

solved with an Error of 0. If non-zero, the (+) value must greater than 0 and the

(-) value less than 0 or the PID block will not function.

Leave these at 0 until the PID loop gains are set up or tuned. A Dead Band

might be added to avoid small CV output changes due to variations in error.

PV Counts Dead Band +: 0 to

32767

(never negative)

Dead Band -: -

32768 to 0

(never positive)

6

(Address+5)

PID_IND: Proportional Gain (Kp)

PID_ISA: Controller gain (Kc = Kp)

PID_IND: Change in the control variable in CV Counts for a 100 PV Count

change in the Error term. Entered as an integer representing a fixed -point

decimal ratio with two decimal places. Displayed as a ratio of percentages with

two decimal places.

For example, a Kp entered as 450 is displayed as 4.50 and results in a

Kp * Error / 100 or 450 * Error / 100 contribution to the PID Output.

PID_ISA: Same as PID_IND.

Kp is generally the first gain set when adjusting a PID loop.

CV%/PV%

%CV/%PV

0 to 327.67%

7

(Address+6)

PID_IND: Derivative Gain (Kd)

PID_ISA: Derivative Time (Td = Kd)

PID_IND: Change in the control variable in CV Counts if the Error or PV

changes 1 PV Count every 10ms. Entered as an integer representing a

fixed-point decimal time in seconds with two decimal places. The least

significant digit represents 0.01 second (10ms.) units. Displayed as seconds

with two decimal places.

For example, Kd entered as 120 is displayed as 1.20 Sec and results in a

Kd * Δ Error / delta time or 120 * 4 / 3 contribution to the PID Output if Error

changes by 4 PV Counts every 30ms. Kd can be used to speed up a slow loop

response but is very sensitive to PV input noise. This noise sensitivity can be

reduced by using the derivative filter, which is enabled by setting bit 5 of the

Config Word .

PID_ISA: The ISA derivative time in seconds, Td, is entered and displayed in

the same way as Kd. Total derivative contribution to PID Output is

Kc * Td * Δ Error / dt.

0.01 sec 0 to 327.67 sec

8

(Address+7)

PID_IND: Integral Rate (Ki)

PID_ISA: Integral Rate (1/Ti = Ki)

Repeats/0.00

1 Sec

0 to 32.767

repeats/sec

CPU Programmer’s Reference Manual Section 7
GFK-2950M Dec 2024

PID Built-In Function Block 396

Words Parameter/Description
Low Bit

Units
Range

PID_IND: Rate of change in the control variable in CV Counts per second when

the Error is a constant 1 PV Count. Entered as an integer representing a fixed -

point decimal rate with three decimal places. The least significant digit

represents 0.001 counts per second, or 1 count per 0.001 second. Displayed as

Repeats/Sec with three decimal places.

For example, Ki entered as 1400 is displayed as 1.400 Repeats/Sec and

results in a Ki * Error * dt or 1400 * 20 * 50/1000 = 1,400 contribution to PID

Output for an Error of 20 PV Counts and a 50ms. CPU sweep time (Sample

Period of 0).

PID_ISA: The ISA Integral Time in seconds, Ti, must be inverted and entered,

as integral rate, as described for PID_IND. Total integral contribution to PID

Output is Kc * Ki * Error * dt.

Ki is usually the second gain set after Kp.

9

(Address+8)

CV Bias/Output Offset

Number of CV Counts added to the PID Output before the rate and amplitude

clamps. It can be used to set non-zero CV values when only Kp Proportional

gains are used, or for feed-forward control of this PID loop output from another

control loop.

CV Counts -32768 to 32767

(add to PID output)

10, 11

(Address+9.

Address+10)

CV Upper Clamp

CV Lower Clamp

Number of CV Counts that define the highest and lowest value that CV is

allowed to take. These values are required. The Upper Clamp must have a

more positive value than the Lower Clamp, or the PID block will not work.

These are usually used to define limits based on physical limits for a CV output.

They are also used to scale the Bar Graph display for CV. The PID block has

anti-reset-windup, controlled by bit 4 of the Config Word, to modify the integral

term value when a CV clamp is reached.

CV Counts -32,768 to 32,767

(Word 10 must be

greater than word

11.)

12

(Address+11)

Minimum Slew Time

Minimum number of seconds for the CV output to move from 0 to full travel of

100% or 32,000 CV Counts. It is an inverse rate limit on how fast the CV output

can change.

If positive, CV cannot change more than 32,000 CV Counts times the solution

time interval (seconds) divided by Minimum Slew Time.

For example, if the Sample Period is 2.5 seconds and the Minimum Slew Time

is 500 seconds, CV cannot change more than 32,000 * 2.5 / 500 or 160 CV

Counts per PID solution.

The integral term value is adjusted if the CV rate limit is exceeded.

When Minimum Slew Time is 0, there is no CV rate limit. Set Minimum Slew

Time to 0 while tuning or adjusting PID loop gains.

Seconds /

Full Travel

0 (none) to 32,000

sec

to move full CV

travel

13

(Address+12)

Config Word

The low 6 bits of this word are used to modify default PID settings. The other

bits should be set to 0.

Bit 0: Error Term Mode.

When this bit has the default value of 0, the error term is SP - PV.

If the Error=SP-PV is positive, the CV output will decrease.

If the Error=SP-PV is negative, the CV output will increase.

This is type of operation is known as reverse acting. A good example is your

home heating system.

When this bit is 1, the error term is PV - SP.

If the Error=PV-SP is positive, the CV output will increase.

If the Error= PV-SP is negative, the CV output will decrease.

This type of operation is known as direct acting. A good example is your home

cooling system.

Bit 1: Output Polarity.

Low 6 bits

used

Boolean

CPU Programmer’s Reference Manual Section 7
GFK-2950M Dec 2024

PID Built-In Function Block 397

Words Parameter/Description
Low Bit

Units
Range

When this bit is 0, the CV output is the output of the PID calculation. When it is

set to 1, the CV output is the negated output of the PID calculation. Setting this

bit to 1 inverts the Output Polarity so that CV is the negative of the PID output

rather than the normal positive value.

Bit 2: Derivative Action on PV.

When this bit is 0, the derivative action is applied to the error term. When it is

set to 1, the derivative action is applied to PV only.

Bit 3: Deadband action.

When the Deadband action bit is 0, the actual error value is used for the PID

calculation.

When the Deadband action bit is 1, deadband action is chosen. If the error

value is within the deadband limits, the error used for the PID calculation is

forced to be zero. If, however, the error value is outside the deadband limits,

the magnitude of the error used for the PID calculation is reduced by the

deadband limit (|error| = |error – deadband limit|).

Bit 4: Anti­reset windup action.

When this bit is 0, the anti­reset-windup action uses a reset (integral term)

back-calculation. When the output is clamped, the accumulated integral term is

replaced with whatever value is necessary to produce the clamped output

exactly.

When the bit is 1, the accumulated integral term is replaced with the value of

the integral term at the start of the calculation. In this way, the pre­clamp

integral value is retained as long as the output is clamped. This option is not

recommended for new applications. Refer to CV Amplitude and Rate Limits

below.

Bit 5: Enable derivative filtering.

When this bit is set to 0, no filtering is applied to the derivative term.

When set to 1, a first order filter is applied. This will limit the effects of higher

frequency process disturbances, such as measurement noise, on the derivative

term.

14

(Address+13)

Manual Command

Set to the current CV output while the PID block is in Automatic mode. When

the block is switched to Manual mode, this value is used to set the CV output

and the internal value of the integral term within the Upper and Lower Clamp

and Slew Time limits.

CV Counts Tracks CV in Auto

or sets CV in

Manual

15

(Address+14)

Control Word

If the Override bit (bit 0) is set to 1, the Control Word and the internal SP, PV

and CV parameters must be used for remote operation of the PID block (see

below). This allows a remote operator interface device, such as a computer, to

take control away from the application program.

CAUTION
If you do not want to allow remote operation of the PID block, make

sure the Control Word is set to 0. If the low bit is 0, the next 4 bits can

be read to track the status of the PID input contacts as long as the PID

Enable contact has power.

Control Word is a discrete data structure with the first five bit positions defined

in the following format:

Bit
Word

Value
Function

Status or

External Action if Override bit is

set to 1:

Maintained

by the CPU,

unless bit 0

(Override)

is set to 1.

Boolean

CPU Programmer’s Reference Manual Section 7
GFK-2950M Dec 2024

PID Built-In Function Block 398

Words Parameter/Description
Low Bit

Units
Range

0 1 Override
If 0, monitor block contacts below.

If 1, set them externally.

1 2
Manual

/Auto

If 1, block is in Manual mode. If other

 numbers, it is in Automatic mode.

2 4 Enable
Should normally be 1. Otherwise block

 is never called.

3 8
UP

/Raise

If 1 and Manual (Bit 1) is 1, CV is

 incremented every solution.

4 16
DN

/Lower

If 1 and Manual (Bit 1) is 1, CV is

decremented every solution.

16

(Address+15)

Internal SP

Tracks the SP input. If Override = 1, must be set externally to solve the PID

algorithm using an alternate SP value. The original SP value is maintained until

overwritten.

Set and

maintained

by the CPU,

unless bit 0

(Override) of

Control Word

is set to 1.

Non-configurable,

unless bit 0

(Override) of

Control Word is set

to 1.

17

(Address+16)

Internal CV

Tracks CV output.

Set and

maintained

by the CPU.

Non-configurable.

18

(Address+17)

Internal PV

Tracks PV input. Must be set externally if Override bit is set to 1.

Set and

maintained

by the CPU,

unless bit 0

(Override) of

Control Word

is set to 1.

Non-configurable,

unless bit 0

(Override) of

Control Word is set

to 1.

19

(Address+18)

Output

A Signed word value representing the output of the function block before the

optional inversion. If the output polarity bit in the Config Word is set to 0, this

value equals the CV output. If the output polarity bit is set to 1, this value equals

the negative of the CV output.

Set and

maintained

by the CPU.

Non-configurable.

20

(Address+19)

Derivative Term Storage

Used internally for storage of intermediate values. Do not write to this location.

21, 22

(Address+20.

Address+21)

Integral Term Storage

Used internally for storage of intermediate values. Do not write to these

locations.

23

(Address +22)

Slew Term Storage

Used internally for storage of intermediate values. Do not write to this location.

24 – 26

(Address+23 –

Address+25)

Previous Solution Time

Internal storage of time of last PID solution. Normally do not write to these

locations. Some special circumstances may justify writing to these locations.

Note: If you call the PID block in Automatic mode after a long

delay, you might want to use SVC_REQ #16 or

SVC_REQ #51 to load the current CPU elapsed time

clock into Word 24 to update the last PID solution time to

avoid a step change of the integral term.

Set and

maintained

by the CPU.

Non-configurable.

27

(Address+26)

Integral Remainder Storage

Holds remainder from integral term scaling.

Set and

maintained

by the CPU.

Non-configurable.

CPU Programmer’s Reference Manual Section 7
GFK-2950M Dec 2024

PID Built-In Function Block 399

Words Parameter/Description
Low Bit

Units
Range

28, 29

(Address+27,

Address+28)

SP, PV Lower Range

SP, PV Upper Range

Optional integer values in PV Counts that define high and low display values for

SP and PV. (Word 29 must be greater than word 28.)

PV Counts -32768 to 32767

30

(Address+29)

Reserved

Word 30 is reserved. Do not use this location.

N/A Non-configurable.

31, 32

(Address+30,

Address+31)

Previous Derivative Term Storage

Used in calculations for derivative filter. Do not write to these locations.

Set and

maintained

by the CPU.

Non-configurable.

33 – 40

(Address+32 –

Address+39)

Reserved

Words 32-39 are reserved. Do not use these references.

N/A Non-configurable

CPU Programmer’s Reference Manual Section 7
GFK-2950M Dec 2024

PID Built-In Function Block 400

7.3 Operation of the PID Function

7.3.1 Automatic Operation
When the PID function block is called, it compares the current CPU time with the last PID

solution time stored in the reference array. If the interval between the two times is equal

to or greater than the Sample Period (word 3 of the reference array) and also equal to or

greater than 10 ms, the PID algorithm is solved using this time interval. Both the last

solution time and CV output are updated. In Automatic mode, the output CV is copied to

the Manual Command parameter (word 14 of the reference array).

Note: If you call the PID block in Auto mode after a long delay, you may want to use

SVC_REQ 16 or SVC_REQ 51 to load the current CPU time into the stored Previous

Solution Time (word 24 of the reference array). This will update the last PID solution

time and avoid a large step change of the integral term. Another method to prevent

the step change is to copy the PV value to the SP before placing the loop into Auto.

7.3.2 Manual Operation
The PID function block is placed in Manual mode by providing power f low to both the

Enable and Manual input contacts. The output CV is set f rom the Manual Command

parameter. If either the UP or DN inputs have power flow, the Manual Command word is

incremented (UP) or decremented (DN) by one CV count every PID Sample Period. For

faster manual changes of the output CV, it is also possible to add or subtract any CV

count value directly to/from the Manual Command word (word 14 of the reference array).

The PID function block uses the CV Upper Clamp and CV Lower Clamp parameters to

limit the CV output. If a positive Minimum Slew Time (word 12 of the reference array) is

def ined, it is used to limit the rate of change of the CV output. If either CV Clamp or the

rate of change limit is exceeded, the value of the integral (reset) term is adjusted so that

CV is at the limit. The anti-reset-windup feature assures that when the error term tries to

drive CV above (or below) the clamps for a long period of time, the CV output will move

of f the clamp immediately when the error term changes suf f iciently.

This operation, with the Manual Command tracking CV in Automatic mode and setting

CV in Manual mode, provides a bump-less transfer from Automatic to Manual mode. The

CV Upper and Lower Clamps and the Minimum Slew Time always apply to the CV output

in Manual mode and the integral term is always updated. This assures that when a user

rapidly changes the Manual Command value in Manual mode, the CV output cannot

change any faster than the slew rate limit set by the Minimum Slew Time, and the CV

cannot go above the CV Upper Clamp limit or below the CV Lower Clamp limit.

In order to assure a bump-less transfer from Manual back to Automatic mode, the user

program should copy the PV to the SP before switching back to Automatic mode. This

allows the algorithm to update the last sample period time and prepare to re-calculate

CV based upon the new Auto Mode SP commanded.

7.3.3 Time Interval for the PID Function
The start time of each CPU sweep is used as the current time when calculating the time

interval between solutions of the PID function. The times and time intervals have a

resolution of 100 µs. When an application uses multiple PID functions, all of them use

the same time value.

CPU Programmer’s Reference Manual Section 7
GFK-2950M Dec 2024

PID Built-In Function Block 401

The PID algorithm is solved when the current time is equal to or greater than the time of

the last PID solution plus the Sample Period or 10 ms; whichever is larger. If the Sample

Period is set for execution on every sweep (value = 0), the PID function is restricted to a

minimum of 10 ms between solutions. If the sweep time is less than 10 ms, the PID

function waits until enough sweeps have occurred to accumulate an elapsed time

of at least 10 ms. For example, if the sweep time is 9 ms, the PID function executes

every other sweep, and the time interval between solutions is 18 ms. If a specific PID

function is executed more than once per sweep (by referencing the same reference array

location in multiple PID function blocks), the algorithm is solved only on the f irst call.

The longest possible interval between executions is 65,535 times 10 ms, or 10 minutes,

55.35 seconds.

7.4 PID Algorithm Selection (PIDISA or PIDIND)

and Gain Calculations
The PID function supports both the Independent Term (PID_IND) and ISA standard

(PID_ISA) forms of the PID algorithm. The Independent Term form takes its name from

the fact that the coefficients for the proportional, integral and derivative terms act

independently. The ISA algorithm is named for the Instrument Society of America (now

the International Society for Measurement and Control), which standardized and

promoted it.

The two algorithms differ in how words 6 through 8 of the reference array are used and

in how the PID output (CV) is calculated.

CPU Programmer’s Reference Manual Section 7
GFK-2950M Dec 2024

PID Built-In Function Block 402

The Independent term PID (PID_IND) algorithm calculates the output as:

PID Output = Kp * Error + Ki * Error * dt + Kd * Derivative + CV Bias

where Kp is the proportional gain, Ki is the integral rate, Kd is the derivative time, and dt

is the time interval since the last solution.

The ISA (PID_ISA) algorithm has dif ferent coef f icients for the terms:

PID Output = Kc * (Error + Error * dt/Ti + Td * Derivative) + CV Bias

where Kc is the controller gain, Ti is the Integral time and Td is the Derivative time. The

advantage of PID_ISA is that adjusting Kc changes the contribution for the integral and

derivative terms as well as the proportional term, which can simplify loop tuning.

If you have the PID_ISA Kc, Ti and Td values, use the following equations to convert

them to use as PID_IND parameters:

Kp = Kc, Ki = Kc/Ti, and Kd = Kc * Td

The following diagram shows how the PID_IND algorithm works:

Figure 258: PID_IND Diagram

The ISA Algorithm (PID_ISA) is similar except that its Kc gain coefficient is applied after

the three terms are summed, so that the integral gain is Kc / Ti and the derivative gain is

Kc*d.

Bits 0, 1 and 2 in the Conf ig Word set the Error sign, Output Polarity and Derivative

Action, respectively.

CPU Programmer’s Reference Manual Section 7
GFK-2950M Dec 2024

PID Built-In Function Block 403

7.4.1 Derivative Term
The Derivative Term is Kd (word 7 of the reference array) multiplied by the time rate of

change of the Error term in the interval since the last PID solution.

Derivative = Kd * Δerror / dt = Kd * (Error – previous Error) / dt

where

dt = Current controller time – controller time at previous PID solution.

Two bits in the Conf ig Word (word 13 of the reference array) af fect the calculation of

Δerror: Error Term Mode and Derivative Action. For additional information about the

operation of these bits, refer to Conf ig Word above.

7.4.2 Error Term Mode
The sign of the Error term is determined by the value of a mode bit in the reference array

for the PID function.

In reverse acting mode, the change in the error term is:

Δerror = (Error – previous Error) = ΔSP – ΔPV

where

ΔPV = (PV – previous PV), and ΔSP = (SP – previous SP).

However, in direct acting mode, the error term is (PV – SP), the sign of the change in the

error term is reversed:

Δerror = (Error – previous Error) = = ΔPV – ΔSP.

7.4.3 Derivative Action on PV Bit
By default, the change in the error term depends on changes in both SP and PV. If SP

is constant, ΔSP=0, and SP has no ef fect on the derivative term. When SP changes,

however, it can cause large transient swings in the derivative term and hence the output.

Loop stability can be improved by eliminating the effect of SP changes on the derivative

term.

To calculate the Derivative based only on the change in PV, set bit 2 of the Config Word

to 1. This modif ies the equations above by assuming SP is constant (ΔSP = 0).

CPU Programmer’s Reference Manual Section 7
GFK-2950M Dec 2024

PID Built-In Function Block 404

7.4.4 Combined Operation of Error Term and Derivative

Action Modes

Bit 0 of Config Word Bit 2 of Config Word

Error Term Value
Value Error Term Mode Value

Derivative

Action

0 Reverse Acting (default) 0 ΔSP included ΔSP –Δ PV

1 Direct Acting 0 ΔSP included ΔPV –Δ SP

0 Reverse Acting (default) 1 ΔSP ignored –ΔPV

1 Direct Acting 1 ΔSP ignored ΔPV

7.4.5 CV Bias Term
The CV Bias term (word 9 in the reference array) is an additive term separate f rom the

PID inputs. It may be useful if you are using only Proportional gain (Kp) and you want

the CV to be a non-zero value when the PV equals the SP and the Error is 0. In this case,

set the CV Bias to the desired CV when the PV is at the SP. CV Bias can also be used

for feed forward control where another PID loop or control algorithm is used to adjust the

CV output of this PID loop.

If a non-zero Integral rate is used, the CV Bias will normally be 0 as the integral term acts

as an automatic bias or reset. Just start up in Manual mode and use the Manual

Command word (word 14 of the reference array) to set the desired CV, and then switch

to Automatic mode. This will immediately calculate the required value for the integral

term.

7.4.6 CV Amplitude and Rate Limits
The PID block does not send the calculated Output directly to CV. Both PID algorithms

can impose amplitude and rate of change limits on the output Control Variable. If the

Minimum Slew Time (word 12 of the reference array) is non-zero, the rate of change

(slew rate) limit is determined by dividing the maximum CV value (32,000) by the

Minimum Slew Time. For example, if the Minimum Slew Time is 100 seconds, the rate

limit will be 320 CV counts per second. If the solution interval was 50 ms, the new CV

output cannot change more than 320*50/1000 or 16 CV counts f rom the previous CV

output.

The CV output is then compared to the CV Upper Clamp and CV Lower Clamp values

(words 10 and 11 of the reference array). If CV is outside either limit, the CV output is

clamped to the appropriate limit value. When the CV output is modified to impose either

slew rate or amplitude limits (or both) the stored integral term would normally accumulate

a large value over time. This phenomenon is known as reset windup. Reset windup

introduces errors in CV after the PID output no longer needs to be limited. For example,

windup would prevent the CV output f rom moving of f a clamp value immediately.

There are two optional methods for preventing reset windup. If the Anti-reset-windup

Action bit (bit 4) of Config Word (word 13 of the reference array) is zero (the default), the

integral term is adjusted at each PID solution to match the error input and l imited CV

output exactly. When PV changes while CV is clamped, or when CV is both rate and

amplitude limited in a particular PID solution, this option assures that a smooth transition

will always occur af ter CV is no longer limited.

CPU Programmer’s Reference Manual Section 7
GFK-2950M Dec 2024

PID Built-In Function Block 405

If the Anti-reset-windup Action bit of Config Word is set, then the integral term stored on

the previous PID solution is simply retained as long as CV is limited. This option was

added to assure compatibility with existing PID applications when the default action

described above was introduced. This option is not recommended for new applications.

Finally, the PID block checks the Output Polarity (bit 2 of the Config Word) and changes

the sign of the output if the bit is 1.

CV = – (Clamped PID Output) if Output Polarity bit set, or

CV= (Clamped PID Output) if Output Polarity bit cleared.

If the block is in Automatic mode, the f inal CV is placed in the Manual Command (word

14 of the reference array). If the block is in Manual mode, the PID equation is skipped

because CV is set by the Manual Command, but the slew rate and amplitude limits are

still checked. This assures that the Manual Command cannot change the output above

the CV Upper Clamp or below the CV Lower Clamp, and the output cannot change faster

than allowed by the Minimum Slew Time.

7.4.7 Sample Period and PID Function Block Scheduling
The PID function block is a digital implementation of an analog control function, so the dt

sample time in the PID Output equation is not the inf initesimally small sample time

available with analog controls. The majority of processes being controlled can be

approximated as a gain with a f irst or second order lag and (possibly) a pure time delay.

The PID function block sets a CV output to the process and uses the process feedback

PV to determine an Error to adjust the next CV output. A key process parameter is the

total time constant, which is how fast the process can change PV when the CV is

changed. As discussed in Determining the Process Characteristics below, the total time

constant, Tp+Tc, for a f irst order system is the time required for PV to reach 63% of its

f inal value when CV is stepped. The PID function block will not be able to control a

process unless its Sample Period is well under half the total time constant. Larger

Sample Periods will make it unstable.

The Sample Period should be no bigger than the total time constant divided by 10 (or

down to 5 worst case). For example, if PV seems to reach about 2/3 of its final value in

2 seconds, the Sample Period should be less than 0.2 seconds, or 0.4 seconds worst

case. On the other hand, the Sample Period should not be too small, such as less than

the total time constant divided by 1000, or the Ki * Error * dt term for the PID integral term

will round down to 0. For example, a very slow process that takes 10 hours or 36,000

seconds to reach the 63% level should have a Sample Period of 40 seconds or longer.

Variations of the time interval between PID function solutions can have short -term effects

on the CV output. For example, if a step change to PV caused by measurement noise

occurs between solutions, the value of the derivative term will be inversely proportional

to the time interval. The performance of PID loops that are tuned for quick response may

be improved when the solution interval is held constant by configuring the CPU for

constant sweep mode. Depending on the CPU model and the application, constant

sweep times of 10 ms, integer multiples of 10 ms, or exact divisors of 10 ms (1, 2 or 5

ms) will be possible. The Sample Period can then be set for a suitable multiple of 10 ms.

If many PID loops are used, allowing the application to solve all the loops on the same

sweep may lead to wide variations in CPU sweep time. If the loops have a common

CPU Programmer’s Reference Manual Section 7
GFK-2950M Dec 2024

PID Built-In Function Block 406

Sample Period that is at least equal to the number of PID loops times the sweep time, a

simple solution is to sequence one or more 1’s through an array of zero ‘s and use these

bits to enable power f low to individual PID function blocks. The logic should assure that

each PID function block is enabled no more of ten than its Sample Period.

7.5 Determining the Process Characteristics
The PID loop gains, Kp, Ki and Kd, are determined by the characteristics of the process

being controlled. Two key questions when setting up a PID loop are:

1. How big is the change in PV when CV is changed by a f ixed amount, or what is

the open loop gain of the process?

2. How fast does the system respond, or how quickly does PV change af ter the

CV output is stepped?

Many processes can be approximated by a process gain, first or second order lag and a

pure time delay. In the f requency domain, the transfer function for a f irst order lag system

with a pure time delay is:

()
()sCV

sPV

 =
()sG

 =
)1/(sTT cpKe

+−

Plotting the response to a step input at time t0 in the time domain provides an open-loop

unit reaction curve:

Figure 259

The following process model parameters can be determined f rom the PV unit reaction

curve:

Parameter Description

K Process open loop gain = final change in PV/change in CV at time t 0

(Note no subscript on K)

Tp Process or pipeline time delay or dead time after t0 before the process output PV starts

moving

Tc First order Process time constant, time required after Tp for PV to reach 63.2% of the final

PV

Usually the quickest way to measure these parameters is by putting the PID function

block in Manual mode, making a small step change in the CV output by changing the

Manual Command (word 14 of the reference array), and then plotting the PV response

over time. For slow processes this can be done manually, but for faster processes a chart

recorder or computer graphic data-logging package will help. The CV step size should

be large enough to cause an observable change in PV, but not so large that it disrupts

CPU Programmer’s Reference Manual Section 7
GFK-2950M Dec 2024

PID Built-In Function Block 407

the process being measured. A good step size may be from 2 to 10% of the difference

between the CV Upper and CV Lower Clamp values.

CPU Programmer’s Reference Manual Section 7
GFK-2950M Dec 2024

PID Built-In Function Block 408

7.6 Setting Tuning Loop Gains

7.6.1 Basic Iterative Tuning Approach
Because PID parameters are dependent on the process being controlled, there are no

predetermined values that will work. However, a simple iterative process can be used to

f ind acceptable values for Kp, Ki, and Kd gains.

1. Set all the reference array parameters to 0, then set the CV Upper and CV

Lower Clamps to the highest and lowest CV expected. Set the Sample Period

to a value within the range Tc/10 to Tc/100, where Tc is the estimated process

time constant def ined in Determining the Process Characteristics

2. Put the PID function block in Manual mode and set the Manual Command

(word 14 in the reference array) to dif ferent values to check if CV can be

moved to Upper and Lower Clamp. Record the PV value at some CV point and

load it into SP.

3. Set a small gain, such as 100 * Maximum CV/Maximum PV, into Kp and turn

of f Manual mode. Step SP by 2% to 10% of the Maximum PV range and

observe PV response. Increase Kp if PV step response is too slow or reduce

Kp if PV overshoots and oscillates without reaching a steady value.

4. Once a Kp is found, start increasing Ki to get overshooting that dampens out to

a steady value in two to three cycles. This may require reducing Kp. Also try

dif ferent SP step sizes and CV operating points.

5. After suitable Kp and Ki gains are found, try adding Kd to get quicker

responses to input changes, providing it doesn't cause oscillations. Kd is of ten

not needed and will not work with noisy PV.

6. Check gains over dif ferent SP operating points and add Dead Band and

Minimum Slew Time if needed. Some Reverse Acting processes may need

setting of Conf ig Word Error Term or Output Polarity bits.

CPU Programmer’s Reference Manual Section 7
GFK-2950M Dec 2024

PID Built-In Function Block 409

7.6.2 Setting Loop Gains Using the Ziegler and Nichols

Tuning Approach
This approach provides good response to system disturbances with gains producing an

amplitude ratio of 1/4. The amplitude ratio is the ratio of the second peak over the first

peak in the closed loop response.

1. Determine the three process model parameters, K, Tp and Tc for use in

estimating initial PID loop gains.

2. Calculate the Reaction rate:

 R = K/Tc

3. For Proportional control only, calculate Kp as:

 Kp = 1/(R * Tp) = Tc/(K * Tp)

For Proportional and Integral control, use:

 Kp = 0.9/(R * Tp) = 0.9 * Tc/(K * Tp) Ki = 0.3 * Kp/Tp

For Proportional, Integral and Derivative control, use:

 Kp = G/(R * Tp)where G is f rom 1.2 to 2.0

 Ki = 0.5 * Kp/Tp

 Kd = 0.5 * Kp * Tp

4. Check that the Sample Period is in the range

 (Tp + Tc)/10 to (Tp + Tc)/1000

7.6.3 Ideal Tuning Method
The Ideal Tuning procedure provides the best response to SP changes that are delayed

only by the Tp process delay or dead time.

1. Determine the three process model parameters, K, Tp and Tc for use in

estimating initial PID loop gains.

2. Calculate Kp, Ki, and Kd as follows:

Kp = 2 * Tc/ (3 * K * Tp)

Ki = Tc

Kd = Ki/4 if Derivative term is used

3. Once initial gains are determined, convert them to integers.

4. Calculate the Process gain, K, as a change in input PV Counts divided by the

resulting output step change in CV Counts. (Not in process PV or CV

engineering units.) Specify all times in seconds.

5. Once Kp, Ki and Kd are determined, Kp and Kd are multiplied by 100 while Ki
is multiplied by 1000. The resulting values are entered the corresponding
reference array word locations.

CPU Programmer’s Reference Manual Section 7
GFK-2950M Dec 2024

PID Built-In Function Block 410

7.7 PID Example
The following PID example has a sample period of 100ms, a Kp gain of 4.00 and a Ki

gain of 1.500. The set point is stored in %R0001, the control variable is output in

%AQ0002, and the process variable is returned in %AI0003. CV Upper and CV Lower

Clamps must be set, in this case to 20000 and 4000, and an optional small Dead Band

of +5 and -5 is included. The 40-word reference array starts in %R0100. Normally, user

parameters are set in the reference array, but %M0006 can be set to re-initialize the 14

words starting at %R0102 (word 3) from constants stored in logic (a useful technique).

The block can be switched to Manual mode with %M1 so that the Manual Command,

%R113, can be adjusted. Bits %M4 or %M5 can be used to increase or decrease %R113

and the PID CV by 1 every 100ms solution. For faster manual operation, bits %M2 and

%M3 can be used to add or subtract the value in %R2 to/from %R113 every CPU sweep.

The %T1 output is on when the PID is OK.

7.7.1 Reference Array Initialization using %M00006
For details on the contents of the reference array, refer to Reference Array for the PID

Function

Word Function Address Value

3 Sample Period %R102 10

4 + Dead Band %R103 5

5 - Dead Band %R104 5

6 Kp %R105 400

7 Kd %R106 0

8 Ki %R107 1500

9 CV Bias %R108 0

10 CV Upper Clamp %R109 2000

11 CV Lower Clamp %R110 400

12 Minimum Slew Time %R111 0

13 Config Word %R112 0

14 Manual Command %R113 0

15 Control Word %R114 0

16 Internal SP %R115 0

CPU Programmer’s Reference Manual Section 7
GFK-2950M Dec 2024

PID Built-In Function Block 411

Figure 260 : PID Example Logic

CPU Programmer’s Reference Manual Section 8
GFK-2950M Dec 2024

Structured Text (ST) Programming 412

Section 8 Structured Text (ST)

Programming
The Structured Text (ST) programming language is an IEC 61131-3 textual programming

language. This chapter describes how structured text is implemented in PACSystems.

For information on using the structured text editor in the programming software, refer to
the online help.

The block types Block, Parameterized Block, and Function Block (UDFB) can be

programmed in ST. The _MAIN program block can also be programmed in ST. For

details on blocks, refer to Program Organization in Section 2. For CPS400 programming

refer to GFK-3279 VersaMax SafetyNet Function Block Manual for the list of allowed

instructions.

8.1 Language Overview

8.1.1 Statements
A structured text program consists of a series of statements, which are constructed from

expressions and language keywords. A statement directs the PACSystems controller to

perform a specified action. Statements provide variable assignments, conditional
evaluations, iteration, and the ability to call built-in functions. PACSystems supports
those statements described in Section 8.2, Statement Types.

8.1.2 Expressions
Expressions use operators to calculate values from variables and constants. An example
of a simple expression is (x+5).

Composite expressions can be created by nesting simpler expressions, for example,
(a+b)*(c+d)–3.0 ** 4.

8.1.3 Operators
The table below lists the operators that you can use within an expression. They are listed

according to their evaluation precedence, which determines the sequence in which they
are executed within the expression. The operator with the highest precedence is applied

f irst, followed by the operator with the next highest precedence. Operators of equal

precedence are evaluated left to right. Operators in the same group, for example + and
-, have the same precedence.

Any address operators used in LD can be used on ST operands. Address operators have

precedence over the ST language operators. Address operators include indirect

addressing (for example, @Var1), array indexing (for example, Var1[3]), bit within word
addressing (for example, Var1.X[3]), and structure f ields (for example, Var1.f ield1).

Precedence Operator Operand Types Description

Group 1 (Highest) (…) Parenthesized expression

Group 2 - INT, DINT, REAL, LREAL Negation

 NOT BOOL, BYTE, WORD,

DWORD

Boolean complement

CPU Programmer’s Reference Manual Section 8
GFK-2950M Dec 2024

Structured Text (ST) Programming 413

Precedence Operator Operand Types Description

Group 3 **,^ INT, DINT, UINT, REAL,

LREAL
8

Exponentiation
9, 10

Group 4 * INT, DINT, UINT, REAL,

LREAL

Multiplication
9

 / INT, DINT, UINT, REAL,

LREAL

Division
9, 11

 MOD INT, DINT, UINT Modulus operation
11

Group 5 + INT, DINT, UINT, REAL,

LREAL

Addition
9

 - INT, UINT, DINT, REAL,

LREAL

Subtraction
9

Group 6 <, >, <=, >= INT, DINT, UINT, REAL,

LREAL, BYTE, WORD,

DWORD

Comparison

Group 7 =

<>, !=

ANY
12

ANY
12

Equality

Inequality

Group 8 AND, & BOOL, BYTE, WORD,

DWORD

Boolean AND

Group 9 XOR BOOL, BYTE, WORD,

DWORD

Boolean exclusive OR

Group 10 (Lowest) OR BOOL, BYTE, WORD,

DWORD

Boolean OR

Some comparison and math operators have corresponding built -in functions. For

instance, the ‘+’ operator is similar to the ADD_INT function. You can use either the

language operator or the built-in function. The built-in function has the advantage of

returning an ENO status. For additional information refer to Built-in Functions Supported

for ST Calls.

Operand Types

Type casting is not supported. To convert a type, use one of the built -in conversion

functions. Use of built-in functions is described in Function Call.

For untyped operators (+, *, …), the types of the operands must match.

8.1.4 Structured Text Syntax
The syntax of the ST implementation for PACSystems follows the IEC 61131-3 standard.

• Structured Text statements must end in a semi-colon (;).

8
The base must be type REAL or LREAL. If the base is REAL, the power can be type INT, DINT, UINT, or REAL and the result is

type REAL. If the base is type LREAL, the power must be LREAL and the result will be LREAL
9
Use of math operators can cause

Overflow or underflow.

Overflow results are truncated.
10

 If either operand is positive or negative infinity, the result is undefined.
11

 The CPU flags a “divide-by-0” error as an application fault.
12

Operators that can take operands of type ANY can be used with any of the supported elementary data types. The supported data

types are: BOOL, INT, DINT, UINT, BYTE, WORD, DWORD, LREAL and REAL. STRING and TIME data types are not supported

CPU Programmer’s Reference Manual Section 8
GFK-2950M Dec 2024

Structured Text (ST) Programming 414

• Structured Text variables must be declared in the variable list for the target.

These symbols have the following functions.

:= assigns an expression to a variable

; required to designate the end of a statement

[] used for array indexing where the array index is an integer. For example, this

sets the third element of an array to the value j+10: intarray[3]: = j + 10;

(* *) designates a comment. These comments can span multiple lines. For

example, (*This comment spans multiple lines.*)

// or ‘ designates a single line comment. For example,

 c :=a+b; //This is a single line comment.

 C :=a+b; ‘This is a single line comment.

CPU Programmer’s Reference Manual Section 8
GFK-2950M Dec 2024

Structured Text (ST) Programming 415

8.2 Statement Types
The Structured Text statements, which specify the actual program execution, consist of

the following types, which are described in more detail on the following pages.

Statement

Type

Description Example

Assignment Sets an object to a specified value. A := 1; B := A; C := A + B;

CASE Provides for the conditional execution of a set of statements. CASE A OF

 1,2 : C := 3;

 3: C := 4;

 4..5: C := 5;

 ELSE

 C := 0;

END_CASE;

COMMENT Places a text explanation in the program. Ignored by the ST

compiler.

(* This is a block comment *)

‘ This is a line comment

// This is a line comment //

Function call Calls a function for execution. FbInst(IN1 := 1, OUT1 => A);

RETURN Causes the program to return from a subroutine. The return

statement provides an early exit from a block.

RETURN;

EXIT Terminates iterations before the terminal condition becomes

TRUE (1).

EXIT;

IF Specifies that one or more statements be executed conditionally. IF (A < B) THEN

 C := 4;

ELSIF (A = B) THEN

 C:= 5;

ELSE

 C := 6

END_IF;

FOR … DO Executes a statement sequence repeatedly based on the value

of a control symbol.

FOR I := 1 TO 100 BY 2 DO

 IF (Var1 – I) = 40 THEN

 Key := I;

 EXIT;

 END_IF;

END_FOR;

WHILE Indicates that a statement sequence be executed repeatedly until

a Boolean expression evaluates to FALSE (0).

WHILE J <= 100 DO

 J := J + 2;

END_WHILE;

REPEAT Indicates that a statement sequence be executed repeatedly until

a Boolean expression evaluates to TRUE (1).

REPEAT

 J := J + 2;

UNTIL J >= 100

END_REPEAT;

ARG_PRESENT Determines whether a parameter value was present when the

function block instance of the parameter was invoked. For

example, a parameter can be optional (pass by value).

ARG_PRES (IN :=In1, Q:>Out1,

ENO:>Out2);

Empty Statement ;

8.2.1 Assignment Statement
The assignment statement replaces the value of a variable with the result of evaluating

an expression (of the same data type).

Notes:

• Assignment statements can affect transition bits.

CPU Programmer’s Reference Manual Section 8
GFK-2950M Dec 2024

Structured Text (ST) Programming 416

• Assignment statements take override bits into account.

Format

Variable := Expression;

Where:

Variable is a simple variable, array element, etc.

Expression is a single value, expression, or complex expression.

Examples

Boolean assignment statements:

VarBool1 := 1;

VarBool2 := (val <= 75);

Array element assignment:

Array_1[13] := (RealA /RealB)* PI;

CPU Programmer’s Reference Manual Section 8
GFK-2950M Dec 2024

Structured Text (ST) Programming 417

8.2.2 Function Call
The structured text function call executes a predef ined algorithm that performs a

mathematical, bit string or other operation. The function call consists of the name of the

function or block followed by required input or output parameters.

The structured text logic can call blocks or the PACSystems built-in functions listed in

the table below. The call must be made in a single statement and cannot be part of a

nested expression.

Calls to some functions, such as communications request (COMMREQ), require a

command block or parameter block. For these functions, an array is declared, initialized

in logic, and then passed as a parameter to the function.

Built-in Functions Supported for ST Calls

Note: Only the functions listed in the following table are supported in the current

PACSystems version. Other built-in functions are not supported.

Example: cos(IN := inReal, Q => outReal, ENO => outBool);

Category Functions More

information

Advanced Math ASIN, ATAN, ACOS, COS, SIN, TAN

LOG, LN, EXP, EXPT,

SQRT_INT, SQRT_DINT, SQRT_REAL

Section 4

Math ABS_INT, ABS_DINT, ABS_REAL

SCALE_DINT, SCALE_INT, SCALE_UINT

Section 4

Communication PNIO_DEV_COMM PACSystems RX3i &

RSTi-EP PROFINET

I/O Controller

Manual, GFK-2571

Control DO_IO, MASK_IO_INTR, SCAN_SET_IO,

SUS_IO, SUS_IO_INTR, SVC_REQ,

SWITCH_POS, F_TRIG, R_TRIG

Section 4

Data Conversion BCD4_TO_INT, BCD4_TO_UINT,

BCD4_TO_REAL

BCD8_TO_DINT, BCD8_TO_REAL

DINT_TO_BCD8, DINT_TO_DWORD,

DINT_TO_INT, DINT_TO_UINT,

DINT_TO_REAL, DINT_TO_LREAL

DWORD_TO_DINT

INT_TO_BCD4, INT_TO_DINT,

INT_TO_UINT, INT_TO_REAL,

INT_TO_WORD

UINT_TO_BCD4, UINT_TO_BCD8,

UINT_TO_INT, UINT_TO_DINT,

UINT_TO_REAL, UINT_TO_WORD

REAL_TO_INT, REAL_TO_UINT,

REAL_TO_DINT, REAL_TO_LREAL

LREAL_TO_DINT, LREAL_TO_REAL

TRUNC_INT, TRUNC_DINT

DEG_TO_RAD, RAD_TO_DEG

WORD_TO_INT, WORD_TO_UINT

Section 4

CPU Programmer’s Reference Manual Section 8
GFK-2950M Dec 2024

Structured Text (ST) Programming 418

Category Functions More

information

Data Move ARRAY_SIZE, ARRAY_SIZE_DIM1,

ARRAY_SIZE_DIM2, COMMREQ,

MOVE_DATA_EX, SIZE_OF

Section 4

PACMotion The RX3i CPUs support 56 PLCopen

compliant motion functions and function

blocks.

PACMotion Multi-Axis

Motion Controller

User’s Manual,

GFK-2448

Calls to Standard Function Blocks

Standard function blocks are instructions that have instance data in the form of a

structure variable. (For more information on function blocks and their instance data, refer

to Functions and Function Blocks in Section 2.) Standard function blocks are called in

the same way that a UDFB is called.

PACSystems controllers support three standard function blocks:

Pulse timer (TP) Generates output pulses of a given

duration

Refer to Timer Pulse in Section

4

On-delay timer (TON) Delays setting an output ON for a fixed

period after an input is set ON.

Refer to On Delay Timer in

Section 4

Off-delay timer (TOF) Delays setting an output OFF for a fixed

period after an input goes OFF so that

the output is held on for a given period

longer than the input.

Refer to Off Delay Timer in

Section 4

Format of Calls to Standard Timer Function Blocks

Notes:

• TOF, TON and TP have the same input and output parameters, except for the

instance variable, which must be the same type as the instruction.

• Writing or forcing values to the instance data elements IN, PT, Q, ET, ENO or TI

may cause erratic operation of the timer function block.

• Instance data can be a variable or a parameter of the current UDFB or

parameterized block.

Formal Convention

myTOF_Instance_Data(IN := inBool, PT := inDINT, ET => outDINT, Q =>

outBool, ENO => outBoolSuccess);

myTON_Instance_Data(IN := inBool, PT := inDINT, ET => outDINT, Q =>

outBool, ENO => outBoolSuccess);

myTP_Instance_Data(IN := inBool, PT := inDINT, ET => outDINT, Q =>

outBool, ENO => outBoolSuccess);

Note: ENO is an optional BOOL output parameter. If ENO is used in a statement that uses

the formal convention, the state of outBoolSuccess is set to 1 (call was successful)

or 0 (call failed).

Informal Convention

CPU Programmer’s Reference Manual Section 8
GFK-2950M Dec 2024

Structured Text (ST) Programming 419

myTOF_Instance_Data(inBool, inDINT, outDINT, outBool);

myTON_Instance_Data(inBool, inDINT, outDINT, outBool);

myTP_Instance_Data(inBool, inDINT, outDINT, outBool);

Note: When using the informal convention, the operands must be assigned in the order shown

above (that is, IN, PT, ET, Q and ENO).

CPU Programmer’s Reference Manual Section 8
GFK-2950M Dec 2024

Structured Text (ST) Programming 420

Block Types Supported for ST Calls

An ST block can call blocks of type Block, Parameterized Block, or user defined Function

Block (UDFB) or External Block (C block). For more information on block types, refer to

Section 2.

Formal Calls vs. Informal Calls

PACSystems supports formal and informal calls in ST.

Formal Calls Informal Calls

Input parameter assignments use the ‘:=’

notation while output assignments use the ‘=>’

notation.

Input and output parameters are listed in

parentheses.

Optional parameters can be omitted. Parameters cannot be omitted.

Parameters can be in any order. Parameters must be in the correct order as follows:

Inputs

Instance location (if required)

Length parameter (if required)

Outputs, starting with the last output

parameter.

The ENO parameter is specified in a formal

function or block call.

All built-in functions and user-defined blocks

have an optional ENO output parameter

indicating the success of the function or block.

Either ENO or Y0 can be used as this output

parameter name.

The ENO parameter is not specified in an informal

function or block call.

Format of Formal Function Call

FunctionName(IN1 := inparam1, IN2 := inparam2, OUT1 => outparam1, ENO =>

enoparam);

Format of Informal Function Call

FunctionName(inparam1, inparam2, outparam1);

Example

This code f ragment shows the TAN function call.

TAN(AnyReal, Result);

CPU Programmer’s Reference Manual Section 8
GFK-2950M Dec 2024

Structured Text (ST) Programming 421

8.2.3 RETURN Statement
The return statement provides an early exit f rom a block. For example, in the following

lines of code the third line will never execute. The variable a will have the value 4.

a := 4;

RETURN;

a := 5;

8.2.4 IF Statement
The IF construct offers conditional execution of a statement list. The condition is

determined by result of a Boolean expression. The IF construct includes two optional

parts, ELSE and ELSIF, that provide conditional execution of alternate statement list(s).

One ELSE and any number of ELSIF sections are allowed per IF construct.

Format

IF BooleanExpression1 THEN

 StatementList1;

[ELSIF BooleanExpression2 THEN (*Optional*)

 StatementList2;]

[ELSE (*Optional*)

 StatementList3;]

END_IF;

Where:

BooleanExpression Any expression that resolves to a Boolean value.

StatementList Any set of structured text statements.

Note: Either ELSIF or ELSEIF can be used for the else if clause in an IF statement.

CPU Programmer’s Reference Manual Section 8
GFK-2950M Dec 2024

Structured Text (ST) Programming 422

Operation

The following sequence of evaluation occurs if both optional parts are present:

• If BooleanExpression1 is TRUE (1), StatementList1 is executed. Program execution

continues with the statement following the END_IF keyword.

• If BooleanExpression1 is FALSE (0) and BooleanExpression2 is TRUE (1),

StatmentList2 is executed. Program execution continues with the statement following

the END_IF keyword.

• If both Boolean expressions are FALSE (0), StatmentList3 is executed. Program

execution continues with the statement following the END_IF keyword.

If an optional part is not present, program execution continues with the statement

following the END_IF keyword.

Example

The following code fragment puts text into the variable Status, depending on the value

of I/O point input value.

IF Input01 < 10.0 THEN

 Status := Low_Limit_Warning;

ELSIF Input02 > 90.0 THEN

 Status := Upper_Limit_Warning;

ELSE

 Status := Limits_OK;

END_IF;

CPU Programmer’s Reference Manual Section 8
GFK-2950M Dec 2024

Structured Text (ST) Programming 423

8.2.5 CASE Statement
The CASE …. OF construct offers conditional execution of statement lists. It uses the

value of an ST integer expression to determine whether to execute a statement list. The

statement list to be executed can be selected f rom multiple statement lists, depending

on the value of the associated integer expression.

Conditions can be expressed as a single value, a list of values, or a range of values. The

single-value, list of values, or range forms can be used by themselves or in combination.

The optional ELSE keyword can be used to execute a statement list when the associated

value does not meet any of the specif ied conditions.

You can have a maximum of 1024 cases in a single CASE … OF construct. Additional

cases can be handled by adding the ELSE keyword to the construct and specifying a

nested CASE … OF construct or an IF … THEN construct af ter the ELSE.

The number of nested CASE … OF constructs and the number of levels are limited by

the memory in your computer.

The number of constants and constant ranges in a single conditional statement is limited

by the memory in your computer.

Format

CASE Integer_Expression OF

 Int1: (*Single Value*)

 StatementList_1;

 Int2,Int3,Int4: (*List of Values*)

 StatementList_2;

 Int5..Int6: (*Range of Values*)

 StatementList_3;

[ELSE (*Optional*)

 StatementList_Else;]

END_CASE;

Where:

Block Description

Integer_Expression An ST expression that resolves to an integer (INT, DINT or

UINT) value.

Int A constant integer value.

StatementList_1 …

StatementList_n

Structured Text statements.

Operation

The Int values are compared to Integer_Expression. The statement list following the first

Int value that matches Integer_Expression is executed. If the optional ELSE keyword is

used and no Int value matches Integer_Expression, the statement list following ELSE is

executed. Otherwise, no statement list is executed.

Requirements for Conditional Statements

CPU Programmer’s Reference Manual Section 8
GFK-2950M Dec 2024

Structured Text (ST) Programming 424

• All constants must be of type INT, DINT or UINT.

• In range declarations, the beginning value must be less than the ending value

(reading f rom lef t to right). For example, 10..3 and 5..5 are invalid.

• Overlapping values in different case conditions are not allowed. For example, 5..10

and 7 cannot be specif ied as conditions in the same CASE … OF construct.

Examples

The following code f ragment assigns a value to the variable ColorVariable.

CASE ColorSelection OF

 0: ColorVariable:= Red;

 1: ColorVariable:= Yellow;

 2,3,4: ColorVariable:= Green;

 5..9: ColorVariable:= Blue;

ELSE ColorVariable:= Violet;

END_CASE;

The following code f ragment uses a nested CASE…OF…END_CASE construct.

CASE ColorSelection OF

 0: ColorVariable:= Red;

 1: ColorVariable:= Yellow;

 2,3,4: ColorVariable:= Green;

 5..9: ColorVariable:= Blue;

ELSE

 CASE ColorSelection OF

 10: ColorVariable:= Violet;

 ELSE ColorVariable:= Black;

 END_CASE;

 ColorError: 1;

END_CASE;

CPU Programmer’s Reference Manual Section 8
GFK-2950M Dec 2024

Structured Text (ST) Programming 425

8.2.6 FOR … DO Statements
The FOR loop repeatedly executes a statement list contained within the

FOR…DO…END_FOR construct. It is useful when the number of iterations can be

predicted in advance, for example to initialize an array. The number of iterations is

determined by the value of a control variable which is incremented (or decremented)

f rom an initial value to a f inal value by the FOR statement.

By default, each iteration of the FOR statement changes the value of the control variable

by 1. The optional BY keyword can be used to specify an increment or decrement of the

control variable by specifying a (non-zero) positive or negative integer or an expression

that resolves to an integer.

FOR loops can be nested to a maximum of ten levels.

Format

FOR Control_Variable := Start_Value TO End_Value [BY Step_Value]

DO

 Statement list;

END_FOR;

Where:

Block Description

Control_Variable The control variable. Can be an INT, DINT or UINT variable or parameter.

Start_Value The starting value of the control variable. Must be an expression, variable, or

constant of the same data type as Int_Variable.

End_Value The ending value of the control variable. Must be an expression, variable, or

constant of the same data type as Int_Variable.

Step_Value (Optional) The increment or decrement value for each iteration of the loop. Must be

an expression, variable, or constant of the same data type as Int_Variable. If

Step_Value is not specified, the control variable is incremented by 1.

Statement list Any list of Structured Text statements.

Operation

The values of Start_Value, End_Value and Step_Value are calculated at the beginning

of the FOR loop. On the f irst iteration, Control_Variable is set to Start_Value.

At the beginning of each iteration, the termination condition is tested. If it is satisfied,

execution of the loop is complete and the statements after the loop will proceed. If the

termination condition is not satisfied, the statements within the FOR…END_FOR

construct are executed. At the end of each iteration, the value of Control_Variable is

incremented by Step_Value (or 1 if Step_Value is not specif ied).

CPU Programmer’s Reference Manual Section 8
GFK-2950M Dec 2024

Structured Text (ST) Programming 426

The termination condition of a FOR loop depends on the sign of the step value.

Step Value Termination Condition

> 0 Control_Variable > End_Value

< 0 Control Variable < End Value

0 None. A termination condition is never reached and the loop will repeat infinitely.

As with the other iterative statements (WHILE and REPEAT), loop execution can be

prematurely halted by an EXIT statement.

To avoid inf initely repeating or unpredictable loops, the following precautions are

recommended:

• Do not allow the statement list logic within the FOR loop to modify the control variable.

• Do not use the control variable in logic outside the FOR loop.

Examples

The following code fragment initializes an array of 100 elements starting at %R1000

(given that R1000 is at %R1000) by assigning a value of 10 to all array elements.

FOR R1000 := 1 TO 100 DO

 @R1000 := 10;

END_FOR;

The following code fragment assigns the values of an I/O point to array elements over

ten I/O scans. The last entry is put in the array element with the smallest index.

FOR R1000 := 10 TO 1 BY -1 DO

 @R1000 := Input01;

END_FOR;

CPU Programmer’s Reference Manual Section 8
GFK-2950M Dec 2024

Structured Text (ST) Programming 427

8.2.7 WHILE Statement
The WHILE loop repeatedly executes (iterates) a statement list contained within the

WHILE…END_WHILE construct as long as a specified condition is TRUE (1). It checks

the condition f irst, then conditionally executes the statement list. This looping construct

is useful when the statement list does not necessarily need to be executed.

Format

WHILE <BooleanExpression> DO
 <StatementList>;
END_WHILE;

Where:

BooleanExpression Any expression that resolves to a Boolean value.

StatementList Any set of Structured Text statements.

Operation

If BooleanExpression is FALSE (0), the loop is immediately exited; otherwise, if the

BooleanExpression is TRUE (1), the StatementList is executed and the loop repeated.

The statement list may never execute, since the Boolean expression is evaluated at the

beginning of the loop.

Note: It is possible to create an infinite loop that will cause the watchdog timer to expire.

Avoid infinite loops.

Example

The following code fragment increments J by a value of 2 if J is less than or equal to 100.

WHILE J <= 100 DO

 J := J + 2;

END_WHILE;

CPU Programmer’s Reference Manual Section 8
GFK-2950M Dec 2024

Structured Text (ST) Programming 428

8.2.8 REPEAT Statement
The REPEAT loop repeatedly executes (iterates) a statement list contained within the

REPEAT…END_REPEAT construct until an exit condition is satisfied. It executes the

statement list f irst, then checks for the exit condition. This looping construct is useful

when the statement list needs to be executed at least once.

Format

REPEAT

 StatementList;

UNTIL BooleanExpression END_REPEAT;

Where:

BooleanExpression Any expression that resolves to a Boolean value.

StatementList Any set of Structured Text statements.

Operation

The StatementList is executed. If the BooleanExpression is FALSE (0), then the loop is

repeated; otherwise, if the BooleanExpression is TRUE (1), the loop is exited. The

statement list executes at least once, since the BooleanExpression is evaluated at the

end of the loop.

Note: It is possible to create an infinite loop that will cause the watchdog timer to expire.

Avoid infinite loops.

Example

The following code fragment reads values f rom an array until a value greater than 5 is

found (or the upper bound of the array is reached). Since at least one array value must

be read, the REPEAT loop is used. All variables in this example are of type DINT, UINT,

or INT.

Index :=1;

REPEAT

 Value:= @Index;

 Index:=Index+1;

UNTIL Value > 5 OR Index >= UpperBound END_REPEAT;

CPU Programmer’s Reference Manual Section 8
GFK-2950M Dec 2024

Structured Text (ST) Programming 429

8.2.9 ARG_PRES Statement
The ARG_PRES function determines whether an input parameter value was present

when the function block instance of the parameter was invoked. This may be necessary

if the parameter is optional (pass by value).

This function must be called from a function block instance or a parameterized block.

Format

ARG_PRES (IN :=In1, Q:>Out1, ENO:>Out2);

Where:

Block Description

In1 Must be an input parameter of the function block that contains the ARG_PRES

instruction. Cannot be an array element or structure element. An alias to a parameter

should resolve only to the parameter name.

 Can be a BOOL, DINT, DWORD, INT, REAL, UINT, WORD variable, variable array

head name or variable array head name element [000]. Input or output parameter

value of a function block instance or a parameterized block

Out2 A BOOL variable. True if the parameter is present, otherwise false.

Note: ENO is an optional BOOL output parameter. If ENO is used in a statement that uses

the formal convention, the state of Out2 is set to 1 (call was successful) or 0 (call

failed).

Example

The parameter TempVal is an input to the function block CheckTemp. In the following

code f ragment, ARG_PRES is used to determine whether a value existed for the

parameter TempVal when an instance of CheckTemp was invoked. If TempVal had a

value, the BOOL output Temp_Pres is set to 1.

ARG_PRES (TempVal, Temp_Pres);

CPU Programmer’s Reference Manual Section 8
GFK-2950M Dec 2024

Structured Text (ST) Programming 430

8.2.10 Exit Statement
The EXIT statement is used to terminate and exit from a loop (FOR, WHILE, REPEAT)

before it would otherwise terminate. Program execution resumes with the statement

following the loop terminator (END_FOR, END_WHILE, END_REPEAT). An EXIT

statement is typically used within an IF statement.

Format

EXIT;

Where:

ConditionForExiting An expression that determines whether to terminate early.

Example

The following code f ragment shows the operation of the EXIT statement. When the

variable number equals 10, the WHILE loop is exited and execution continues with the

statement immediately following END_WHILE.

while (1) do

 a := a + 1;

 IF (a = 10) THEN

 EXIT;

 END_IF;

END_WHILE;

CPU Programmer’s Reference Manual Section 8
GFK-2950M Dec 2024

Structured Text (ST) Programming 431

8.2.11 Data_Qual Function Blocks for Structured Text

The below functions implement the CHECK_DATA_QUAL function blocks. These are

only supported using the structured text language (ST). They are used to determine
whether a data item was transmitted without error f rom an input device into an I/O
module or f rom an I/O module to an output device.

Function Blocks

Data_qual_bool() Data_qual_Byte()
Data_qual_Word() Data_qual_Dword()
Data_qual_Int() Data_qual_Uint()
Data_qual_Dint() Data_qual_Real()

Argument1(IN) : Variable to check (DAT)

The address of a non-Boolean variable. Note that the Boolean variable may be in word
or bit-oriented memory. It may even be data f low, since non-I/O fault checks are
meaningful for data f low.

Argument2(IN) : Checks to perform (CHK)

The bit mask representing the fault checks to be performed.

Argument3(OUT) : Detected faults (FLT)

The bit mask representing the fault checks that were requested and failed. A '1' will be
set for each failed fault check.

Argument4(OUT): Output PFL(ENO)

Function block parameter status indicating status of FBK PFL output:

Positive PFL if no overflow occurred and no invalid operands, negative PFL otherwise.

Example: Data_qual_bool(DAT:=IOSYm, CHK:=Var_Word_CHK,
FLT=>Var_Word_Fault, ENO=>QBOOL);

8.3 PACSystems Simulator Structured Text (ST)

Programming
The following sections outline Structured Text (ST) functionality differences for the

PACSystems Simulator.

8.3.1 Math Functions
Refer to Section 4.14.1 Math Functions.

8.3.2 Control Functions
Refer to Section 4.14.3 Control Functions.

8.3.3 Data Move Functions
Refer to Section 4.14.4 Data Move Functions.

CPU Programmer’s Reference Manual Section 8
GFK-2950M Dec 2024

Structured Text (ST) Programming 432

8.3.4 Timers
Refer to Section 4.14.5 Timers.

8.3.5 Communication Blocks
Refer to Section 4.14.7 Communication Blocks .

CPU Programmer’s Reference Manual Section 9
GFK-2950M Dec 2024

Diagnostics 433

Section 9 Diagnostics
This chapter explains the PACSystems fault handling system, provides definitions of fault

extra data, and suggests corrective actions for faults.

Faults occur in the control system when certain failures or conditions happen that affect

the operation and performance of the system. Some conditions, such as the loss of an

I/O module or rack, may impair the ability of the PACSystems controller to control a

machine or process. Other conditions, such as when a new module comes online and

becomes available for use, may be displayed to inform or alert the user.

Any detected fault is recorded in the Controller Fault Table or the I/O Fault Table, as

applicable.

Information in this chapter is organized as follows:

• Fault Handling Overview

• Using the Fault Tables

• System Handling of Faults

• Controller Fault Descriptions and Corrective Actions
• I/O Fault Descriptions and Corrective Actions

CPU Programmer’s Reference Manual Section 9
GFK-2950M Dec 2024

Diagnostics 434

9.1 Fault Handling Overview
The PACSystems CPU detects three classes of faults:

Fault Class Examples

Internal Failures (Hardware) Non-responding modules

Failed battery

Failed Energy Pack

(CPE302/CPE305/CPE310/CPE330 models)

Memory checksum errors

External I/O Failures (Hardware) Loss of rack or module

Addition of rack or module

Loss of Genius I/O block

Operational Failures Communication failures

Configuration failures

Password access failures

9.1.1 System Response to Faults
Hardware failures require that either the system be shut down or the failure be tolerated.

I/O failures may be tolerated by the control system, but they may be intolerable by the

application or the process being controlled. Operational failures are normally tolerated.

Faults have three attributes:

Fault Description

Fault Table Affected I/O Fault Table

Controller Fault Table

Fault Action Fatal

Diagnostic

Informational

Configurability Configurable

Non-configurable

9.1.2 Fault Tables
The PACSystems CPU maintains two fault tables, the Controller Fault Table for internal

CPU faults and the I/O Fault Table for faults generated by I/O devices (including I/O

controllers). For more information, refer 9.2, Using the Fault Tables.

CPU Programmer’s Reference Manual Section 9
GFK-2950M Dec 2024

Diagnostics 435

9.1.3 Fault Actions and Fault Action Configuration
Fatal faults cause the fault to be recorded in the appropriate table, diagnostic variables

to be set, and the system to be stopped. Only fatal faults cause the system to stop.

Diagnostic faults are recorded in the appropriate table, and any diagnostic variables are

set. Informational faults are only recorded in the appropriate table.

Fault Action Response by CPU

Fatal Log fault in fault table.

Set fault references.

Go to STOP/Fault Mode.

Diagnostic Log fault in fault table.

Set fault references.

Informational Log fault in fault table.

The hardware configuration can be used to specify the fault action of some fault groups.

For these groups, the fault action can be configured as either fatal or diagnostic. When

a fatal or diagnostic fault within a conf igurable group occurs, the CPU executes the

conf igured fault action instead of the action specif ied within the fault.

Note: The fault action displayed in the expanded fault details indicates the fault action

specified by the fault that was logged, but not necessarily the executed fault action.

To determine what action was executed for a particular fault in a configurable fault

group, you must refer to the hardware configuration settings.

Faults that are part of configurable fault groups:

Fault Groups

Fault Action Displayed in

Fault Table
Informational Diagnostic Fatal

Fault Action Executed Informational

Diagnostic or Fatal.

Determined by action

selected in Hardware

Configuration.

Diagnostic or Fatal.

Determined by action

selected in Hardware

Configuration.

Faults that are part of non-configurable fault groups:

Fault Groups

Fault Action Displayed in Fault Table Informational Diagnostic Fatal

Fault Action Executed Informational Diagnostic Fatal

CPU Programmer’s Reference Manual Section 9
GFK-2950M Dec 2024

Diagnostics 436

9.2 Using the Fault Tables
To display the fault tables in Logic Developer sof tware,

1. Go online with the PACSystems.

2. Select the Project tab in the Navigator, right click the Target node and choose

Diagnostics. The Fault Table Viewer appears.

The Controller Fault Table and the I/O Fault Table display the following information:

Information Description

Controller Time/Date The current date and time of the CPU.

Last Cleared The date and time faults were last cleared from the fault table. This information

is maintained by the PACSystems controller.

Status Displays Updating while the programmer is reading the fault table.

Status is Online when update is complete.

Total Faults The total number of faults since the table was last cleared.

Entries Overflowed The number of entries lost because the fault table has overflowed since it was

cleared. Each fault table can contain up to 64 faults.

Note: Fault tables do not persist f rom one running PACSystems Simulator to a

newly launched PACSystems Simulator.

9.2.1 Controller Fault Table
The Controller Fault Table displays CPU faults such as password violations,

conf iguration mismatches, parity errors, and communications errors.

Figure 261 Controller Fault Table Display

CPU Programmer’s Reference Manual Section 9
GFK-2950M Dec 2024

Diagnostics 437

The Controller Fault Table provides the following information for each fault:

Fault Description

Location Identifies the location of the fault by rack.slot.

Description Corresponds to a fault group, which is identified in the fault Details.

Date/Time The date and time the fault occurred based on the CPU clock.

Details To view detailed information, click the fault entry. Refer to Viewing Controller

Fault Details for more information.

Viewing Controller Fault Details
Note: The fault action displayed in the expanded fault details indicates the fault action specified

by the fault that was logged, but not necessarily the executed fault action. To determine

what action was executed for a particular fault in a configurable fault group, you must

refer to the hardware configuration settings.

To see controller fault details, click the fault entry. The detailed information box for the

fault appears. (To close this box, click the fault.)

Figure 262: Detail Information for Controller Fault Entry

The detailed information for controller faults includes the following:

Fault Description

Error Code Further identifies the fault. Each fault group has its own set of error codes.

Group Group is the highest classification of a fault and identifies the general category

of the fault. The fault description text displayed by your programming software

is based on the fault group and the error codes.

Action Fatal, Diagnostic, or Informational. For definitions of these actions, refer to

Fault Actions and Fault Action Configuration.

Task Number Not used for most faults. When used, provides additional information for

Technical Support representatives.

Fault Extra Data Provides additional information for diagnostics by Technical Support

engineers. Explanations of this information are provided as appropriate for

specific faults in

Controller Fault Descriptions and Corrective Actions below.

CPU Programmer’s Reference Manual Section 9
GFK-2950M Dec 2024

Diagnostics 438

User-Defined Faults
User-def ined faults can be logged in the Controller Fault Table. When a user-defined

fault occurs, it is displayed in the appropriate fault table as Application Msg (error_code):

and may be followed by a descriptive message up to 24 characters. The user can define

all characters in the descriptive message. Although the message must end with the null

character, e.g., zero (0), the null character does not count as one of the 24 characters.

If the message contains more than 24 characters, only the f irst 24 characters are

displayed.

Certain user-def ined faults can be used to set a system status reference (%SA0081–

%SA0112).

User-def ined faults are created using SVC_REQ 21: User-Defined Fault Logging which

is described in Section 6.

Note: When a user-defined fault is displayed in the Controller Fault table, a value

of -32768 (8000 hex) is added to the error code. For example, the error code 5 will

be displayed as -32763.

9.2.2 I/O Fault Table
The I/O Fault Table displays I/O faults such as circuit faults, address conflicts, forced

circuits, I/O module addition/loss faults and I/O bus faults.

The fault table displays a maximum of 64 faults. When the fault table is full, it displays

the earliest 32 faults (33—64) and the last 32 faults (1—32). When another fault is

received, fault 32 is shoved out of the table. In this way, the first 32 faults are preserved

for the user to view.

Figure 263 I/O Fault Table Display

CPU Programmer’s Reference Manual Section 9
GFK-2950M Dec 2024

Diagnostics 439

The I/O Fault Table provides the following information for each fault:

Fault Description

Location Identifies the location of the fault by rack.slot location, and sometimes bus and buss

address.

CIRC No. When applicable, identifies the specific I/O point on the module.

Variable Name If the fault is on a point that is mapped to an I/O variable, and the variable is set to

publish (either internal or external), the I/O Fault Table displays the variable name.

Unpublished I/O variables will not be displayed in this field.

Ref. Address If the fault is on a point that is mapped to a reference address, this field identifies the

I/O memory type and location (offset) that corresponds to the point experiencing the

fault. When a Genius device fault or local analog module fault occurs, the reference

address refers to the first point on the block where the fault occurred.

Note: The Reference Address field displays 16 bits and %W memory

has a 32-bit range. Addresses in %W are displayed correctly for

offsets in the 16-bit range (≤65,535). For %W offsets greater than

16 bits, the I/O Fault Table displays a blank reference address.

Fault Category Specifies a general classification of the fault.

Fault Type Consists of subcategories under certain fault categories. Set to zero when not

applicable to the category.

Date/Time The date and time the fault occurred based on the CPU clock.

Details To view detailed information, click the fault entry. Refer to Viewing I/O Fault Details

Viewing I/O Fault Details

for more information.

Viewing I/O Fault Details

To see I/O fault details, click the fault entry. The detailed information box for the fault

appears. (To close this box, click the fault.)

Figure 264 : I/O Fault Table Fault Entry Detail Display

CPU Programmer’s Reference Manual Section 9
GFK-2950M Dec 2024

Diagnostics 440

The detailed information for I/O faults includes:

Fault Description

I/O Bus When the module in the slot is a Genius Bus Controller (GBC), this number is

always one.

Bus Address The serial bus address of the Genius device that reported or has the fault.

Point Address Identifies the point on the I/O device that has the fault when the fault is a point -type

fault.

Group Fault group is the highest classification of a fault. It identifies the general category

of the fault.

Action Fatal, Diagnostic, or Informational. For definitions of these actions, refer to

Fault Actions and Fault Action Configuration.

Category Identifies the category of the fault.

Fault Type Identifies the fault type by number. Set to zero when not applicable to the category.

Fault Extra Data Provides additional information for diagnostics by Technical Support engineers.

Explanations of this information are provided as appropriate for specific faults in

I/O Fault Descriptions and Corrective Actions.

Fault Description Provides a specific fault code when the I/O fault category is a circuit fault (discrete

circuit fault, analog circuit fault, low-level analog fault) or module fault. It is set to

zero for other fault categories.

CPU Programmer’s Reference Manual Section 9
GFK-2950M Dec 2024

Diagnostics 441

9.3 System Handling of Faults
The system fault references listed below can be used to identify the specific type of fault

that has occurred. (A complete list of System Status References is provided in Section

3.) Refer to Section 3.13.3 System Status References for details on PACSystems

Simulator system fault references.

System

Fault

Reference

Address Description

#ANY_FLT %SC0009 Any new fault in either table since the last power-up or clearing

of the fault tables

#SY_FLT %SC0010 Any new system fault in the Controller Fault Table since the

last power-up or clearing of the fault tables

#IO_FLT %SC0011 Any new fault in the I/O Fault Table since the last power-up or

clearing of the fault tables

#SY_PRES %SC0012 Indicates that there is at least one entry in the Controller Fault

Table

#IO_PRES %SC0013 Indicates that there is at least one entry in the I/O Fault Table

#HRD_FLT %SC0014 Any hardware fault

#SFT_FLT %SC0015 Any software fault

On power-up, the system fault references are cleared. If a fault occurs, the positive

contact transition of any affected reference is turned on the sweep after the fault occurs.

The system fault references remain on until both fault tables are cleared, or All Memory

in the CPU is cleared.

9.3.1 System Fault References
When a system fault reference is set, additional fault references are also set. These other

types of faults are listed in Fault References for Configurable Faults below and Note: If

the fault action for a fault logged to the fault table is informational, the configured action

is not used. For example, if the logged fault action for an SBUS_ERR is informational,

but you conf igure it as fatal, the action is still informational.

#LST_SCN Fault References for Non-Configurable Faults in the section which follows.

Fault References for Configurable Faults

Fault

(Default

Action)

Address Description May Also Be Set

#SBUS_ER

(diagnostic)

%SA0032 System bus error. All system bus

error faults are logged as

informational.

#HRD_FLT, #SY_PRES, #SY_FLT

#SFT_IOC
13

(diagnostic)

%SA0029 Non-recoverable software error

in an I/O Controller (IOC).

#IO_FLT, #IO_PRES, #SFT_FLT

13

 The #SFT_IOC software fault will have the same action as what you set for #LOS_IOC.

CPU Programmer’s Reference Manual Section 9
GFK-2950M Dec 2024

Diagnostics 442

Fault

(Default

Action)

Address Description May Also Be Set

#LOS_RCK
14

(diagnostic)

%SA0012 Loss of rack (BRM failure, loss of

power) or missing a configured

rack.

#SY_FLT, #SY_PRES,

#IO_FLT, #IO_PRES

#LOS_IOC
15

(diagnostic)

%SA0013 Loss of I/O Controller or missing

a configured Bus Controller.

#IO_FLT, #IO_PRES

#LOS_IOM

(diagnostic)

%SA0014 Loss of I/O module (does not

respond), or missing a

configured I/O module.

#IO_FLT, #IO_PRES

#LOS_SIO

(diagnostic)

%SA0015 Loss of intelligent module (does

not respond), or missing a

configured module.

#SY_FLT, #SY_PRES

#IOC_FLT

(diagnostic)

%SA0022 Non-fatal bus or I/O Controller

error, more than 10 bus errors in

10 seconds. (Error rate is

configurable.)

#IO_FLT, #IO_PRES

#CFG_MM

(fatal)

%SA0009 Configuration mismatch. Wrong

module type detected. The CPU

does not check the configuration

parameter settings for individual

modules such as Genius I/O

blocks.

#SY_FLT, #SY_PRES

#OVR_TMP

(diagnostic)

%SA0008 CPU temperature has exceeded

its normal operating

temperature.

#SY_FLT, #SY_PRES

Note: If the fault action for a fault logged to the fault table is informational, the
conf igured action is not used. For example, if the logged fault action for an SBUS_ERR
is informational, but you conf igure it as fatal, the action is still informational.

#LST_SCN Fault References for Non-Configurable Faults

Fault Address Description Result

#PS_FLT %SA0005 Power supply fault Sets #SY_FLT, #SY_PRES

#HRD_CPU

(fatal)

%SA0010 CPU hardware fault (such as failed

memory device or failed serial port).

Sets #SY_FLT, #SY_PRES,

#HRD_FLT

#HRD_SIO

(diagnostic)

%SA0027 Non-fatal hardware fault on any module in

the system, such as failure of a serial port

on a LAN interface module.

Sets #SY_FLT, #SY_PRES,

#HRD_FLT

#PNIO_

ALARM

%SA0030 A diagnostic PROFINET alarm has been

received and an I/O fault has been logged

in group 28.

Sets #ANY_FLT, #IO_FLT,

#IO_PRES

#SFT_SIO

(diagnostic)

%SA0031 Non-recoverable software error in a LAN

interface module.

Sets #SY_FLT, #SY_PRES,

#SFT_FLT

#PB_SUM

(fatal)

%SA0001 Program or block checksum failure during

power-up or in RUN Mode.

Sets #SY_FLT, #SY_PRES

#LOW_BAT

(diagnostic)

%SA0011 The low battery indication is not supported

for all CPU versions. For details, refer to

Battery Status (Group 18).

Sets #SY_FLT, #SY_PRES

#OV_SWP

(diagnostic)

%SA0002 Constant sweep time exceeded. Sets #SY_FLT, #SY_PRES

14

When a Loss of Rack or Addition of Rack fault is logged, individual loss or add faults for each module in that rack are usual ly not

generated.
15

Even if the #LOS_IOC fault is configured as Fatal, the CPU will not go to STOP/FAULT unless both GBCs of an internal

redundant pair fail.

CPU Programmer’s Reference Manual Section 9
GFK-2950M Dec 2024

Diagnostics 443

Fault Address Description Result
#SY_FULL

#IO_FULL

(diagnostic)

%SA0022 Controller fault table full (64 entries).

I/O Fault Table full (64 entries).

Sets #SY_FLT, #SY_PRES,

#IO_FLT, #IO_PRES

#APL_FLT

(diagnostic)

%SA0003 Application fault. Sets #SY_FLT, #SY_PRES

#ADD_RCK
14

(diagnostic)

%SA0017 New rack added, extra rack, or previously

faulted rack has returned.

Sets #SY_FLT, #SY_PRES

#ADD_IOC

(diagnostic)

%SA0018 Extra IOC, previously faulted I/O Controller

is no longer faulted.

Sets #IO_FLT, #IO_PRES

#ADD_IOM

(diagnostic)

%SA0019 Extra IO module, or previously faulted I/O

module is no longer faulted.

Sets #IO_FLT, #IO_PRES

#ADD_SIO

(diagnostic)

%SA0020 New intelligent module is added, or

previously faulted module no longer

faulted.

Sets #SY_FLT, #SY_PRES

#IOM_FLT

(diagnostic)

%SA0023 Point or channel on an I/O module; a partial

failure of the module.

Sets #IO_FLT, I#O_PRES

#NO_PROG

(information)

%SB0009 No application program is present at

power-up. Should only occur the first time

the PACSystems controller is powered up

or if the user memory containing the

program fails.

CPU will not go to RUN

Mode; it continues executing

STOP Mode sweep until a

valid program is loaded. This

can be a null program that

does nothing. Sets #SY_FLT

and #SY_PRES.

#BAD_RAM

(fatal)

%SB0010 Corrupted program memory at power-up.

Program could not be read and/or did not

pass checksum tests.

Sets #SY_FLT and

#SY_PRES.

#WIND_ER

(information)

%SB0001 Window completion error. Servicing of

Controller Communications or Logic

Window was skipped. Occurs in Constant

Sweep mode.

Sets #SY_FLT and

#SY_PRES.

#BAD_PWD

(information)

%SB0011 Change of privilege level request to a

protection level was denied; bad

password.

Sets #SY_FLT and

#SY_PRES.

#NUL_CFG

(fatal)

%SB0012 No configuration present upon transition to

RUN Mode. Running without a

configuration is equivalent to suspending

the I/O scans.

Sets #SY_FLT and

#SY_PRES.

#SFT_CPU

(fatal)

%SB0013 CPU software fault. A non-recoverable

error has been detected in the CPU. May

be caused by Watchdog Timer expiring.

CPU immediately transitions

to STOP/Halt Mode. The only

activity permitted is

communication with the

programmer. To be cleared,

controller power must be

cycled. Sets SY_FLT,

SY_PRES, and SFT_FLT.

#STOR_ER

(fatal)

%SB0014 Download of data to CPU from the

programmer failed; some data in CPU

may be corrupted.

CPU will not transition to RUN

Mode. This fault is not cleared

at power-up, intervention is

required to correct it. Sets

SY_FLT and SY_PRES.

CPU Programmer’s Reference Manual Section 9
GFK-2950M Dec 2024

Diagnostics 444

9.3.2 Using Fault Contacts
Fault (-[F]-) and no-fault (-[NF]-) contacts can be used to detect the presence of I/O faults

in the system. These contacts cannot be overridden. The following table shows the state

of fault and no-fault contacts.

Condition [F] [NF]

Fault Present

Fault Absent

ON

OFF

OFF

ON

An NF contact will be ON (F contact will be OFF) when the referenced I/O point is not

faulted, or the referenced I/O point does not exist in the hardware conf iguration.

Fault Locating References (Rack, Slot, Bus, Module)

The PACSystems CPU supports reserved fault names for each rack, slot, bus, and

module. By programming these names on the FAULT and NOFLT contact instructions,

logic can be executed in response to faults associated with conf igured racks and

modules.

Fault Locating Reference Name Format

These fault names can only be programmed on the FAULT and NOFLT contacts. The

reserved fault names are always available. It is not necessary to enable a special option,

such as point faults.

Fault Reference

Type

Reserved

Name

Comment

Rack #RACK_000r Where r is rack number 0 to 7.

Slot #SLOT_0rss Where r is rack number 0 to 7 and

 ss is slot number 0 to 31.

Bus #BUS_0rssb

(Genius only)

Where r is rack number 0 to 7,

 ss is slot number 0 to 31, and

 b is the bus number (1 or 2).

Module #M_rssbmmm

(Genius only)

Where r is rack number 0 to 7,

 ss is slot number 0 to 31,

 b is the bus number (1 or 2), and

 mmm is the Bus Address number 000 to 255.

These fault names do not correspond to %SA, %SB, %SC, or to any other reference

type. They are mapped to a memory area that is not user-accessible. Only the name is

displayed.

CPU Programmer’s Reference Manual Section 9
GFK-2950M Dec 2024

Diagnostics 445

Fault Reference Name Examples:

Figure 265

#RACK_0001 represents rack 1.

#SLOT_0105 represents rack 1, slot 5.

#BUS_02041 represents rack 2, slot 4, bus 1.

#M_2061028 represents rack 2, slot 6, bus 1, Genius module 28.

Note: When a slot level failure fault is reported to the fault tables, all bus and module fault

locating references associated with that slot are set (the FAULT contact passes power

flow, and the NOFLT contact does not pass power flow), regardless of what type of

module it is. Conversely, when a slot level reset fault is reported to the fault tables, all

bus and module fault locating references are cleared (the FAULT contact does not pass

power flow, and the NOFLT contact passes power flow).

Behavior of Fault Locating References

At power-up, all fault locating references are cleared in the CPU. When a fault is logged,

the CPU transitions the state of the affected reference(s). The state of the fault reference

remains in the fault state until one of the following actions occurs:

• Both the Controller and the I/O Fault Tables are cleared through your programming

sof tware either by clearing each table individually or clearing the entire CPU memory.

• The associated device (rack, I/O module, or Genius device) is added back into the

system. Whenever an Addition of. . . fault is logged, the CPU initializes all fault

references associated with the device to the NoFlt state. These references remain in

the NoFlt state until another fault associated with the device is reported. (This could

take several seconds for distributed I/O faults, especially if the bus controller has been

reset.)

Note: These fault references are set for informational purposes only. They should not be used

to qualify I/O data. The Alarm Contacts (described in Using Alarm Contacts) may be
used to qualify I/O data. The CPU does not halt execution as a result of setting a fault

locating reference to the Fault state.

The fault references have a cascading effect. If there is a problem in the module located

at rack 5, slot 6, bus 1, module 29, the following fault references are set: RACK_05,

SLOT_0506, BUS_05061, and M_5061029. There will only be one entry in the fault table

to describe the problem with the module. The fault table does not show separate entries

pertaining to the rack, slot, and bus in this case.

If an analog base module (IC697ALG230) is lost, the fault locating reference for that

module is set. The fault locating references for its expander modules (IC697ALG440 and

ALG441) are not set as a result of the loss. Therefore, any fault locating references to

an expander module should also reference the base module to verify that the module or

its base have not been lost.

CPU Programmer’s Reference Manual Section 9
GFK-2950M Dec 2024

Diagnostics 446

9.3.3 Using Point Faults
Point faults pertain to external I/O faults, although they are also set due to the failure of

associated higher-level internal hardware (for example, IOC failure or loss of a rack). To

use point faults, they must be enabled in Hardware Conf iguration on the Memory

parameters tab of the CPU.

When enabled, a bit for each discrete I/O point and a byte for each analog I/O channel

are allocated in CPU memory. The CPU memory used for point faults is included in the

total reference table memory size. The FAULT and NOFLT contacts, described in Using

Alarm Contacts, provide access to the point faults.

The full support of point fault contacts depends on the capability of the I/O module. Some

Series 90-30 modules do not support point fault contacts. The point fault contacts for

these modules remain all off, unless a Loss of I/O Module occurs, in which case the RX3i

CPU turns on all point fault contacts associated with the lost module.

9.3.4 Using Alarm Contacts
High (-[HA]-) and low (-[LA]-) alarm contacts are used to represent the state of the analog

input module comparator function. To use alarm contacts, point faults must f irst be

enabled in Hardware Conf iguration on the Memory parameters tab of the CPU.

The following example logic uses both high and low alarm contacts.

Figure 266

Note: HA and LA contacts do not create an entry in a fault table.

CPU Programmer’s Reference Manual Section 9
GFK-2950M Dec 2024

Diagnostics 447

9.4 Controller Fault Descriptions and Corrective

Actions
Each fault explanation contains a fault description and instructions to correct the fault.
Many fault descriptions have multiple causes. In these cases, the error code and
additional fault information are used to distinguish among fault conditions sharing the
same fault description.

9.4.1 Controller Fault Groups

Group Name Default Fault

Action16

Configurable

1 Loss of or Missing Rack Diagnostic Yes

4 Loss of or Missing Option Module Diagnostic Yes

5 Addition of, or Extra Rack N/A No

8 Reset of, Addition of, or Extra Option Module N/A No

11 System Configuration Mismatch Fatal
17

 Yes

12 System Bus Error Fatal Yes

13 CPU Hardware Failure N/A No

14 Module Hardware Failure N/A No

16 Option Module Software Failure N/A No

17 Program or Block Checksum Failure Group N/A No

18 Battery Status Group N/A No

19 Constant Sweep Time Exceeded N/A No

20 System Fault Table Full N/A No

21 I/O Fault Table Full N/A No

22 User Application Fault N/A No

24 CPU Over Temperature Diagnostic Yes

128 System Bus Failure N/A No

129 No User Program on Power-up N/A No

130 Corrupted User Program on Power-up N/A No

131 Window Completion Failure N/A No

132 Password Access Failure N/A No

134 Null System Configuration for RUN Mode N/A No

135 CPU System Software Failure N/A No

137 Communications Failure During Store N/A No

140 Non-critical CPU Software Event N/A No

9.4.2 Loss of or Missing Rack (Group 1)
The fault group Loss of or Missing Rack occurs when the system cannot communicate

with an expansion rack because the BTM (Bus Transmitter Module) in the main rack

failed, the BRM (Bus Receiver Module) in the expansion rack failed, power failed in the

16

The fault action indicated is not applicable if the fault is displayed as informational. Faults displayed as informational, a lways
behave as informational.
17

 If a system configuration mismatch occurs when the CPU is in RUN Mode, the fault action will be Diagnostic regardless of the
fault configuration. For additional information, refer to Fault Parameters in PACSystems RX7i, RX3i and RSTi-EP CPU Reference

Manual, GFK-2222.

CPU Programmer’s Reference Manual Section 9
GFK-2950M Dec 2024

Diagnostics 448

expansion rack, or the expansion rack was configured in the configuration file but did not

respond during power-up.

Default action: Diagnostic. Conf igurable.

1, Rack Lost

The CPU generates this error when the main rack can no longer communicate with an

expansion rack. The error is generated for each expansion rack that exists in the system.

Correction

1. Power of f the system. Verify that both the BTM and the BRM are seated

properly in their respective racks and that all cables are properly connected

and seated.

2. Replace the cables.

3. Replace the BRM.

4. Replace the BTM.

2, Rack Not Responding

The CPU generates this error when the configuration file stored from the programmer

indicates that a particular expansion rack should be in the system, but none responds

for that rack number.

Correction

1. Check rack number jumper behind power supply—f irst on missing rack and

then on all other racks—for duplicated rack numbers.

2. Update the conf iguration f ile if a rack should not be present.

3. Add the rack to the hardware configuration if a rack should be present and one

is not.

4. Power of f the system. Verify that both the BTM and the BRM are seated

properly in their respective racks and that all cables are properly connected

and seated.

5. Replace the cables.

6. Replace the BRM.

7. Replace the BTM.

8. Check for Termination Plug on last BRM.

9.4.3 Loss of Option Module (Group 4)
The fault group Loss of Option Module occurs when a LAN interface module, BTM, or

BRM fails to respond. The failure may occur at power-up or store of configuration if the

module is missing or during operation if the module fails to respond. This may also occur

due to hot removal of an option module.

Default action: Diagnostic. Conf igurable

3C hex/60 decimal, Module in Firmware Update Mode

The CPU generates this error when it f inds a module in Firmware Update mode. Modules

in this mode will not communicate with the CPU.

CPU Programmer’s Reference Manual Section 9
GFK-2950M Dec 2024

Diagnostics 449

Correction

1. Run the f irmware update utility for the module.

2. Reset the module with the push-button.

3. Power-cycle the entire system.

4. Power-cycle the rack containing the module.

63 hex/99 decimal, Module Hot Removed

The CPU logs this fault when it detects hot removal of an option module such as the LAN

interface module. No correction necessary.

All Others, Module Failure During Configuration

The CPU generates this error when a module fails during power-up or configuration

store.

Correction

1. Power of f the system. Replace the module located in that rack and slot.

2. If the board is located in an expansion rack, verify BTM/BRM cable

connections are tight and the modules are seated properly; verify the

addressing of the expansion rack.

3. Replace the BTM.

4. Replace the BRM.

5. Replace the rack.

CPU Programmer’s Reference Manual Section 9
GFK-2950M Dec 2024

Diagnostics 450

9.4.4 Addition of, or Extra Rack (Group 5)
This fault group occurs when a configured expansion rack with which the CPU could not

communicate comes online or is powered on, or an unconf igured rack is found.

Action: Non-conf igurable.

1, Addition of Rack

2, Extra Rack

Correction

1. Check rack jumper behind power supply for correct setting.

2. Update the conf iguration f ile to include the expansion rack.

Note: No correction necessary if rack was just powered on.

9.4.5 Reset of, Addition of, or Extra Option Module (Group

8)
The fault group Reset of , Addition of, or Extra Option Module occurs when an option

module (LAN interface module, BTM, etc.) comes online, is reset, is hot inserted or a

module is found in the rack but is not conf igured.

Action: Non-conf igurable.

3, LAN Interface Restart Complete, Running Utility

The LAN Interface module has restarted and is running a utility program.

Correction

Refer to the LAN Interface manual, GFK-0868 or GFK-0869 (previously GFK-0533).

7, Extra Option Module

Note: This fault is logged for an RX3i CPE310 that is configured as a CPU310, or a

CPE330 configured as a CPU320, because the RX3i system detects the embedded

Ethernet module as an unconfigured module.

Correction

1. Update the conf iguration f ile to include the module.

2. Remove the module f rom the system.

E Hex/14 Decimal, Option Module Hot inserted

The CPU logs this fault when it detects hot insertion of an option module such as the

LAN interface module. No correction necessary

Note: When configuration is cleared or stored, a reset fault is generated for every

intelligent option module physically present in the system.

CPU Programmer’s Reference Manual Section 9
GFK-2950M Dec 2024

Diagnostics 451

9.4.6 System Configuration Mismatch (Group 11)
The fault group Configuration Mismatch occurs when the module occupying a slot is

dif ferent f rom that specified in the conf iguration f ile. When the GBC generates the

mismatch because of a Genius block, the second byte in the Fault Extra Data f ield

contains the bus address of the mismatched block.

Default action: Fatal. Conf igurable.

Note: If a system configuration mismatch occurs when the CPU is in RUN Mode, the fault

action will be Diagnostic regardless of the fault configuration. See Fault Parameters

in PACSystems RX7i, RX3i and RSTi-EP CPU Reference Manual, GFK-2222.

2, Genius I/O Block Model Number Mismatch

The CPU generates this fault when the configured and physical Genius I/O blocks have

dif ferent model numbers.

Correction

1. Replace the Genius I/O block with one corresponding to the conf igured

module.

2. Update the conf iguration f ile.

Fault Extra Data for Genius I/O Block Model Number Mismatch

Byte Value

[0] FF (flag byte)

[1] Serial Bus address

[2] Installed module type (refer to Installed/Configured Module Types (Bytes 2 and 3

of Fault Extra Data) below).

[3] Configured module type (refer to Installed/Configured Module Types (Bytes 2 and

3 of Fault Extra Data) below).

CPU Programmer’s Reference Manual Section 9
GFK-2950M Dec 2024

Diagnostics 452

Installed/Configured Module Types (Bytes 2 and 3 of Fault Extra

Data)

Number
Description

Decimal Hexadecimal

4 4 Genius Network Interface (GENI)

5 5 Phase B Hand Held Monitor

6 6 Phase B Series Six GBC with Diagnostics

7 7 Phase B Series Six GBC without Diagnostics

8 8 PLCM/Series Six

9 9 PLCM/Series 90-70

10 A Series 90-70 Single Channel Bus Controller

11 B Series 90-70 Dual Channel Bus Controller

12 C Series 90-10 Genius Communications Module

13 D Series 90-30 Genius Communications Module

32 20 High Speed Counter

69 45 Phase B 115Vac 8-point (2 amp) Grouped Block

70 46 Phase B 115Vac/125Vdc 8-point Isolated Block

70 46 Phase B 115Vac/125Vdc 8-point Isolated Block without Failed Switch

71 47 Phase B 220Vac 8-point Grouped Block

72 48 Phase B 24-48Vdc 16-point Proximity Sink Block

72 48 Phase B 24Vdc 16-point Proximity Sink Block

73 49 Phase B 24-48Vdc 16-point Source Block

73 49 Phase B 24Vdc 16-point Proximity Source Block

74 4A Phase B 12-24Vdc 32-point Sink Block

75 4B Phase B 12-24Vdc 32-point Source Block

76 4C Phase B 12-24Vdc 32-point 5V Logic Block

77 4D Phase B 115Vac 16-point Quad State Input Block

78 4E Phase B 12-24Vdc 16-point Quad State Input Block

79 4F Phase B 115/230Vac 16-point Normally Open Relay Block

80 50 Phase B 115/230Vac 16-point Normally Closed Relay Block

81 51 Phase B 115Vac 16-point AC Input Block

82 52 Phase B 115Vac 8-point Low-Leakage Grouped Block

127 7F
Genius Network Adapter (GENA). Refer to

GENA Application ID Numbers below.

131 83 Phase B 115Vac 4-input, 2-output Analog Block

132 84 Phase B 24Vdc 4-input, 2-output Analog Block

133 85 Phase B 220Vac 4-input, 2-output Analog Block

134 86 Phase B 115Vac Thermocouple Input Block

135 87 Phase B 24Vdc Thermocouple Input Block

136 88 Phase B 115Vac RTD Input Block

137 89 Phase B 24/48Vdc RTD Input Block

CPU Programmer’s Reference Manual Section 9
GFK-2950M Dec 2024

Diagnostics 453

Number
Description

Decimal Hexadecimal

138 8A Phase B 115Vac Strain Gauge/mV Analog Input Block

139 8B Phase B 24Vdc Strain Gauge/mV Analog Input Block

140 8C Phase B 115Vac 4-input, 2-output Current Source Analog Block

141 8D Phase B 24Vdc 4-input, 2-output Current Source Analog Block

GENA Application ID Numbers

If the model number is 7F hex (Genius Network Adapter), the block may be one of the

following. (The GENA Application ID is shown for reference.)

Number

Decimal Hexadecimal Description

131 83 115Vac/230Vac/125Vdc Power Monitor Module

132 84 24/48Vdc Power Monitor Module

160 A0 Genius Remote 90-70 Rack Controller

CPU Programmer’s Reference Manual Section 9
GFK-2950M Dec 2024

Diagnostics 454

4, I/O Type Mismatch

The CPU generates this fault when the physical and configured I/O types of Genius

grouped blocks are dif ferent.

Correction

1. Remove the indicated Genius module and install the module indicated in the

conf iguration f ile.

2. Update the Genius module descriptions in the conf iguration f ile to agree with

what is physically installed.

Fault Extra Data for I/O Type Mismatch

Byte Value

[0] FF

[1] Bus address

[2] Installed module’s I/O type

[3] Configured module’s I/O type

Genius Installed Module I/O Types (Byte 2 of Fault Extra Data)

Value Description

01 Input only

02 Output only

03 Combination

CPU Programmer’s Reference Manual Section 9
GFK-2950M Dec 2024

Diagnostics 455

Genius Configured Module I/O Types (Byte 3 of Fault Extra Data)

Value

Description Decimal Hexadecimal

0 0 Discrete input

1 1 Discrete output

2 2 Analog input

3 3 Analog output

4 4 Discrete grouped

5 5 Analog grouped

20 14 Analog in, discrete in

21 15 Analog in, discrete out

24 18 Analog in, discrete grouped

30 1E Analog out, discrete in

31 1F Analog out, discrete out

34 22 Analog out, discrete grouped

50 32 Analog grouped, discrete in

51 33 Analog grouped, discrete out

54 36 Analog grouped, discrete grouped

8, Analog Expander Mismatch

The CPU generates this error when the conf igured and physical Analog Expander

modules have dif ferent model numbers.

Correction

1. Replace the Analog Expander module with one corresponding to conf igured

module.

2. Update the conf iguration f ile.

9, Genius I/O Block Size Mismatch

The CPU generates this error when block configuration size does not match the

conf igured size.

Correction

Reconf igure the block.

CPU Programmer’s Reference Manual Section 9
GFK-2950M Dec 2024

Diagnostics 456

Fault Extra Data for Genius I/O Block Size Mismatch

Byte Value

[0] FF

[1] Bus address

[2] Module’s broadcast data length

[3] Configured module’s broadcast data length

A hex/10 decimal, Unsupported Feature

Conf igured feature not supported by this revision of the module.

Correction

1. Update the module to a revision that supports the feature.

2. Change the module conf iguration.

Fault Extra Data for Unsupported Feature

Byte Value

[8] Contains a reason code indicating what feature is not supported.

 0x5 – GBC revision too old

 0x6 – Only supported in main rack

E hex/14 decimal, LAN Duplicate MAC Address

This LAN Interface module has the same MAC address as another device on the LAN.

The module is of f the network.

Correction

1. Change the module’s MAC address.

2. Change the other device’s MAC address.

F hex/15 decimal, LAN Duplicate MAC Address Resolved

Previous duplicate MAC address has been resolved. The module is back on the network.

This is an informational message. No correction required.

10 hex/16 decimal, LAN MAC Address Mismatch

MAC address programmed by softswitch utility does not match configuration stored from

sof tware.

Correction

Change MAC address on sof tswitch utility or in sof tware.

11 hex/17 decimal, LAN Softswitch/Modem mismatch

Conf iguration of LAN module does not match modem type or configuration programmed

by sof tswitch utility.

Correction

CPU Programmer’s Reference Manual Section 9
GFK-2950M Dec 2024

Diagnostics 457

1. Correct conf iguration of modem type.

2. Consult LAN Interface manual for conf iguration setup.

13 hex/19 decimal, DCD Length Mismatch

Directed control data lengths do not match.

Correction

See Fault Extra Data.

Fault Extra Data for DCD Length Mismatch

Byte Value

[0] FF

[1] Bus address

[2] Module’s directed data length

[3] Configured module’s directed data length

25 hex/37 decimal, Controller Reference Out-of-Range

A reference on either the trigger, disable, or I/O specification is out of the conf igured

limits.

Correction

Modify the incorrect reference to be within range or increase the configured size of the

reference data.

26 hex/38 decimal, Bad Program Specification

The I/O specif ication of a program is corrupted.

Correction

Contact Technical Support.

CPU Programmer’s Reference Manual Section 9
GFK-2950M Dec 2024

Diagnostics 458

27 hex/39 decimal, Unresolved or Disabled Interrupt

Reference

The CPU generates this error when an interrupt trigger reference is either out of range

or disabled in the I/O module’s conf iguration.

Correction

1. Remove or correct the interrupt trigger reference.

2. Update the conf iguration f ile to enable this particular interrupt.

43 hex/67 decimal, Module Configuration Failure

Module conf iguration was not successfully accepted by the module.

Correction

Check fault table for other module-specific faults for possible reasons why the module

did not accept the configuration. Check that the configuration for the module is correct

and valid.

4B hex/75 decimal, ECC jumper is disabled, but should be

enabled

If the CPU redundancy feature is supported and required, the ECC jumper must be in

the enabled position.

Correction

Set the ECC jumper to the enabled position. (See the instructions provided with the

Redundancy CPU f irmware upgrade kit).

4C hex/76 decimal, ECC jumper is enabled, but should be

disabled

If the CPU f irmware does not support redundancy, the ECC jumper must be in the

disabled position.

Correction

Set the ECC jumper to the disabled position (jumper on one pin or removed entirely).

All Others, Module and Configuration do not Match

The CPU generates this fault when the module occupying a slot is not of the same type

that the conf iguration f ile indicates.

Correction

1. Replace the module in the slot with the type indicated in the conf iguration f ile.

2. Update the conf iguration f ile.

9.4.7 System Bus Error (Group 12)
The fault group System Bus Error occurs when the CPU encounters a bus error.

CPU Programmer’s Reference Manual Section 9
GFK-2950M Dec 2024

Diagnostics 459

Default action: Diagnostic. Conf igurable.

4, Unrecognized VME Interrupt Source

The CPU generates this error when a module generates an interrupt not expected by the

CPU (unconf igured or unrecognized).

Correction

Ensure that all modules configured for interrupts have corresponding interrupt

declarations in the program logic.

9.4.8 CPU Hardware Failure (Group 13)
The fault group CPU Hardware occurs when the CPU detects a hardware failure, such

as a RAM failure or a communications port failure.

When a CPU Hardware failure occurs, the OK LED will flash on and off to indicate that

the failure was not serious enough to prevent Controller Communications to retrieve the

fault information.

Action: Non-conf igurable.

6E hex/110 decimal, Time-of-Day Clock not Battery-

Backed

The battery-backed value of the time-of -day clock has been lost.

Correction

1. Replace the battery. Do not remove power f rom the main rack until

replacement is complete. Reset the time-of-day clock using your programming

sof tware.

2. Replace the module.

0A8 hex/168 decimal, Critical Over-Temperature Failure

CPU’s critical operating temperature exceeded.

CPU Programmer’s Reference Manual Section 9
GFK-2950M Dec 2024

Diagnostics 460

All Others

Correction

Replace the module.

Fault Extra Data for CPU Hardware Failure

For a RAM failure in the CPU (one of the faults reported as a CPU hardware failure), the

address of the failure is stored in the f irst four bytes of the f ield.

9.4.9 Module Hardware Failure (Group 14)
The fault group Module Hardware Failure occurs when the CPU detects a non-fatal

hardware failure on any module in the system, for example, a serial port failure on a LAN

interface module. The fault action for this group is Diagnostic.

Action: Non-conf igurable.

1A0 hex/416 decimal, Missing 12 Volt Power Supply

A power supply that supplies 12 volts is required to operate the LAN Interface module.

Correction

1. Install/replace a 100-watt power supply.

2. Connect an external VME power supply that supplies 12 volts.

1C2 - 1C6 hex (450 – 454 decimal), LAN Interface

Hardware Failure

Refer to the LAN Interface manual, GFK-0868 or GFK-0869 (previously GFK-0533), for

a description of these errors.

All Others, Module Hardware Failure

A module hardware failure has been detected.

Correction

Replace the af fected module.

CPU Programmer’s Reference Manual Section 9
GFK-2950M Dec 2024

Diagnostics 461

9.4.10 Option Module Software Failure (Group 16)
The fault group Option Module Sof tware Failure occurs when:

• A non-recoverable sof tware failure occurs on an intelligent option module.

• The module type is not a supported type.

• The Ethernet Interface logs an event in its Ethernet exception log.

Action: Non-conf igurable.

1, Unsupported Board Type

The board is not one of the supported types.

Correction

1. Upload the configuration file and verify that the software recognizes the board

type in the f ile. If there is an error, correct it, download the corrected

conf iguration f ile, and retry.

2. Display the Controller Fault Table on the programmer. Contact Technical

Support, giving them all the information contained in the fault entry.

2, 3, COMMREQ Frequency Too High

COMMREQs are being sent to a module faster than it can process them.

Correction

Change the application program to send COMMREQs to the module at a slower rate or

check the completion status of each COMMREQ before sending the next.

4, More Than One BTM in a Rack

There is more than one BTM present in the rack.

Correction

Remove one of the BTMs f rom the rack; there can only be one in a CPU rack.

>4, Option Module Software Failure

Software failure detected on an option module.

Correction

1. Reload sof tware into the indicated module.

2. Replace the module.

CPU Programmer’s Reference Manual Section 9
GFK-2950M Dec 2024

Diagnostics 462

>400, LAN System Software Fault

The Ethernet interface software has detected an unusual condition and recorded an

event in its exception log. The Fault Extra Data contains the corresponding event in the

Ethernet exception log, which can be viewed by the Ethernet Interface’s Station Manager

function. The f irst two digits of Fault Extra Data contain the Event type; the remaining

data correspond to the four-digit values for Entry 2 through Entry 6. Some exceptions

may also contain optional multi-byte SCode and other data.

Correction

For information on interpreting the fault extra data, refer to the PACSystems TCP/IP

Ethernet Communications Station Manager User Manual, GFK-2225, Appendix B.

9.4.11 Program or Block Checksum Failure (Group 17)
The fault group Program or Block Checksum Failure occurs when the CPU detects error

conditions in program or blocks. It also occurs during RUN Mode background checking.

In all cases, the Fault Extra Data field of the Controller Fault Table record contains the

name of the program or block in which the error occurred.

Action: Non-conf igurable.

All Error Codes, Program or Block Checksum Failure

The CPU generates this error when a program or block is corrupted.

Correction

1. Clear CPU memory and retry the store.

2. Examine C application for errors.

3. Display the Controller Fault Table on the programmer. Contact Technical

Support, giving them all the information contained in the fault entry.

Fault Extra Data for Program or Block Checksum Failure

The name of the offending program block is contained in the first eight bytes of the Fault

Extra Data f ield.

CPU Programmer’s Reference Manual Section 9
GFK-2950M Dec 2024

Diagnostics 463

9.4.12 Battery Status (Group 18)
Faults in this group occur when the CPU detects a failed battery (or Energy Pack).

Action: Non-conf igurable.

0, Failed Battery

CPUs with battery-backed RAM, including RX7i CPUs, and RX3i

CPU310, CPU315, CPU/CRU320 and NIU001

The battery in the CPU module has failed or is disconnected.
If the battery is disconnected, this fault is logged for all CPU types and all supported

battery types.

Should a Smart Battery fail during operation, this fault is logged for all CPU types. When

used with a legacy (non-smart) battery, this indication is not reliable.

CPE302, CPE305 and CPE310

The Energy Pack has failed or is disconnected.

Correction

Replace the battery or Energy Pack. For instructions on replacing the battery, refer to
the PACSystems Battery and Energy Pack Manual, GFK-2741.

1, Low Battery – CPUs with Battery-Backed RAM

This fault is supported only by the CPU versions listed in the PACSystems Battery and

Energy Pack Manual, GFK-2741.

The CPU detects the low battery condition only while the CPU is powered up.

If a low battery condition occurs while the CPU is powered down, the CPU logs a Low
Battery fault upon power-up as soon as it detects the signal f rom the smart battery.

While the CPU is powered up, it is unlikely that a Low Battery fault will be detected

because the current drain on the battery is negligible. The exception is when a good

battery is replaced with a low battery while the CPU has power. In this case, a Low

Battery fault would indicate that a good battery has been accidentally replaced with a
depleted battery.

The Controller fault table indicates the battery status. For details of LED operation of

specific CPUs, refer to PACSystems RX7i, RX3i and RSTi-EP CPU Reference Manual,

GFK-2222.

When a Failed Battery fault is logged, this fault is also logged.

Correction

Replace the battery. For instructions on replacing the battery, refer to the PACSystems
Battery and Energy Pack Manual, GFK-2741.

CPU Programmer’s Reference Manual Section 9
GFK-2950M Dec 2024

Diagnostics 464

1, Low Battery – CPE302/CPE305/CPE310/CPE330 CPUs

with Energy Pack

The Status LED and the Controller fault table indicate the Energy Pack status.

PLC_BAT

(%S0014)

LOW_BAT

(%SA0011)

Energy Pack Status

0 0 Energy Pack connected and operational (may be charging)

1 1 Energy Pack not connected or has failed

0 1 Energy Pack is nearing its end-of-life and should be replaced.

9.4.13 Constant Sweep Time Exceeded (Group 19)
The fault group Constant Sweep Exceeded occurs when the CPU operates in Constant

Sweep mode and detects that the sweep has exceeded the constant sweep timer. In the

fault extra data, the DWORD at byte offset 8 contains the amount of time that the sweep

went beyond the constant sweep time (in microsecond units). Stored in Big Endian

format.

Action: Non-conf igurable.

0, Constant Sweep

Correction

If Constant Sweep (0):

1. Increase constant sweep time.

2. Remove logic f rom application program.

Note: Error code 1 is not used.

9.4.14 System Fault Table Full (Group 20)
The fault group System Fault Table Full occurs when the Note: Fault tables do not

persist from one running PACSystems Simulator to a newly launched PACSystems

Simulator.

Controller Fault Table reaches its limit.

Action: Non-conf igurable.

0, System Fault Table Full

Correction

Clear the Controller Fault Table.

CPU Programmer’s Reference Manual Section 9
GFK-2950M Dec 2024

Diagnostics 465

9.4.15 I/O Fault Table Full (Group 21)
The fault group I/O Fault Table Full occurs when the I/O Fault Table reaches its maximum
conf igured limit. To avoid loss of additional faults, clear the earliest entry from the table.

Action: Non-conf igurable.

0, I/O Fault Table Full

Correction

Clear the I/O Fault Table.

9.4.16 User Application Fault18 (Group 22)
The fault group Application Fault occurs when the CPU detects a fault in the user
program.

Action: Non-conf igurable.

2, Software Watchdog Timer Expired

The CPU generates this error when the watchdog timer expires. The CPU stops

executing the user program and enters STOP/Halt Mode. To recover, cycle power to the
CPU with battery disconnected. Causes of timer expiration include: Looping, via jump,
very long program, etc.

Correction

1. Determine what caused the expiration (logic execution, external event, etc.)

and correct.

2. Use the system service function block to restart the watchdog timer.

7, Application Stack Overflow

Block call depth has exceeded the CPU capability.

Correction

Increase the program’s stack size or adjust application program to reduce nesting.

11 hex/17 decimal, Program Run Time Error

A run-time error occurred during execution of a program.

Correction

Correct the specif ic problem in the application.

1E - 21 hex (30 - 33 decimal), LAN Interface Fault

Refer to the PAC Systems TCP/IP Ethernet Communications User Manual, GFK-2224

for a description of these errors. Please see the Diagnostics Chapter, 'Controller Fault

Table'.

22 hex/34 decimal, Unsupported Protocol

Hardware does not support conf igured protocol.

18

 Error Codes 1, 4, 5, 6, 8-15, 28, 29 and 49 are not used by PACs.

CPU Programmer’s Reference Manual Section 9
GFK-2950M Dec 2024

Diagnostics 466

33 hex/51 decimal, Flash Read Failed

Possible causes:

1. Files not in f lash. (May be caused by power cycle during f lash write.)

2. Could not read f rom f lash because OEM protection is enabled.

34 hex/52 decimal, Memory Reference Out of Range

A user logic memory reference, computed during logic execution, is out of range.
Includes indirect references, array element references, and potentially other types of

references.

Correction

Correct logic or adjust memory size in hardware conf iguration.

35 hex/53 decimal, Divide by zero attempted in user logic.

User logic contained a divide by zero operation. (Applies to ST and FBD logic.)

Correction

Correct logic.

36 hex/54 decimal, Operand is not byte aligned.

A variable in user logic is not properly byte-aligned for the requested operation.

Correction

Correct logic or adjust memory size in hardware conf iguration.

39 hex/57 decimal, DLB heartbeat not received, All DLBs

stopped and deleted

The controller has not received a heartbeat signal from the programmer within the time
specif ied by the DLB Heartbeat setting in the Target properties.

CPU Programmer’s Reference Manual Section 9
GFK-2950M Dec 2024

Diagnostics 467

Correction

Increase the DLB Heartbeat setting. For additional information, refer to Executing DLBs.
3B hex /59 decimal, PSB called by a block whose %L or

%P memory is not large enough to accommodate this

reference.

Parameterized blocks do not have their own %L data, but instead inherit the %L data of

their calling blocks. If %L references are used within a parameterized block and the block

is called by _MAIN, %L references are inherited f rom the %P references wherever

encountered in the parameterized block (for example, %L0005 = %P0005). For a

discussion of the use of local data with parameterized blocks, refer to the section entitled

Parameterized Blocks and Local Data.

Correction

Determine which block called the parameterized subroutine block and increase the size

of %L or %P memory allocated to the calling block. (To do this, change the Extra Local

Words setting in the block’s Properties.)

The maximum size of %L or %P is 8192 words per block. If your application needs more

space, consider changing some %P or %L references to %R, %W, %AI, or %AQ. These

changes require a recompilation of the program block and a STOP Mode Store to the

CPU.

It is possible, by using Online Editing in the programming sof tware to cause a

parameterized block to use %L higher than allowed because of the way it inherits data.

To correct this condition, delete the %L variables f rom the logic and then remove the

unused variables f rom the variable list. These changes require a recompilation of the

program block and a STOP Mode Store to the CPU.

9.4.17 CPU Over-Temperature (Group 24)
Default action: Diagnostic. Conf igurable.

1, Over-Temperature failure.

CPU’s normal operating temperature exceeded.

Correction

Turn of f CPU to allow heat to disperse and install a fan kit to regulate temperature.

CPU Programmer’s Reference Manual Section 9
GFK-2950M Dec 2024

Diagnostics 468

9.4.18 Power Supply Fault (Group 25)
Action: Non-conf igurable.

1, Power supply failure.

Unknown power supply failure.

Correction

Replace power supply module.

2, Power supply overloaded

The load on the power supply has reached its rated maximum

Correction

Replace power supply with a higher capacity model or reconfigure system to reduce load

on power supply.

3, Power supply switched off

The switch on the power supply was moved to the OFF position.

4, Power-supply has exceeded normal operating

temperature

The temperature of the power supply is a just a few degrees from causing it to turn of f .

Correction

Turn of f system to allow heat to disperse. Install a fan kit to regulate temperature.

9.4.19 No User Program on Power-Up (Group 129)
The fault group No User Program on Power-Up occurs when the CPU powers up with its

memory preserved but no user program exists in the CPU. The CPU detects the absence

of a user program on power-up; the controller stays in STOP Mode.

Action: Non-conf igurable.

Correction

Download an application program before attempting to go to RUN Mode.

CPU Programmer’s Reference Manual Section 9
GFK-2950M Dec 2024

Diagnostics 469

9.4.20 Corrupted User Program on Power-Up (Group 130)
The fault group Corrupted User Program on Power-Up occurs when the CPU detects

corrupted user RAM. The CPU will remain in STOP Mode.

Action: Non-conf igurable.

1, Corrupted user RAM on power-up

The CPU generates this error when it detects corrupted user RAM on power-up.

Recommended Corrections, Listed in Order

1. Cycle power without battery or Energy Pack.

2. Examine any C applications for errors.

3. Replace the volatile memory backup battery on the CPU.

4. Replace the CPU.

7, User memory not preserved over power cycle

The CPU generates this error when it detects a battery failure that occurred while the

controller was powered down.

If this fault occurs on a power cycle when the battery was not detached or replaced, the

battery has failed and should be replaced.

Correction

Replace the battery on the CPU. For instructions on replacing the battery, refer to the

PACSystems Battery and Energy Pack Manual, GFK-2741.

9.4.21 Window Completion Failure (Group 131)
The fault group Window Completion Failure is generated by the pre-logic and

end-of-sweep processing software in the CPU. The fault extra data contains the name of

the task that was executing when the error occurred.

Action: Non-conf igurable.

0, Window Completion Failure

The CPU generates this error when it is operating in Constant Sweep mode and the

constant sweep time was exceeded before the programmer window had a chance to

begin executing.

CPU Programmer’s Reference Manual Section 9
GFK-2950M Dec 2024

Diagnostics 470

Correction

Increase the constant sweep timer value.

1, Logic Window Skipped

The logic window was skipped due to lack of time to execute.

Correction

1. Increase base cycle time.

2. Reduce Communications Window time.

9.4.22 Password Access Failure (Group 132)
The fault group Password Access Failure occurs when the CPU receives a request to

change to a new privilege level and the password included with the request is not valid

for that level.

Action: Non-conf igurable.

0, Password Access Failure

Correction

Retry the request with the correct password.

9.4.23 Null System Configuration for RUN Mode (Group 134)
The fault group Null System Configuration for RUN Mode occurs when the CPU

transitions f rom STOP Mode to one of the RUN Modes and a conf iguration f ile is not

present. The transition to Run is permitted, but no I/O scans occur.

Action: Informational. Non-conf igurable.

0, Null System Configuration for RUN Mode

Correction

Download a conf iguration file.

CPU Programmer’s Reference Manual Section 9
GFK-2950M Dec 2024

Diagnostics 471

9.4.24 CPU System Software Failure (Group 135)
Faults in this group are generated by the operating software of the CPU. They occur at

many different points of system operation. When a fatal fault occurs, the CPU

immediately transitions to STOP/Halt. The only activity permitted when the CPU is in this

mode is communications with the programmer. The only method of clearing this condition

is to cycle power on the controller with the battery disconnected.

Action: Non-conf igurable.

5A hex/90 decimal, User Shut Down Requested

The CPU generates this informational alarm when SVC_REQ #13 (User Shut Down)

executes in the application program.

Correction

None required. Information-only alarm.

94 hex/148 decimal, Units Contain Mismatched Firmware,

Update Recommended

This fault is logged each time the redundancy state changes and the redundant CPUs

contain incompatible f irmware.

Correction

Ensure that redundant CPUs have compatible f irmware.

D8 hex/216 decimal, Processor Exception Trap

The processor has detected an error condition while executing an instruction. The CPU

was placed into STOP/Halt mode.

Correction

Disconnect the battery from the CPU and cycle power to clear the STOP/Halt condition.

DA hex/218 decimal, Critical Over-Temperature Failure

Critical operating temperature of CPU exceeded.

Correction

Turn of f CPU to allow heat to disperse and install a fan kit to regulate temperature

CPU Programmer’s Reference Manual Section 9
GFK-2950M Dec 2024

Diagnostics 472

All Others, CPU Internal System Error

An internal system error has occurred that should not occur in a production system.

Correction

Display the Controller Fault Table on the programmer. Contact Technical Support and

give them all the information contained in the fault entry.

Error Fault Extra Data

Value (First Byte)

Description

DEVICE_NOT_AVAILABLE CF Specific device is not available in the system.

BAD_DEVICE_DATA CC Data stored on device has been corrupted and

is no longer reliable. Or, Flash Memory has not

been initialized.

DEVICE_RW_ERROR CB Error occurred during a read/write of the Flash

Memory device.

FLASH_INCOMPAT_ERROR 8E Data in Flash Memory is incompatible with the

CPU firmware release due to the CPU firmware

revision numbers, the instruction groups

supported, or the CPU model number.

ITEM_NOT_FOUND_ERROR 8D One or more specified items were not found in

Flash Memory.

9.4.25 Communications Failure During Store (Group 137)
This fault group occurs during the store of programs or blocks and other data to the CPU.

The stream of commands and data for storing programs or blocks and data starts with a

special start-of-sequence command and terminates with an end-of-sequence command.

This fault is logged if communications with the programming device performing the store

is interrupted or any other failure that terminates the store occurs. As long as this fault is

present in the system, the controller will not transition to RUN Mode. This fault is not

automatically cleared on power-up; you must specif ically clear the condition.

Action: Non-conf igurable.

CPU Programmer’s Reference Manual Section 9
GFK-2950M Dec 2024

Diagnostics 473

0, Communications Failure During Store

Correction

Clear the fault and retry the download of the program or conf iguration f ile.

1, Communications Lost During RUN Mode Store

Communications or power was lost during a RUN Mode Store. The new program or block

was not activated and was deleted.

Correction

Perform the RUN Mode Store again. This fault is diagnostic.

2, Communications Lost During Cleanup for RUN Mode

Store

Communications was lost, or power was lost during the cleanup of old programs or

blocks during a RUN Mode Store. The new program or block is installed, and the

remaining programs and blocks were cleaned up.

Correction

None required. This fault is informational.

3, Power Lost During a RUN Mode Store

Power was lost in the middle of a RUN Mode Store.

Correction

Delete and restore the program. This error is fatal.

CPU Programmer’s Reference Manual Section 9
GFK-2950M Dec 2024

Diagnostics 474

9.4.26 Non-Critical CPU Software Event (Group 140)
This group is used for recording conditions in the system that may provide valuable

information to Technical Support.

Default action: Non-conf igurable.

Error Code Description Correction

1-30 Events during power-up
No corrective action is required unless this

fault occurs with other specific faults. The

fault may contain useful information for

Technical Support if other problems are

encountered.

31-50
Events on the serial port or in a

serial protocol

51, 52
Miscellaneous internal system

events

53 Access control fault See details below.

54 and greater
Miscellaneous internal system

events

No corrective action is required unless this

fault occurs with other specific faults. The

fault may contain useful information for

Technical Support if other problems are

encountered.

Error code 53, Access Control Fault

If data access is prevented because of the Enhanced Security settings, the Controller

logs a fault into the fault table. This fault can be used to help diagnose access problems.

To prevent overflowing the fault table, only one fault is logged until the fault table is

cleared.

Fault example

Location: 0.8 Date/Time: 07-07-2013 17:06:55.087

Group: 140 INFO_CPU_SOFTWR - CPU sof tware event

Error Code: 53 Action:1 Task Num:3

Extra Data: 00 fa 02 a5 00 00 00 00 01 1e 06 00 00 00 00 00 00 00 01 00 00 00 00 00

Meaning of this example fault

A 1-bit READ request beginning at %S7 was rejected due to an access violation.

Interpreting the Fault Extra Data

Bytes 1 - 8: Ignored when decoding a security-related fault.

Byte 9: The operation during which the fault occurred.

01 (as in the example): Read

02: Write

Byte 10: The hexadecimal value (HV) that specif ies a CPU memory area.

Hexadecimal Value (HV) Memory area

08 %R (Register memory)

0A %AI (Analog input memory)

0C %AQ (Analog output memory)

10 %I (Discrete input memory)

CPU Programmer’s Reference Manual Section 9
GFK-2950M Dec 2024

Diagnostics 475

12 %Q (Discrete output memory)

14 %T (Discrete temporary status memory)

16 %M (Discrete momentary internal memory)

18 %SA (Discrete system memory A)

1A %SB (Discrete system memory B)

1C %SC (Discrete system memory C)

1E %S (Discrete system memory)

1F Symbolic Boolean

38 %G (Genius global memory)

C4 %W (Bulk Memory)

Bytes 11–18: 0-based bit offset of the memory area being accessed. The 8-byte value

is encoded in little endian format, meaning that the byte values are

reversed. In the example, the value is 0x0000000000000006, which is

equal to 1-based bit of fset 7.

Bytes 19–22: The length in bits of data requested. In the example, 1 bit was requested.

Bytes 23–24: Ignored when decoding a security-related fault.

CPU Programmer’s Reference Manual Section 9
GFK-2950M Dec 2024

Diagnostics 476

9.5 I/O Fault Descriptions and Corrective

Actions
The I/O fault table reports the following data about faults:

• Fault Group

• Fault Action

• Fault category

• Fault type

• Fault description
All faults have a fault category, but a fault type and fault group may not be listed for every

fault. To view the detailed information pertaining to a fault, click the fault entry in the I/O

Fault Table.

Emerson reserves the right to change the fault data without prior notice.

Note: The model number mismatch and I/O type mismatch faults are reported in the

controller fault table under the System Configuration Mismatch group. They are not

reported in the I/O fault table.

9.5.1 Fault Extra Data
An I/O fault table entry contains up to 21 bytes of I/O fault extra data that contains

additional information related to the fault. Not all entries contain I/O fault extra data.

9.5.2 I/O Fault Groups

Group Number Group Name
Default Fault

Action16
Configurable

2 Loss of or Missing IOC Diagnostic Yes

3
Loss of or Missing I/O module or

network Device
Diagnostic Yes

6 Addition or Reset of, or Extra IOC N/A No

7
Addition of or Extra I/O module or

network Device
N/A No

9 IOC or I/O Bus Fault Diagnostic Yes

10 I/O Module Fault N/A No

15 IOC Software Failure Same As Group 2
19

 Yes

16 Module Software Failure N/A No

28 PROFINET Alarms Diagnostic No

133 Genius Block Address Mismatch N/A No

9.5.3 I/O Fault Categories

Category Fault Type Fault Description Fault Extra Data

Circuit Fault (1) Discrete Fault (1)

Loss of User Side Power

(01 hex)
Circuit Configuration

Short Circuit in User Wiring (02

hex)
Circuit Configuration

Sustained Overcurrent (04 hex) Circuit Configuration

19

 The fault action for the IOC Software Failure group 15 always matches the action used by the Loss of or Missing IOC group 2. If

the Loss of or Missing IOC group is configured, the IOC Software Failure group is also configured to take the same fault acti on.

CPU Programmer’s Reference Manual Section 9
GFK-2950M Dec 2024

Diagnostics 477

Category Fault Type Fault Description Fault Extra Data

Low or No Current Flow

(08 hex)
Circuit Configuration

Switch Temperature Too High

(10 hex)
Circuit Configuration

Switch Failure (20 hex) Circuit Configuration

Point Fault (83 hex) Circuit Configuration

Output Fuse Blown (84 hex) Circuit Configuration

Analog Fault (2)

Input Channel Low Alarm

(01 hex)
Circuit Configuration

Input Channel High Alarm

(02 hex)
Circuit Configuration

Input Channel Under Range (04

hex)
Circuit Configuration

Analog Fault (07) Circuit Configuration

Analog Fault (08) Circuit Configuration

Input Channel Over Range (08

hex)
Circuit Configuration

Input Channel Open Wire

(10 hex)
Circuit Configuration

Over Range or Open Wire

(18 hex)
Circuit Configuration

Output Channel Under Range

(20 hex)
Circuit Configuration

Output Channel Over Range

(40 hex)
Circuit Configuration

Expansion Channel Not

Responding

(80 hex)

Circuit Configuration

Invalid Data (81 hex) Circuit Configuration

GENA (Genius

Network

Adapter) Fault (3)

GENA Circuit Fault (80 hex) Byte 2:GENA Fault

Low-Level Analog

Fault (4)

Input Channel Low Alarm

(01 hex)
Circuit Configuration

Input Channel High Alarm

(02 hex)
Circuit Configuration

Input Channel Under Range (04

hex)
Circuit Configuration

Input Channel Over Range (08

hex)
Circuit Configuration

Input Channel Open Wire

(10 hex)
Circuit Configuration

Wiring Error (20 hex) Circuit Configuration

Internal Fault (40 hex) Circuit Configuration

Input Channel Shorted (80 hex) Circuit Configuration

Invalid Data (81 hex) Circuit Configuration

Remote I/O

Scanner Fault (5)

Remote I/O Scanner Circuit

Fault

Byte 1: Circuit Type

Byte 2: I/O Type

Enhanced Analog

Aggregate Fault (7)

(01 hex) Low Alarm Circuit Configuration

(02 hex) High Alarm Circuit Configuration

(04 hex) Low-Low Alarm Circuit Configuration

(08 hex) High-High Alarm Circuit Configuration

(10 hex) Under Range Circuit Configuration

CPU Programmer’s Reference Manual Section 9
GFK-2950M Dec 2024

Diagnostics 478

Category Fault Type Fault Description Fault Extra Data

(20 hex) Over Range Circuit Configuration

(40 hex) Open Wire Circuit Configuration

Enhanced Analog

Singleton Fault (8)

(01 hex) Negative Rate of

Change
Circuit Configuration

(02 hex) Positive Rate of

Change
Circuit Configuration

(03 hex) Calibration Fault Circuit Configuration

(04 hex) Wiring Error Circuit Configuration

(05 hex) Scaling Error Circuit Configuration

(06 hex) Input Shorted Circuit Configuration

(07 hex) Upper Clamp Limit Circuit Configuration

(08 hex) Lower Limit Circuit Configuration

Loss of Block (2)

Not Specified (0)

A/D

Communications

Lost (1)

NA

Block Configuration

Number of Input Circuits

Number of Output Circuits

Addition of Block

(3)
NA NA

Block Configuration

Number of Input Circuits

Number of Output Circuits

I/O Bus Fault (6)

Bus Fault (1)

Bus Outputs

Disabled (2)

SBA Conflict (3)

NA NA

Genius Module

Fault (8)

Headend Fault (0)

A to D Comm. Fault

(1)

User Scaling Error

(5)

Store Fail (6)

Configuration Memory Failure

(08 hex)

Calibration Memory Failure (20

hex)

Shared RAM Failure (40 hex)

Internal Circuit Fault (80 hex)

Watchdog Timeout (81 hex)

Output Fuse Blown (84 hex)

NA

Addition of IOC

(9)
NA

Extra Module (01 hex)

Reset Request (02 hex)
NA

Loss of IOC (10) NA NA

Timeout

Unexpected State

Unexpected Mail Status

VME Bus Error

IOC Software

Fault (11)
NA NA NA

Forced Circuit

(12)
NA NA

Block Configuration

Discrete/Analog Indication*

Unforced Circuit

(13)
NA NA

Block Configuration

Discrete/Analog Indication*

Loss of I/O

Module (14)
NA NA NA

Addition of I/O

Module (15)
NA

VME Module Reset Requested

(30 hex)
NA

Extra I/O Module

(16)
NA NA NA

Extra Block (17) NA NA NA

IOC Hardware

Failure (18)
NA NA NA

CPU Programmer’s Reference Manual Section 9
GFK-2950M Dec 2024

Diagnostics 479

Category Fault Type Fault Description Fault Extra Data

GBC stopped

reporting faults

because too

many faults have

occurred (19)

GBC detected high

error count on

Genius Bus and

dropped off the bus

for at least 1.5

seconds. (1)

NA NA

GBC Software

Exception (21)

Datagram queue

full (1)

R/W request queue

full (2)

Low priority mail

rejected (3)

Background

message received

before CPU

completed

initialization (4)

Genius software

version too old (5)

Excessive use of

internal GBC

memory (6)

NA

Block Switch (22)

– redundant

Genius block

switched bus

NA NA

Block Configuration

Number of Input Circuits

Number of Output Circuits

Rack/Slot address of GBC

from which block was

removed.

Block not active

on redundant bus

(23)

NA NA NA

Reset of IOC (27) NA NA NA

PROFINET

network faults (33

and higher)

NA
Refer to PROFINET controller

documentation.
NA

CPU Programmer’s Reference Manual Section 9
GFK-2950M Dec 2024

Diagnostics 480

9.5.4 Circuit Faults (Category 1)
Circuit faults apply to Genius I/O modules and the IC697VRD008 RTD/Strain Bridge

modules. Fault extra data is available for all faults in this category. More than one

condition may be present in a particular reporting of the fault.

Action: Diagnostic.

Fault Extra Data for Circuit Faults

Genius Bus Controller

Circuit fault entries use one or two bytes of the fault extra data area. If the GBC reports

the fault, the first byte is generated by the GBC and the second byte contains the circuit

conf iguration and is encoded as shown in the following table.

Value

(Byte 2)

Description

1 Circuit is an input.

2 Circuit is an input.

3 Circuit is an output.

If the fault type is a GENA fault, the second byte contains the data that was reported from

the GENA module in Fault Byte 2 of its Report Fault message.

VRD001 RTD/Strain Bridge

Circuit fault entries; 13 bytes of the fault extra data area. The fault extra data is encoded

as shown in the following table.

Bytes Description

1-10 Used by technical support.

11 Line number

12 Module number

13 Used by technical support.

CPU Programmer’s Reference Manual Section 9
GFK-2950M Dec 2024

Diagnostics 481

Fault Descriptions for Discrete Faults (Fault Type 1)

Fault Type Fault Description Description Correction

Discrete Fault (1)

Loss of User Side Power

(01 hex)

The GBC generates

this error when there is

a power loss on the

field wiring side of a

Genius I/O block.

Only valid for Isolated

I/O blocks.) Initiate

Pulse Test COMREQ

#1. Pulse test may be

enabled or disabled at

I/O block.

Correct the power

failure.

Short Circuit in User Wiring

(02 hex)

The GBC generates this

error when it detects a

short circuit in the user

wiring of a Genius block. A

short circuit is defined as a

current level greater than

20 amps.

Fix the cause of the short

circuit.

Sustained Overcurrent

(04 hex)

Fix the cause of the short

circuit.

Fix the case of the over

current.

Low or No Current Flow

(08 hex)

The GBC generates this

error when there is very

low or no current flow in

the user circuit.

Fix the cause of the

condition.

Switch Temperature Too High

(10 hex)

The GBC generates this

error when the Genius

block reports a high

temperature in the Genius

Smart Switch.

Ensure that the block is

installed to provide

adequate circulation.

Decrease the ambient

temperature surrounding

the block.

Install RC Snubbers on

inductive loads.

Switch Failure (20 hex)

The GBC generates this

error when the Genius

block reports a failure in

the Genius Smart Switch.

Check for shunts across

Genius output

(pushbuttons).

Replace the Genius I/O

block.

Point Fault (83 hex)

The CPU generates this

error when it detects a

failure of a single I/O point

on a Genius I/O module.

Replace the Genius I/O

block.

Output Fuse Blown (84 hex)

The CPU generates this

error when it detects a

blown fuse on a Genius

I/O output block

Determine and repair the

cause of the fuse

blowing; replace the fuse.

Replace the block.

Fault Descriptions for Analog Faults (Fault Type 2)

Fault Type Fault Description Description Correction

Analog Fault (2)

Input Channel Low Alarm

(01 hex)

The GBC generates this error

when the Genius Analog module

reports a low alarm on an input

channel.

Correct the condition

causing the low alarm.

Input Channel High Alarm

(02 hex)

The GBC generates this error

when the Genius Analog module

reports a high alarm on an input

channel.

Correct the condition

causing the high alarm.

CPU Programmer’s Reference Manual Section 9
GFK-2950M Dec 2024

Diagnostics 482

Input Channel Under

Range (04 hex)

The GBC generates this error

when the Genius Analog module

reports an under-range condition

on an input channel.

Correct the problem

causing the condition.

Input Channel Over

Range (08 hex)

The GBC generates this error

when the Genius Analog module

reports an over-range condition

on an input channel.

Correct the problem

causing the condition.

Input Channel Open Wire

(10 hex)

The GBC generates this error

when a Genius Analog module

detects an open wire condition

on an input channel.

Correct the problem

causing the condition.

Over Range or Open Wire

(18 hex)
Inputs open or inputs off-scale.

Correct the problem

causing the condition.

Output Channel Under

Range (20 hex)

The GBC generates this error

when the Genius Analog module

reports an under-range condition

on an output channel.

Correct the problem

causing the condition.

Output Channel Over

Range (40 hex)

The GBC generates this error

when the Genius Analog module

reports an over-range condition

on an output channel.

Correct the problem

causing the condition.

Expansion Channel Not

Responding

(80 hex)

The CPU generates this error

when data from an expansion

channel on a multiplexed analog

input board is not responding.

Check wiring to the

module.

Replace the module.

Invalid Data (81 hex)

The GBC generates this error

when it detects invalid data from

a Genius Analog input block.

Correct the problem

causing the condition.

Low-Level Analog Faults (Fault Type 4)

1, Input Channel Low Alarm

The GBC generates this error when the Genius Analog module reports a low alarm on

an input channel.

Correction

Correct the condition causing the low alarm.

2, Input Channel High Alarm

The GBC generates this error when the Genius Analog module reports a high alarm on

an input channel.

Correction

Correct the condition causing the high alarm.

4, Input Channel Under Range

The GBC generates this error when the Genius Analog module reports an under-range

condition on an input channel.

Correction

Correct the problem causing the condition.

CPU Programmer’s Reference Manual Section 9
GFK-2950M Dec 2024

Diagnostics 483

8, Input Channel Over Range

The GBC generates this error when the Genius Analog module reports an over-range

condition on an input channel.

Correction

Correct the problem causing the condition.

10 hex, Input Channel Open Wire

The GBC generates this error when the Genius Analog module detects an open wire

condition on an input channel.

Correction

Correct the problem causing the condition.

20 hex/32 decimal, Wiring Error

The GBC generates this error when the Genius Analog module detects an improper RTD

connection or thermocouple reverse junction fault.

CPU Programmer’s Reference Manual Section 9
GFK-2950M Dec 2024

Diagnostics 484

Correction

Correct the problem causing the condition.

40 hex/64 decimal, Internal Fault

The GBC generates this error when the Genius Analog module reports a cold junction

sensor fault on a thermocouple block or an internal error in an RTD block.

Correction

Correct the problem causing the condition.

80 hex/128 decimal, Input Channel Shorted

The GBC generates this error when it detects an input channel shorted on a Genius RTD

or Strain Gauge Block.

Correction

Correct the problem causing the condition.

81 hex/129 decimal, Invalid Data

The GBC generates this error when it detects invalid data from a Genius Analog input

block.

Correction

Correct the problem causing the condition.

GENA Fault (Fault Type 3)

The GENA Fault has no fault descriptions associated with it. GENA Fault Byte 2 is the

f irst byte of the fault extra data.

80 hex/128 decimal

The Genius I/O operating software generates this error when it detects a failure in a

GENA block attached to the Genius I/O bus.

Correction

Replace the GENA block.

CPU Programmer’s Reference Manual Section 9
GFK-2950M Dec 2024

Diagnostics 485

9.5.5 Loss of Block (Category 2)
The fault category Loss of Block applies to Genius devices.

Action: Diagnostic.

Loss of Block

The GBC generates this error when it is unable to communicate to the Genius device.

Correction

1. Verify power and wiring to the block.

2. Replace the block.

Loss of Block - A/D Communications Fault

The GBC generates this error when it detects a failure of A/D communications on a

Genius device.

Correction

1. Verify power and serial bus wiring to the block.

2. Replace the block.

Fault Extra Data for Loss of Block

The Loss of Block fault provides four bytes of fault extra data. The second byte contains

the block configuration and is encoded as shown in the following table. The third byte

specifies the number of input circuits possibly used, and the fourth byte specifies the

number of output circuits possibly used.

Block Configuration (Byte 2)

Value Description

1 Block is configured for inputs only.

2 Block is configured for outputs only.

3 Block is configured for inputs and outputs (grouped block).

CPU Programmer’s Reference Manual Section 9
GFK-2950M Dec 2024

Diagnostics 486

9.5.6 Addition of Block (Category 3)
The fault category Addition of Block applies only to Genius devices. There are no fault

types or fault descriptions associated with this category.

The Genius operating software generates this error when it detects that a Genius block

that stopped communicating with the controller starts communicating again.

Action: Diagnostic.

Correction

Informational only. None required.

Fault Extra Data for Addition of Block

The Addition of Block fault provides four bytes of fault extra data. The second byte

contains the block configuration and is encoded as shown in the following table. The third

byte specifies the number of input circuits possibly used, and the fourth byte specifies

the number of output circuits possibly used.

Block Configuration (Byte 2)

Value Description

1 Block is configured for inputs only.

2 Block is configured for outputs only.

3 Block is configured for inputs and outputs (grouped block).

9.5.7 I/O Bus Fault (Category 6)
The fault category I/O Bus Faults has three fault types associated with it.

Default action: Diagnostic. Conf igurable.

Bus Fault

The GBC operating software generates this error when it detects a failure with a Genius

I/O bus. (Generated when Error Rate in the GBC configuration is exceeded—the default

Error Rate is 10 errors in a 10 second period).

Correction

1. Determine the reason for the bus failure and correct it.

2. Replace the GBC.

The Error Rate can be set higher than the default value if needed, but the bus should be

examined electrically—use an oscilloscope for waveform check.

Bus Outputs Disabled

The GBC operating software generates this error when it times out waiting for the CPU

to perform an output scan.

Correction

1. Reduce time between GBC output scans by assigning them to scan set 1.

2. Increase CPU sof tware watchdog timer setting

CPU Programmer’s Reference Manual Section 9
GFK-2950M Dec 2024

Diagnostics 487

3. Replace the CPU.

4. Display the controller fault table on the programmer. Contact Technical

Support, giving them all the information contained in the fault entry.

SBA Conflict

The GBC detected a conflict between its serial bus address and that of another device

on the bus.

Correction

Adjust one of the conf licting serial bus addresses.

9.5.8 Module Fault (Category 8)
The fault category Module Fault has one fault type, headend fault, and eight fault

descriptions. This fault category does not provide fault extra data. The default fault action

for this category is Diagnostic.

08 hex, Configuration Memory Failure

The GBC generates this error when it detects a failure in a Genius block’s EEPROM or

NVRAM.

Correction

Replace the Genius block’s electronics module.

20 hex/32 decimal, Calibration Memory Failure

The GBC generates this error when it detects a failure in a Genius block’s calibration

memory.

Correction

Replace the Genius block’s electronics module.

CPU Programmer’s Reference Manual Section 9
GFK-2950M Dec 2024

Diagnostics 488

40 hex/64 decimal, Shared RAM Fault

The GBC generates this error when it detects an error in a Genius block’s shared RAM.

Correction

Replace the Genius block’s electronics module.

80 hex/128 decimal, Module Fault

An internal failure has been detected in a module.

Correction

Replace the af fected module.

81 hex/129 decimal, Watchdog Timeout

The CPU generates this error when it detects that an input module watchdog timer has

expired.

Correction

Replace the input module.

84 hex/132 decimal, Output Fuse Blown

The CPU generates this error when it detects a blown fuse on an output module.

Correction

1. Determine and repair the cause of the fuse blowing and replace the fuse.

2. Replace the module.

CPU Programmer’s Reference Manual Section 9
GFK-2950M Dec 2024

Diagnostics 489

9.5.9 Addition of IOC (Category 9)
The fault category Addition of I/O Controller has no fault types or fault descriptions

associated with it. The default fault action for this category is Diagnostic.

Addition of IOC

The CPU generates this error when an IOC that has been faulted returns to operation or

when an IOC is found in the system and the configuration file indicates that no IOC is to

be in that slot or when an IOC is hot inserted.

Correction

1. No action is necessary if the faulted module is in a remote rack and is returning

due to a remote rack power cycle.

2. Update the conf iguration f ile or remove the module.

01 hex, Extra Module

Module present, but not conf igured.

Correction

Update the conf iguration f ile or remove the module.

02 hex, Reset Request

Module added back af ter reset request. No corrective action is necessary.

CPU Programmer’s Reference Manual Section 9
GFK-2950M Dec 2024

Diagnostics 490

9.5.10 Loss of or Missing IO Controller (Category 10)
The fault category Loss of IOC has no fault types or fault descriptions associated with it.

Default action: Diagnostic. Conf igurable.

Note: This fault is always displayed as Fatal in the I/O Fault Table, regardless of its

configured action.

The CPU generates this error when it cannot communicate with an I/O Controller and an

entry for the IOC exists in the conf iguration f ile.

This fault is also logged when an IOC is hot removed (No corrective action necessary in

this case).

Correction

1. Verify that the module in the slot/bus address is the correct module.

2. Review the conf iguration f ile and verify that it is correct.

3. Replace the module.

4. If fault is not resolved, display the controller fault table on the programmer.

Contact Technical Support, giving them all the information contained in the

fault entry.

Fault Extra Data for Loss of or Missing IOC

Fault extra data for Loss of or Missing IOC provides additional information for diagnostics

by Technical Support.

CPU Programmer’s Reference Manual Section 9
GFK-2950M Dec 2024

Diagnostics 491

9.5.11 IOC (I/O Controller) Software Fault (Category 11)
The fault category IOC Sof tware Fault applies to any type of I/O Controller.

Action: Fatal.

Datagram Queue Full, Read/Write Queue Full

Too many datagrams or read/write requests have been sent to the GBC.

Correction

Adjust the system to reduce the request rate to the GBC.

Response Lost

The GBC is unable to respond to a received datagram or read/write request.

Correction

Adjust the system to reduce the request rate to the GBC.

9.5.12 Forced and Unforced Circuit (Categories 12 and 13)
The fault categories Forced Circuit and Unforced Circuit report point conditions and

therefore are not technically faults. They have no fault types or fault descriptions. These

reports occur when a Genius I/O point was forced or unforced with the Hand -Held

Monitor.

Action: Informational.

Fault Extra Data for Forced/Unforced Circuit

Three bytes of fault extra data are present when a circuit force is added or removed

Byte Number Description Value Description

1 Circuit Configuration 1 Circuit is an input.

2 Circuit is an input.

3 Circuit is an output.

2 Analog/Discrete

Information

1 Block is a discrete block.

2 Block is an analog block.

3 Block has both discrete and

analog.

CPU Programmer’s Reference Manual Section 9
GFK-2950M Dec 2024

Diagnostics 492

9.5.13 Loss of or Missing I/O Module (Category 14)
The fault category Loss of I/O Module applies to discrete and analog I/O modules. There

are no fault types or fault descriptions associated with this category.

Default action: Diagnostic. Conf igurable.

The CPU generates this error when it detects that an I/O module is no longer responding

to commands from the CPU, or when the configuration file indicates an I/O module is to

occupy a slot and no module exists in the slot. This fault is also logged when an I/O

module is hot removed (No corrective action necessary in this case).

Correction

1. Replace the module.

2. Correct the conf iguration f ile.

3. Display the I/O fault table on the programmer. Contact Technical Support,

giving them all the information contained in the fault entry.

9.5.14 Addition of I/O Module (Category 15)
The fault category Addition of I/O Module applies to discrete and analog I/O modules.

There are no fault types or fault descriptions associated with this category.

Action: Diagnostic.

Addition of I/O Module

The CPU generates this error when an I/O module that had been faulted returns to

operation or is hot inserted.

Correction

1. No action necessary if module was removed or replaced or if the remote rack

was power cycled.

2. Update the conf iguration f ile or remove the module.

30 hex/48 decimal, VME Reset on Request

Reset of VME module was requested. No corrective action necessary.

CPU Programmer’s Reference Manual Section 9
GFK-2950M Dec 2024

Diagnostics 493

9.5.15 Extra I/O Module (Category 16)
The fault category Extra I/O Module applies to discrete and analog I/O modules. There

are no fault types or fault descriptions associated with this category.

Action: Diagnostic.

The CPU generates this error when it detects an I/O module in a slot that the

conf iguration f ile indicates should be empty.

Correction

1. Remove the module. (It may be in the wrong slot.)

2. Update and restore the conf iguration f ile to include the extra module.

9.5.16 Extra Block (Category 17)
The fault category Extra Block applies only to Genius I/O devices. There are no fault

types or fault descriptions associated with this category.

Action: Diagnostic.

The GBC generates this error when it detects a Genius device on the bus at a serial bus

address where the conf iguration f ile does not have a block.

Correction

1. Remove or reconfigure the block. (It may be at the wrong serial bus address.)

2. Update and restore the conf iguration f ile to include the extra block.

9.5.17 IOC Hardware Failure (Category 18)
The fault category IOC Hardware Failure has no fault types or fault descriptions.

Action: Diagnostic.

The Genius operating software generates this error when it detects a hardware failure in

the bus communication hardware or a baud rate mismatch.

Correction

1. Verify that the baud rate set in the conf iguration f ile for the GBC agrees with

the baud rate programmed in every block on the bus.

2. Change the conf iguration f ile and restore it, if necessary.

3. Replace the GBC.

4. Selectively remove each block from the bus until the offending block is isolated

then replace it.

9.5.18 GBC Stopped Reporting Faults (Category 19)
GBC detected a high error count on the Genius I/O bus and dropped off the bus for at

least 1.5 seconds.

Correction

Check for incorrect wiring, interference from other equipment, a loose connection, or a

failed device on the Genius bus.

CPU Programmer’s Reference Manual Section 9
GFK-2950M Dec 2024

Diagnostics 494

9.5.19 GBC Software Exception (Category 21)

1, Incoming datagram queue full

Too many datagrams or read/write requests have been sent to the GBC.

Correction

Adjust the system to reduce the request rate to the GBC.

2, Read/write request queue full

The queue for Read/Write requests in the GBC is full. The requests may be f rom the

Genius Bus or f rom COMMREQs.

Correction

Adjust the system to reduce the request rate to the GBC.

3, Low priority mail queue from GBC to CPU full

The response to the CPU was lost.

4, Genius background message requiring CPU action

received before CPU completed initialization

Message was ignored.

5, GBC software version too old

Correction

Update GBC f irmware.

6, Excessive use of internal GBC memory

Correction

Verify COMMREQ usage.

9.5.20 Block Switch (Category 22)
The Block Switch fault category has no fault types or fault descriptions.

Action: Diagnostic.

The GBC generates this error when a Genius block on redundant Genius buses switches

f rom one bus to another.

Correction

1. No action is required to keep the block operating.

2. The bus that the block switched f rom may need to be repaired.

a. Verify the bus wiring.

b. Replace the I/O controller.

c. Replace the Bus Switching Module (BSM).

CPU Programmer’s Reference Manual Section 9
GFK-2950M Dec 2024

Diagnostics 495

Fault Extra Data for Block Switch

Byte

Number

Description Value Description

1 Circuit configuration 1 Circuit is an input.

2 Circuit is an input.

3 Circuit is an output.

2 Block configuration 1 Block is configured for inputs only.

2 Block is configured for outputs only.

3 Block is configured for inputs and outputs

(grouped block).

3 Number of input

circuits used

4 Number of output

circuits used

9.5.21 Reset of IOC (Category 27)
The fault category Reset of I/O Controller has no fault types or fault descriptions

associated with it. The default fault action for this category is Diagnostic.

The CPU generates this message when an I/O Controller is reset. No corrective action

necessary.

CPU Programmer’s Reference Manual Section 9
GFK-2950M Dec 2024

Diagnostics 496

9.6 Diagnostic Logic Blocks (DLBs)
A Diagnostic Logic Block (DLB) is a block of Ladder Diagram logic that can be

downloaded to the controller for independent execution. These blocks are useful tools

for interacting with an application that is running in the PACSystems controller. DLBs

may be used to:

• Collect information from a running application to analyze and diagnose problems

• Test modifications and corrections to a running application before incorporating them

into the application.

• Test the devices that will be controlled by the application.

DLBs are intended to accomplish a specific task that is temporary in nature, such as

diagnosing the source of a problem or testing tuning parameters. When you have finished

using a DLB, it should be removed from the host controller. At this point the application

logic and its variable allocation return to what it was before the DLB was downloaded.

You can also remove the DLBs f rom the Logic Developer target, at which point the

target’s logic and variable allocation will be identical to what they were before the DLBs

were introduced.

Note that, although the DLB is removed from the controller, any changes the DLB made

to the system are not removed. For example, if the DLB logic changes a hardware

parameter, the parameter does not return to its previous value when the DLB is removed.

DLB logic can be executed with the controller in STOP IO Enabled Mode, which allows

debugging the application without the main application program running.

CAUTION

Do not use a DLB as a permanent part of a production application, because a DLB is stopped and

deleted from memory when Logic Developer loses its Programmer-mode connection with the host

controller. This could happen if the programmer’s communications cable is disconnected or if a

second programmer connects serially to the same RX3i and establishes a Programmer -mode

session.

Note: Redundancy CPUs do not support DLBs.

CPU Programmer’s Reference Manual Section 9
GFK-2950M Dec 2024

Diagnostics 497

9.6.1 DLB Operation

Figure 267 Diagnostic Logic Blocks (DLBs) assigned to Target in MPE

DLBs are created as components of a specific Target and are separate f rom the

application logic block components associated with a target.

They are written in LD programming language and support many of the same features,

such as View Lock, Edit Lock, etc. as other block types.

A target can have a maximum of 128 DLBs in a given PAC Machine Edition target. Each

DLB can have associated published variable table (PVT) and cam profile (used with

Motion applications) f iles. Each DLB can use up to 128K bytes of memory.

A DLB can be copied and pasted like other blocks. Regardless of where a DLB is pasted,

normal conf lict handling is applied.

An active DLB can be dragged to the Toolchest, to folders under the Active Blocks

node, or to folders under the Program Blocks node. Note that only active blocks can be

dragged. Downloading, executing, or modifying a DLB does not affect the equality of the

main logic program.

CPU Programmer’s Reference Manual Section 9
GFK-2950M Dec 2024

Diagnostics 498

Suspend I/O Function and DLBs

The Suspend I/O (SUS_IO) function operates the same in a DLB as it does in application

logic. Both application logic and DLB logic execute in the CPU Sweep Logic window.

Therefore, when a SUSPEND_IO is executed by either the application or the DLB,

outputs are held current during the output scan that occurs immediately af ter the Logic

window f inishes its execution, and input references will not be updated from inputs during

the input scan that occurs immediately before the Logic window is executed in the next

CPU sweep.

Note that a SUSPEND_IO only affects normal I/O scans. It does not affect I/O scanning

that is done as the result of DO_IO or SCAN_SET_IO functions that execute in

application or DLB logic. SUS_IO has the same effect whether it is executed once in a

sweep or multiple times in a sweep.

Restrictions on DLB Operation

Because DLBs are intended only for temporary use, there are more restrictions on their

operation compared to application logic blocks. All built-in functions and function blocks

other than those listed below can be used in DLB logic.

• DLB logic may not call any logic block or be called by any logic block.

• You cannot def ine parameters or scheduling for a DLB.

• A DLB has no parameters other than the standard ENO output parameter. Since

DLBs cannot be called from other blocks, you can access its ENO parameter only by

reading or writing it in the DLB’s logic.

• You cannot use variables that have %L or %P addresses. Therefore, the following

features that require %L or %P memory cannot be used in a DLB:

a. #FST_EXE system variable

b. The built-in timer function blocks, ONDTR, OFDT, and TMR

c. %L or %P variables.

• Locally scoped variables must be symbolic. For additional information, refer to DLB

Variables.

• DLBs or their associated f iles cannot be loaded f rom the RX3i.

• DLBs and their associated f iles cannot be downloaded to f lash memory.

• You cannot give an LD DLB the name _MAIN.

• You cannot modify an active LD DLB while it is executing on the Controller.

• You cannot perform a Test Edit (Online Edit Mode and Online Test Mode).

• You cannot perform word-for-word changes on an active DLB.

DLB Variables

A DLB can have its own variables, which are local to the DLB and not accessible by any

other block. All DLB local variables are symbolic, retentive, and published.

Local variables should be used within DLBs whenever possible. If the system is already

running and you create new global variables in the DLB, the programming software will

CPU Programmer’s Reference Manual Section 9
GFK-2950M Dec 2024

Diagnostics 499

not download the DLB because the programmer’s memory map will no longer match the

RX3i controller’s memory map.

DLB logic can read and write the global variables of the application that resides in the

same target as it does. These variables may be mapped or symbolic.

To use functions that require the use of located variables, a DLB must use the global

located variables of the application that resides in the same target as the DLB. These

functions include:

a. COMMREQ (location of the Status variable)

b. DO_IO

c. Some SVC_REQ functions

A DLB can create aliases to global located application variables or arrays of variables

that were specifically created and documented to serve as scratchpad memory for DLBs

that need to use located variables.

CPU Programmer’s Reference Manual Section 9
GFK-2950M Dec 2024

Diagnostics 500

9.6.2 Executing DLBs

DLB Properties

The properties for an active DLB include Execution Mode, which has the following

possible values:

• Sweep (Default) - The DLB executes at a f ixed point in the normal Controller sweep,

until explicitly stopped.

• Update Rate – Uses the Update Rate def ined for the Target. The actual rate varies

f rom a minimum value equal to the Update Rate to a maximum value of Update

Rate + 1 sweep. If the sweep takes more time than the update rate, the DLB is

executed as soon as the user logic program execution completes in the current

sweep.

• Scan Once - The DLB executes exactly one time when the user requests for DLB

execution to start. It then stops executing until it is manually instructed to run again.

Figure 268 Properties of Diagnostic Logic Block (DLB)

Target Properties

The Target properties include DLB Heartbeat, which specifies, in milliseconds, the

maximum time the controller waits for a heartbeat signal f rom the programmer. If a

heartbeat timeout occurs, the DLB will be stopped and removed from the controller. This

insures that DLB execution is stopped in the event of a communications failure between

the programmer and the controller.

With larger applications or a slower PC, some operations such as opening the Controller

File Explorer may cause the DLB Heartbeat to time out. If this happens, you may need

to increase the DLB Heartbeat interval.

The DLB Heartbeat must always be greater than the Update Rate setting for the Target.

Figure 269 DLB Heartbeat Setting

CPU Programmer’s Reference Manual Section 9
GFK-2950M Dec 2024

Diagnostics 501

Right-click Online Operations for an Active DLB

Menu Enable Rules Description

Download Disabled if block is already running on

controller, target not in programmer mode,

Config+Logic is not equal, or Access Level

prevents write.

Downloads block to controller,

removing any other DLB that was

already there.

Start Disabled if block is already running, target not

in programmer mode, another block is

executing on controller, HWC+Logic is not

equal, or Access Level prevents write

Downloads block to controller,

removing any other DLB that was

already there, and then starts

executing block.

Stop Disabled if block is not executing Stops execution of block.

Remove Disabled if block is not on controller, block is

executing, or not in programmer mode

Stops block, then removes it from

controller.

DLB Online Operations

Only a single DLB can be downloaded and executed on the controller at a time. To

download an Active DLB to the controller, you must have:

• Program logic and HWC equal to the controller (Logic EQ)

• Target in programmer mode

• Enough privilege to write to the controller

Operation Minimum PACSystems RX3i Privilege Level

Required

Storing DLBs in STOP Mode 3

Storing DLBs in RUN Mode 4

When a DLB is downloaded, you are given the option of storing initial values or clearing

memory for local variables. If another DLB is already downloaded on the controller it will

be removed before the selected DLB is downloaded.

When a DLB is downloaded to the controller, all variables locally scoped to the DLB are

published f rom the controller so that HMIs or other devices can view the data.

While a DLB is running, the active target is read-only; no changes can DLB or the

application logic. If the DLB has been downloaded to the controller but is not executing,

changes are allowed but the f irst change will remove the DLB f rom the controller. You

will be prompted to confirm the change before the DLB is removed. Up loading of the DLB

is not supported.

Once a DLB is downloaded to the controller, it can be started if the main program is

running on the controller in STOP with I/O Enabled or RUN with I/O Enabled Mode.

CPU Programmer’s Reference Manual Section 9
GFK-2950M Dec 2024

Diagnostics 502

Removing a DLB from the Controller

The following actions will cause the DLB to be removed from the controller. If the DLB is

executing, it will be stopped before being removed.

• Removing the DLB f rom the controller through the Online Operations menu.

• Programmer connection to controller is lost by going offline or a communication failure

that causes a DLB Heartbeat timeout

• Switching f rom programmer mode to monitor mode

• Downloading to controller (Conf ig, Logic, Stored Values, etc.)

• Clearing the controller, other than fault tables and controller supplemental f iles

• Performing any Flash operation, other than Verify

• Uploading f rom controller (Conf ig, Logic, Stored Values, etc.)

• Changing the DLB that is on the controller

If there is an executing DLB, and you transition f rom RUN Mode to STOP Mode, the

executing DLB will be stopped as well. The DLB will not be removed from the controller

in this case.

If you initiate an upload, and there is a DLB on the controller, you will be prompted for

conf irmation and notified that the DLB will be removed and that all active DLBs will be

made inactive. If there are no DLBs on the controller but there is at least one active DLB,

you will be prompted for confirmation and notified that all active DLBs will be made

inactive. If you choose to abort the upload, no changes are made. If you proceed, all

DLBs are deactivated. If DLBs are de-activated, you will have to reactivate them

manually.

When a DLB is removed f rom the controller, any PMM data logger (DLOG) and event

queue (ELOG) f iles that were created by the DLB are also removed.

CPU Programmer’s Reference Manual Section 9
GFK-2950M Dec 2024

Diagnostics 503

Basic Steps for Using a DLB in the Controller

1. Create an LD Block under the Active Blocks DLB Node in the Navigator.
You can accomplish this in several ways, such as by creating a new block
under the Active Blocks node, dragging a block from the Toolchest, or copying
and pasting a block f rom another project.

2. Select DLB block properties, for example, Execution Mode, as desired.
3. If necessary, change the Target property, DLB Heartbeat. For larger projects,

you may need to increase DLB Heartbeat from its default value of 1000ms to
avoid timing out while performing some operations, such as opening the
Controller File Explorer.

4. Go online to the Controller and go into Programmer Mode, Logic Equal.
5. Right click the DLB and select the Online Operations menu to download the

DLB to the controller and start its execution. (To download and start the DLB in
one operation, select Online Operations > Start.)

6. Monitor DLB execution.

Monitoring DLB Execution

There are several tools to monitor the execution of the DLB in the controller:

• DLB Local Symbolic variables monitored in Data Watch, LD Editor, or Data Monitor.

• DLB Icon shows the DLB state in the Navigator: Downloaded to controller or

Executing .

• A Prof icy View application can monitor the execution of the DLB by using its Local

Symbolic Variables in Panels and Scripts.

The DLB block icon in the Navigator indicates its current state, as shown below:

DLB Block Icon

Inactive DLB - (block displayed in gray)

Active DLB Downloaded to Controller - (block displayed in blue)

Executing DLB - (block displayed in green)

9.6.3 Diagnostic Logic Block (DLB) Example
In this example, a block of LD logic is downloaded to the controller and executed.

The basic steps for using a sample DLB in the controller are as follows:

1. Create an LD block named MonitorScan and place it in the Toolchest. For

information on working with the Toolchest, refer to the online help.

The logic in the DLB block measures Controller scan time. It calculates the Minimum

(minTime), Maximum (maxTime), and Average (avgTime) time between DLB block

executions. When the DLB is set to Sweep Mode, these values should be close to the

Controller Sweep time.

Logic for the Monitor Scan Block

Figure 270

CPU Programmer’s Reference Manual Section 9
GFK-2950M Dec 2024

Diagnostics 504

Figure 271

CPU Programmer’s Reference Manual Section 9
GFK-2950M Dec 2024

Diagnostics 505

Figure 272

2. Drag and drop the DLB Block from the Toolchest to the Active Blocks node in

the Navigator.

Figure 273: Drag DLB from Toolchest and Drop in Active Blocks Node

3. In the DLB block properties, set the Execution Mode to Sweep.

Figure 274: Set DLB Execution Mode to Sweep (Properties Tab)

4. Go online to the Controller and select Programmer Mode. Put the Controller in

RUN Mode or STOP Enabled Mode.

CPU Programmer’s Reference Manual Section 9
GFK-2950M Dec 2024

Diagnostics 506

5. Select the DLB Online Operations > Start menu to download the DLB to the

controller and start its execution.

Figure 275: Start DLB Execution

6. In the Initialize Symbolic Variables dialog box, select how new local symbolic

variables will be initialized and click OK.

Figure 276 : Initialize Local Symbolic Variables

7. Notice the change in the DLB Icon and the DLB status in the Status bar.

CPU Programmer’s Reference Manual Section 9
GFK-2950M Dec 2024

Diagnostics 507

DLB Block Icon/Status Bar Once Started.

Figure 277 : DLB Icon and Status Bar after Execution has Commenced

8. Open the DLB block and place the DLB variables in the Data Watch window to

observe their operation.

Figure 278: Data Watch for DLB Variables

9.6.4 PACSystems Simulator Diagnostic Logic Blocks

(DLBs)
The PACSystems Simulator does not support Diagnostic Logic Blocks (DLBs).

Contact Information and Support Guide
Questions? We are here to help.

Before starting a case or making a call, try searching our Knowledge Base on the Customer Center website—it

might have the answer you need right away.

If you have a question, try the following:

Search our

Knowledge Base
Open a Support Ticket

Register for a Customer

Account

pacsystems.co/knowledge pacsystems.co/support pacsystems.co/signup

Other Helpful Links

Customer Center

Home Page
Commercial Website Contact Information

pacsystems.co/customercenter pacsystems.co/commercial pacsystems.co/contactus

Emerson reserves the right to modify or improve the designs or specifications of the products mentioned in this

manual at any time without notice. Emerson does not assume responsibility for the selection, use or maintenance

of any product. Responsibility f or proper selection, use and maintenance of any Emerson product remains solely

with the purchaser.

© 2024 Emerson. All rights reserved.

Emerson Terms and Conditions of Sale are available upon request. The Emerson logo is a trademark and service
mark of Emerson Electric Co. All other marks are the property of their respective owners.

https://pacsystems.co/knowledge
https://pacsystems.co/support
https://pacsystems.co/signup
https://pacsystems.co/customercenter
https://pacsystems.co/commercial
https://pacsystems.co/contactus

	Section 1 Introduction
	1.1 Revisions in this Manual
	1.2 PACSystems Programming and Configuration
	1.3 Migrating Series 90 Applications to PACSystems
	1.4 VersaMax SafetyNet Safety System
	1.1
	1.5 PACSystems Simulator
	1.6 PACSystems Documentation
	1.6.1 PACSystems Manuals
	1.6.2 RSTi-EP Manuals
	1.6.3 RX3i Manuals
	1.6.4 Series 90 Manuals

	Section 2 Program Organization
	2.1 Structure of a PACSystems Application Program
	2.1.1 Blocks
	2.1.2 Functions and Function Blocks
	2.1.3 How Blocks Are Called
	2.1.4 Nested Calls
	2.1.5 Types of Blocks
	Program Blocks
	Program Blocks and Local Data
	Using Parameters with a Program Block

	Parameterized Blocks
	Parameterized Blocks and Local Data
	Using Parameters with a Parameterized Block

	User-Defined Function Blocks (UDFBs)
	Defining a UDFB
	Creating UDFB Instances
	Instance Data Structures
	UDFBs and Scope
	Using Parameters with UDFBs
	Using Internal Member Variables with UDFBs
	UDFB Logic
	UDFB Operation with Other Blocks

	External Blocks
	External Blocks and Local Data
	Initialization of C Variables
	Using Parameters with an External Block

	2.1.6 Local Data
	2.1.7 Parameter Passing Mechanisms
	2.1.8 Languages
	Ladder Diagram (LD)
	Function Block Diagram
	Structured Text

	2.2 Controlling Program Execution
	2.3 Interrupt-Driven Blocks
	2.3.1 Interrupt Handling
	2.3.2 Timed Interrupts
	2.3.3 I/O Interrupts
	2.3.4 Module Interrupts
	2.3.5 Interrupt Block Scheduling
	Normal Block Scheduling
	Preemptive Block Scheduling

	2.3.6 PACSystems Simulator Interrupt-Driven Blocks

	Section 3 Program Data
	3.1 Variables
	3.1.1 Mapped Variables
	3.1.2 Symbolic Variables
	Restrictions on the Use of Symbolic Variables

	3.1.3 I/O Variables
	Restrictions on the Use of I/O Variables
	I/O Variable Format
	Supported I/O Variable Types
	I/O Variable Examples

	3.1.4 Arrays
	3.1.5 Variable Indexes and Arrays
	Requirements and Support
	Where Array Elements with Variable Indexes are Not Supported:
	Ensuring that a Variable Index does not Exceed the Upper Boundary of an Array
	One-Dimensional Array
	Two-Dimensional Array

	3.2 Reference Memory
	3.2.1 Word (Register) References
	Indirect References
	Bit in Word References
	Restrictions
	Examples:

	3.2.2 Bit (Discrete) References

	3.3 User Reference Size and Default
	3.3.1 %G User References and CPU Memory Locations

	3.4 Genius Global Data
	3.5 Transitions and Overrides
	3.6 Retentiveness of Logic and Data
	3.7 Data Scope
	3.8 System Status References
	3.8.1 %S References
	3.8.2 %SA, %SB, and %SC References
	3.8.3 Fault References
	System Fault References
	Configurable Fault References
	Non-Configurable Faults

	3.9 How Program Functions Handle Numerical Data
	3.9.1 Data Types
	3.9.2 Floating Point Numbers
	Types of Floating-Point Variables
	Internal Format of REAL Numbers
	Internal Format of LREAL Numbers
	Errors in Floating Point Numbers and Operations
	IEEE 754 Infinity Representations
	IEEE 754 Representations of NaN values:

	3.10 User Defined Types (UDTs)
	3.10.1 Working with UDTs
	3.10.2 UDT Properties
	3.10.3 UDT Limits
	3.10.4 RUN Mode Store of UDTs
	3.10.5 UDT Operational Notes
	Example

	3.11 Operands for Instructions
	3.12 Word-for-Word Changes
	3.12.1 Exception: Symbolic Variables

	3.13 PACSystems Simulator Program Data
	3.13.1 Variables
	3.13.2 Reference Memory
	3.13.3 System Status References
	%S References
	%SA, %SB, and %SC References

	Section 4 Ladder Diagram (LD) Programming
	4.1 Advanced Math Functions
	4.1.1 Exponential/Logarithmic Functions
	Operands of the Exponential/Logarithmic Functions

	4.1.2 Square Root
	Example
	Operands for the Square Root Function

	4.1.3 Trig Functions
	Operands of Trig Functions
	Example

	4.1.4 Inverse Trig – ASIN, ACOS, and ATAN
	Operands of Inverse Trig Functions

	4.2 Bit Operation Functions
	4.2.1 Data Lengths for the Bit Operation Functions
	4.2.2 Bit Position
	Operands of Bit Position
	Examples

	4.2.3 Bit Sequencer
	Memory Required for Bit Sequencer
	Operands for Bit Sequencer
	Example

	4.2.4 Bit Set, Bit Clear
	Operands for Bit Set, Bit Clear
	Example 1
	Example 2

	4.2.5 Bit Test
	Operands for Bit Test
	Example 1
	Example 2

	4.2.6 Logical AND, Logical OR, and Logical XOR
	Logical AND
	Logical OR
	Logical XOR
	Operands for Logical AND, OR, and XOR
	Example: Logical AND
	Example: Logical XOR

	4.2.7 Logical NOT
	Operands for Logical NOT
	Example

	4.2.8 Masked Compare
	Operands for Masked Compare Function
	Masked Compare Example 1
	Masked Compare Example 2

	4.2.9 Rotate Bits
	Operands for Rotate Bits
	Example

	4.2.10 Shift Bits
	Shift Left
	Shift Right
	Shift Left and Shift Right
	Operands for Shift Left, Shift Right, Shift Left and Shift Right
	Example

	4.3 Coils
	4.3.1 Coil Checking
	4.3.2 Graphical Representation of Coils
	Coil (Normally Open)
	Continuation Coil
	Negated Coil

	4.3.3 Set Coil, Reset Coil
	Example of Set Coil, Reset Coil

	4.3.4 Transition Coils
	POSCOIL and NEGCOIL
	Operands for POSCOIL and NEGCOIL
	Example for POSCOIL and NEGCOIL

	PTCOIL and NTCOIL
	Operands for PTCOIL and NTCOIL

	Examples Comparing PTCOIL and POSCOIL
	PTCOIL
	POSCOIL

	4.4 Contacts
	4.4.1 Continuation Contact
	4.4.2 Fault Contact
	Operands

	4.4.3 High and Low Alarm Contacts
	Operands

	4.4.4 No Fault Contact
	Operands

	4.4.5 Normally Closed and Normally Open Contacts
	Operands

	4.4.6 Transition Contacts
	POSCON and NEGCON
	Overrides
	Transition to RUN Mode
	Operands for POSCON and NEGCON
	POSCON and NEGCON Example 1

	PTCON and NTCON
	Operands for PTCON and NTCON
	Examples Comparing PTCON and POSCON
	PTCON
	POSCON
	Logic Example Using PTCON

	4.5 Control Functions
	4.5.1 Do I/O
	Do I/O for Inputs
	Do I/O for Outputs
	Operands
	Example - Do I/O for Inputs
	Example - Do I/O for Outputs

	4.5.2 Edge Detectors
	Operands
	Instance Data Structure

	F_TRIG Operation
	R_TRIG Operation
	Example

	4.5.3 Drum
	Using Drum in Parameterized Blocks
	Finding the Source Block
	Programming Drum in Parameterized Blocks
	Parameterized block called from one block
	Parameterized block called from multiple blocks

	Recursion

	Using Drum in UDFBs
	Example

	Operands for Drum
	Control Block for the Drum Sequencer Function

	4.5.4 For Loop
	Operands
	For Loop Example 1
	For Loop Example 2

	4.5.5 Mask I/O Interrupt
	Operands
	Example

	4.5.6 Read Switch Position
	Operands

	4.5.7 Scan Set IO
	Operands for SCAN_SET_IO
	Example

	4.5.8 Suspend I/O
	Example

	4.5.9 Suspend or Resume I/O Interrupt
	Operands
	Example

	4.6 Conversion Functions
	4.6.1 Convert Angles
	Operands

	4.6.2 Convert UINT or INT to BCD4
	Operands
	Example - UINT to BDC4
	Example - INT to BCD4

	4.6.3 Convert DINT to BCD8
	Operands
	Example

	4.6.4 Convert BCD4, UINT, DINT, or REAL to INT
	BDC4, UINT, and DINT
	REAL
	Operands
	Example: BCD4 to INT
	Example: UINT to INT
	Example: DINT to INT

	4.6.5 Convert BCD4, INT, DINT, or REAL to UINT
	Operands
	Example: BCD4 to UINT
	Example: INT to UINT
	Example: DINT to UINT

	Example: REAL to UINT

	4.6.6 Convert BCD8, UINT, INT, REAL or LREAL to DINT
	BCD8, UINT, and INT
	REAL and LREAL
	Operands
	Example: UINT to DINT
	Example: BCD8 to DINT
	Example: INT to DINT
	Example: REAL to DINT

	4.6.7 Convert BCD4, BCD8, UINT, INT, DINT, and LREAL to REAL
	Operands
	Example: UINT to REAL
	Example: INT to REAL
	Example: LREAL to REAL

	4.6.8 Convert REAL to LREAL
	Operands
	Example

	4.6.9 Convert DINT to LREAL
	4.6.10 Truncate
	Operands
	Example

	4.7 Counters
	4.7.1 Data Required for Counter Function Blocks
	Word 3: Control Word Structure

	4.7.2 Down Counter
	Operands
	Example – Down Counter

	4.7.3 Up Counter
	Operands
	Example – Up Counter
	Example – Up Counter and Down Counter

	4.8 Data Move Functions
	4.8.1 Array Size
	Operands
	Example

	4.8.2 Array Size Dimension Function Blocks
	Array Size Dimension 1
	Operands

	Array Size Dimension 2
	Operands
	Example - FOR_LOOP that Iterates Through Dimension 1 of an Array

	4.8.3 Block Clear
	Operands
	Example

	4.8.4 Block Move
	Operands
	Example

	4.8.5 BUS_ Functions
	Rack, Slot, Subslot, Region, and Offset Parameters
	BUS Read
	Operands for BUS READ
	BUS_RD Status in the ST Output

	BUS Read Modify Write
	Operands for BUS_RMW
	BUS_RMW Status in the ST Output

	BUS Test and Set
	Operands for BUS Test and Set

	BUS Write
	Operands for Bus Write

	4.8.6 Communication Request (COMMREQ)
	Command Block
	Command Block Structure
	Status Pointer Memory Type

	Operands for COMMREQ
	COMMREQ Status Word
	COMMREQ Example 1
	COMMREQ Example 2

	4.8.7 Data Initialization
	Operands
	Example

	4.8.8 Data Initialize ASCII
	Operands
	Example

	4.8.9 Data Initialize Communications Request
	Operands
	Example

	4.8.10 Data Initialize DLAN
	Operands

	4.8.11 Move
	MOVE Operands
	MOVE_BOOL Example
	MOVE_WORD Example

	4.8.12 Move Data
	MOVE_DATA Operands

	4.8.13 Move Data Explicit
	MOVE_DATA_EX Operands
	Example

	4.8.14 Move From Flat
	Operation
	Copying arrays and array elements
	Example:

	Copying to specified array elements
	Example:

	MOVE_FROM_FLAT Operands
	Example

	4.8.15 Move to Flat
	Copying Arrays and Array Elements
	MOVE_TO_FLAT Operands
	Example

	4.8.16 Shift Register
	Operands for Shift Register
	Example

	4.8.17 Size Of
	Operands
	Example

	4.8.18 Swap
	Operands for Swap
	Example for Swap

	4.9 Data Table Functions
	4.9.1 Array Move
	Operands for Array Move
	Array Move Example 1
	Array Move Example 2
	Array Move Example 3

	4.9.2 Array Range
	Operands for Array Range
	Array Range Example 1
	Array Range Example 2

	4.9.3 FIFO Read
	Operands for FIFO Read
	Example for FIFO Read

	4.9.4 FIFO Write
	Operands for FIFO Write
	Example for FIFO Write

	4.9.5 LIFO Read
	Operands for LIFO Read
	Example for LIFO Read

	4.9.6 LIFO Write
	Operands for LIFO Write
	Example for LIFO Write

	4.9.7 Search
	Search Relationships:
	Operands for the Search Function
	Example for the Search Function

	4.9.8 Sort
	Operands
	Example

	4.9.9 Table Read
	Operands
	Table Read Example

	4.9.10 Table Write
	Operands
	Table Write Example

	4.10 Math Functions
	4.10.1 Overflow
	4.10.2 Absolute Value
	Operands
	Example

	4.10.3 Add
	Operands of the ADD Function
	Example1 for ADD
	Example2 for ADD

	4.10.4 Divide
	Operands for the DIV Function
	DIV_MIXED Operands
	DIV_MIXED Example

	4.10.5 Modulus
	Operands for Modulus Function

	4.10.6 Multiply
	Operands for Multiply
	Example – Scaling Analog Input Values

	4.10.7 Scale
	Operands
	Example

	4.10.8 Subtract
	Operands for Subtract

	4.11 Program Flow Functions
	4.11.1 Argument Present
	Operands for ARG_PRES
	Example for ARG_PRES

	4.11.2 Call
	Operands for Call
	Example 1 for Call
	Example 2 for Call
	Logic for AVG_4 Parameterized Block

	4.11.3 Comment
	4.11.4 JumpN
	Operands

	4.11.5 Master Control Relay/End Master Control Relay
	MCRN
	EndMCRN
	Operands for MCRN/ENDMCRN
	Example of MCRN/ENDMCRN

	4.11.6 Wires

	4.12 Relational Functions
	4.12.1 Compare
	Operands
	Example

	4.12.2 Equal, Not Equal, Greater or Equal, Greater Than, Less or Equal, Less Than
	Operands

	4.12.3 EQ_DATA
	Operands

	4.12.4 Range
	Operands
	Example

	4.13 Timers
	4.13.1 Timed Contacts
	4.13.2 Timer Function Blocks
	Built-In Timer Function Blocks
	Data Required for Built-in Timer Function Blocks
	Word 1: Current value (CV)
	Word 2: Preset value (PV)
	Word 3: Control word

	Using OFDT, ONDTR and TMR in Program Blocks not Called Every Sweep
	Timers that are Skipped by the Jump Instruction
	Using OFDT, ONDTR and TMR in Parameterized Blocks
	Finding the Source Block
	Programming OFDT, ONDTR and TMR in Parameterized Blocks
	Parameterized block called from one block
	Parameterized block called from multiple blocks
	Recursion

	Using OFDT, ONDTR and TMR in UDFBs
	Example

	Off Delay Timer
	Timing diagram
	Operands for OFDT
	Example for OFDT

	On Delay Stopwatch Timer
	Timing diagram
	Operands for On Delay Stopwatch Timer
	Example for On Delay Stopwatch Timer

	On Delay Timer
	Timing Diagram
	Operands for On Delay Timer
	Example for On Delay Timer

	Standard Timer Function Blocks
	Data Required for Standard Timer Function Blocks
	Resetting the Timer
	Operands
	Timer Off Delay
	Timing Diagram
	Example

	Timer On Delay
	Timing Diagram
	Example

	Timer Pulse
	Timing Diagram
	Example

	4.14 PACSystems Simulator Ladder Diagram (LD) Program
	4.14.1 Math Functions
	4.14.2 Contacts
	4.14.3 Control Functions
	4.14.4 Data Move Functions
	4.14.5 Timers
	4.14.6 Motion Function Blocks
	4.14.7 Communication Blocks

	Section 5 Function Block Diagram (FBD)
	5.1 Note on Reentrancy
	5.2 Advanced Math Functions
	5.2.1 EXPT Function
	Operands of the EXPT Function

	5.3 Bit Operation Functions
	5.3.1 Logical AND, Logical OR, and Logical XOR
	Operands for AND, OR, and XOR
	Properties for AND, OR, and XOR

	5.3.2 Logical NOT
	Operands

	5.4 Comments
	5.4.1 Text Block

	5.5 Comparison Functions
	5.5.1 Equal, Not Equal, Greater or Equal, Greater Than, Less or Equal, Less Than
	Operands

	5.6 Control Functions
	5.7 Counters
	5.8 Data Move Functions
	5.8.1 Fan Out
	Operands

	5.8.2 Move Data
	MOV Operands

	5.9 Math Functions
	5.9.1 Overflow
	5.9.2 Add
	Operands of the ADD Function
	Properties for ADD

	5.9.3 Divide
	Operands for DIV_UINT, DIV_INT, DIV_DINT, and DIV_REAL

	5.9.4 Modulus
	Operands for Modulus Function

	5.9.5 Multiply
	Operands for Multiply
	Properties for Multiply

	5.9.6 Negate
	Operands

	5.9.7 Subtract
	Operands for Subtract
	Properties for Subtract

	5.10 Program Flow Functions
	5.11 Timers
	5.11.1 Built-in Timer Function Blocks
	5.11.2 Standard Timer Function Blocks

	5.12 Type Conversion Functions
	5.12.1 Convert WORD to INT
	Operands

	5.12.2 Convert WORD to UINT
	Operands

	5.12.3 Convert DWORD to DINT
	Operands

	5.12.4 Convert INT or UINT to WORD
	Operands

	5.12.5 Convert DINT to DWORD
	Operands

	5.13 PACSystems Simulator Function Block Diagram (FBD)
	5.13.1 Math Functions
	5.13.2 Control Functions
	5.13.3 Data Move Functions
	5.13.4 Timers
	1.1.1 Refer to Section 4.14.5 Timers.
	5.13.5 Communication Blocks

	Section 6 Service Request Function
	6.1 Operation of SVC_REQ Function
	6.1.1 Ladder Diagram
	Operands
	Example

	6.1.2 Function Block Diagram
	Operands

	6.2 SVC_REQ 1: Change/Read Constant Sweep Timer
	6.2.1 To disable Constant Sweep mode:
	6.2.2 To enable Constant Sweep mode and use the old timer value:
	6.2.3 To enable Constant Sweep mode and use a new timer value:
	6.2.4 To change the timer value without changing the selection for sweep mode state:
	6.2.5 To read the current timer state and value without changing either:
	Output
	SVC_REQ 1 Example

	6.3 SVC_REQ 2: Read Window Modes and Time Values
	Output
	Mode Values
	SVC_REQ 2 Example

	6.4 SVC_REQ 3: Change Controller Communications Window Mode
	6.4.1 To disable the controller communications window:
	6.4.2 To re-enable or change the controller communications window mode:
	SVC_REQ 3 Example

	6.5 SVC_REQ 4: Change Backplane Communications Window Mode and Timer Value
	6.5.1 To disable the Backplane Communications window:
	6.5.2 To enable the Backplane Communications window mode:
	SVC_REQ 4 Example

	6.6 SVC_REQ 5: Change Background Task Window Mode and Timer Value
	6.6.1 To disable the Background Task window:
	6.6.2 To enable the Background Task window mode:
	SVC_REQ 5 Example

	6.7 SVC_REQ 6: Change/Read Number of Words to Checksum
	6.7.1 To read the word count:
	6.7.2 To set a new word count:
	SVC_REQ 6 Example

	6.8 SVC_REQ 7: Read or Change the Time-of-Day Clock
	6.8.1 Parameter Block Formats
	BCD, 2-Digit Year
	BCD, 4-Digit Year
	POSIX
	Unpacked BCD (2-Digit Year)
	Unpacked BCD (4-Digit Year)
	Numeric, 2-Digit Year
	Numeric, 4-Digit Year
	Packed ASCII, 2-Digit Year
	Packed ASCII, 4-Digit Year
	SVC_REQ 7 Example

	6.9 SVC_REQ 8: Reset Watchdog Timer
	SVC_REQ 8 Example

	6.10 SVC_REQ 9: Read Sweep Time from Beginning of Sweep
	Output
	SVC_REQ 9 Example

	6.11 SVC_REQ 10: Read Target Name
	Output
	SVC_REQ 10 Example

	6.12 SVC_REQ 11: Read Controller ID
	Output
	SVC_REQ 11 Example

	6.13 SVC_REQ 12: Read Controller Run State
	Output
	SVC_REQ 12 Example

	6.14 SVC_REQ 13: Shut Down (STOP) CPU
	SVC_REQ 13 Example

	6.15 SVC_REQ 14: Clear Controller or I/O Fault Table
	SVC_REQ 14 Example

	6.16 SVC_REQ 15: Read Last-Logged Fault Table Entry
	Input Parameter Block
	Output Parameter Block
	Long/Short Value
	SVC_REQ 15 Example 1
	SVC_REQ 15 Example 2

	6.17 SVC_REQ 16: Read Elapsed Time Clock
	Output
	SVC_REQ 16 Example

	6.18 SVC_REQ 17: Mask/Unmask I/O Interrupt
	6.18.1 Masking/Unmasking Module Interrupts
	SVC_REQ 17 Example 1
	SVC_REQ 17 Example 2

	6.19 SVC_REQ 18: Read I/O Forced Status
	Output
	SVC_REQ 18 Example

	6.20 SVC_REQ 19: Set Run Enable/Disable
	SVC_REQ 19 Example

	6.21 SVC_REQ 20: Read Fault Tables
	6.21.1 Non-Extended Formats
	Input Parameter Block Format
	Non-Extended Output Parameter Block Format
	Format of Returned Data for Fault Table Entries
	Format for Parameter Setting 00h or 01h
	Format for Parameter Setting 41h

	6.21.2 Extended Formats
	Input Parameter Block Format
	Extended Format Output Parameter Block Format
	Format of Returned Data for Fault Table Entries
	Format for Parameter Setting 0x80h & 0x81h
	Format for Parameter Setting 0xC1h
	SVC_REQ 20 Example 1: Non-Extended Format
	SVC_REQ 20 Example 2: Extended Format

	6.22 SVC_REQ 21: User-Defined Fault Logging
	SVC_REQ 21 Example

	6.23 SVC_REQ 22: Mask/Unmask Timed Interrupts
	SVC_REQ 22 Example

	6.24 SVC_REQ 23: Read Master Checksum
	Output
	SVC_REQ 23 Example

	6.25 SVC_REQ 24: Reset Module
	SVC_REQ 24 Example

	6.26 SVC_REQ 25: Disable/Enable EXE Block and Standalone C Program Checksums
	SVC_REQ 25 Example

	6.27 SVC_REQ 29: Read Elapsed Power Down Time
	SVC_REQ 29 Example

	6.28 SVC_REQ 32: Suspend/Resume I/O Interrupt
	SVC_REQ 32 Example

	6.29 SVC_REQ 45: Skip Next I/O Scan
	SVC_REQ 45 Example

	6.30 SVC_REQ 50: Read Elapsed Time Clock
	Output
	SVC_REQ 50 Example

	6.31 SVC_REQ 51: Read Sweep Time from Beginning of Sweep
	Output
	SVC_REQ 51 Example

	6.32 SVC_REQ 56: Logic Driven Read of Nonvolatile Storage
	6.32.1 Discrete Memory
	6.32.2 Restoring data values on CPE200 Series
	6.32.3 Storage Disabled Conditions
	6.32.4 Maximum of One Active Instruction
	6.32.5 ENO and Power Flow To The Right
	6.32.6 Parameter Block
	Memory Type Codes
	Response Status Codes for SVC_REQ 56
	SVC_REQ 56 Example
	Parameter Block for SVC_REQ 56 Example

	6.33 SVC_REQ 57: Logic Driven Write to Nonvolatile Storage
	6.33.1 Length of Data Written
	6.33.2 Write Frequency
	6.33.3 Nonvolatile Storage Life Span
	6.33.4 Discrete Memory
	6.33.5 Creating a Removable Nonvolatile Storage Backup
	6.33.6 Retentiveness
	6.33.7 Maximum of One Active Instruction
	6.33.8 Storage Disabled Conditions
	Removable Storage Restore Disabled

	6.33.9 Error Checking
	6.33.10 Fragmentation
	6.33.11 When nonvolatile storage is full
	6.33.12 Equality
	6.33.13 Redundancy
	6.33.14 ENO and Power Flow to the Right
	6.33.15 Parameter Block for SVC_REQ 57
	Response Status Codes for SVC_REQ 57
	SVC_REQ 57 Example

	Parameter Block for SVC_REQ 57 Example

	6.34 SVC_REQ 63: Logic Driven Write of Reference Memory
	6.34.1 Write Frequency
	6.34.2 Data Deletion
	6.34.3 Equality
	6.34.4 Function Block Operation
	6.34.5 Status Word
	6.34.6 SVC_REQ 63 Example

	6.35 PACSystems Simulator Service Request Functions

	Section 7 PID Built-In Function Block
	7.1 Operands of the PID Function
	7.1.1 Operands for LD Version of PID Function Block
	7.1.2 Operands for FBD Version of PID Function Block

	7.2 Reference Array for the PID Function
	7.2.1 Scaling Input and Outputs
	7.2.2 Reference Array Parameters

	7.3 Operation of the PID Function
	7.3.1 Automatic Operation
	7.3.2 Manual Operation
	7.3.3 Time Interval for the PID Function

	7.4 PID Algorithm Selection (PIDISA or PIDIND) and Gain Calculations
	7.4.1 Derivative Term
	7.4.2 Error Term Mode
	7.4.3 Derivative Action on PV Bit
	7.4.4 Combined Operation of Error Term and Derivative Action Modes
	7.4.5 CV Bias Term
	7.4.6 CV Amplitude and Rate Limits
	7.4.7 Sample Period and PID Function Block Scheduling

	7.5 Determining the Process Characteristics
	7.6 Setting Tuning Loop Gains
	7.6.1 Basic Iterative Tuning Approach
	7.6.2 Setting Loop Gains Using the Ziegler and Nichols Tuning Approach
	7.6.3 Ideal Tuning Method

	7.7 PID Example
	7.7.1 Reference Array Initialization using %M00006

	Section 8 Structured Text (ST) Programming
	8.1 Language Overview
	8.1.1 Statements
	8.1.2 Expressions
	8.1.3 Operators
	Operand Types

	8.1.4 Structured Text Syntax

	8.2 Statement Types
	8.2.1 Assignment Statement
	Format
	Examples

	8.2.2 Function Call
	Built-in Functions Supported for ST Calls
	Calls to Standard Function Blocks
	Format of Calls to Standard Timer Function Blocks
	Formal Convention
	Informal Convention

	Block Types Supported for ST Calls
	Formal Calls vs. Informal Calls
	Format of Formal Function Call
	Format of Informal Function Call
	Example

	8.2.3 RETURN Statement
	8.2.4 IF Statement
	Format
	Operation
	Example

	8.2.5 CASE Statement
	Format
	Operation
	Requirements for Conditional Statements
	Examples

	8.2.6 FOR … DO Statements
	Format
	Operation
	Examples

	8.2.7 WHILE Statement
	Format
	Operation
	Example

	8.2.8 REPEAT Statement
	Format
	Operation
	Example

	8.2.9 ARG_PRES Statement
	Format
	Example

	8.2.10 Exit Statement
	Format
	Example

	8.2.11 Data_Qual Function Blocks for Structured Text

	8.3 PACSystems Simulator Structured Text (ST) Programming
	8.3.1 Math Functions
	8.3.2 Control Functions
	8.3.3 Data Move Functions
	8.3.4 Timers
	8.3.5 Communication Blocks

	Section 9 Diagnostics
	9.1 Fault Handling Overview
	9.1.1 System Response to Faults
	9.1.2 Fault Tables
	9.1.3 Fault Actions and Fault Action Configuration
	Faults that are part of configurable fault groups:
	Faults that are part of non-configurable fault groups:

	9.2 Using the Fault Tables
	9.2.1 Controller Fault Table
	Viewing Controller Fault Details
	User-Defined Faults

	9.2.2 I/O Fault Table
	Viewing I/O Fault Details

	9.3 System Handling of Faults
	9.3.1 System Fault References
	Fault References for Configurable Faults
	#LST_SCN Fault References for Non-Configurable Faults

	9.3.2 Using Fault Contacts
	Fault Locating References (Rack, Slot, Bus, Module)
	Fault Locating Reference Name Format
	Fault Reference Name Examples:

	Behavior of Fault Locating References

	9.3.3 Using Point Faults
	9.3.4 Using Alarm Contacts

	9.4 Controller Fault Descriptions and Corrective Actions
	9.4.1 Controller Fault Groups
	9.4.2 Loss of or Missing Rack (Group 1)
	1, Rack Lost
	Correction

	2, Rack Not Responding
	Correction

	9.4.3 Loss of Option Module (Group 4)
	3C hex/60 decimal, Module in Firmware Update Mode
	Correction

	63 hex/99 decimal, Module Hot Removed
	All Others, Module Failure During Configuration
	Correction

	9.4.4 Addition of, or Extra Rack (Group 5)
	1, Addition of Rack
	2, Extra Rack
	Correction

	9.4.5 Reset of, Addition of, or Extra Option Module (Group 8)
	3, LAN Interface Restart Complete, Running Utility
	Correction

	7, Extra Option Module
	Correction

	E Hex/14 Decimal, Option Module Hot inserted

	9.4.6 System Configuration Mismatch (Group 11)
	2, Genius I/O Block Model Number Mismatch
	Correction
	Fault Extra Data for Genius I/O Block Model Number Mismatch
	Installed/Configured Module Types (Bytes 2 and 3 of Fault Extra Data)
	GENA Application ID Numbers

	4, I/O Type Mismatch
	Correction
	Fault Extra Data for I/O Type Mismatch
	Genius Installed Module I/O Types (Byte 2 of Fault Extra Data)
	Genius Configured Module I/O Types (Byte 3 of Fault Extra Data)

	8, Analog Expander Mismatch
	Correction

	9, Genius I/O Block Size Mismatch
	Correction
	Fault Extra Data for Genius I/O Block Size Mismatch

	A hex/10 decimal, Unsupported Feature
	Correction
	Fault Extra Data for Unsupported Feature

	E hex/14 decimal, LAN Duplicate MAC Address
	Correction

	F hex/15 decimal, LAN Duplicate MAC Address Resolved
	10 hex/16 decimal, LAN MAC Address Mismatch
	Correction

	11 hex/17 decimal, LAN Softswitch/Modem mismatch
	Correction

	13 hex/19 decimal, DCD Length Mismatch
	Correction
	Fault Extra Data for DCD Length Mismatch

	25 hex/37 decimal, Controller Reference Out-of-Range
	Correction

	26 hex/38 decimal, Bad Program Specification
	Correction

	27 hex/39 decimal, Unresolved or Disabled Interrupt Reference
	Correction

	43 hex/67 decimal, Module Configuration Failure
	Correction

	4B hex/75 decimal, ECC jumper is disabled, but should be enabled
	Correction

	4C hex/76 decimal, ECC jumper is enabled, but should be disabled
	Correction

	All Others, Module and Configuration do not Match
	Correction

	9.4.7 System Bus Error (Group 12)
	4, Unrecognized VME Interrupt Source
	Correction

	9.4.8 CPU Hardware Failure (Group 13)
	6E hex/110 decimal, Time-of-Day Clock not Battery-Backed
	Correction

	0A8 hex/168 decimal, Critical Over-Temperature Failure
	All Others
	Correction
	Fault Extra Data for CPU Hardware Failure

	9.4.9 Module Hardware Failure (Group 14)
	1A0 hex/416 decimal, Missing 12 Volt Power Supply
	Correction

	1C2 - 1C6 hex (450 – 454 decimal), LAN Interface Hardware Failure
	All Others, Module Hardware Failure
	Correction

	9.4.10 Option Module Software Failure (Group 16)
	1, Unsupported Board Type
	Correction

	2, 3, COMMREQ Frequency Too High
	Correction

	4, More Than One BTM in a Rack
	Correction

	>4, Option Module Software Failure
	Correction

	>400, LAN System Software Fault
	Correction

	9.4.11 Program or Block Checksum Failure (Group 17)
	All Error Codes, Program or Block Checksum Failure
	Correction
	Fault Extra Data for Program or Block Checksum Failure

	9.4.12 Battery Status (Group 18)
	0, Failed Battery
	CPUs with battery-backed RAM, including RX7i CPUs, and RX3i CPU310, CPU315, CPU/CRU320 and NIU001
	CPE302, CPE305 and CPE310
	Correction

	1, Low Battery – CPUs with Battery-Backed RAM
	Correction

	1, Low Battery – CPE302/CPE305/CPE310/CPE330 CPUs with Energy Pack

	9.4.13 Constant Sweep Time Exceeded (Group 19)
	0, Constant Sweep
	Correction

	9.4.14 System Fault Table Full (Group 20)
	0, System Fault Table Full
	Correction

	9.4.15 I/O Fault Table Full (Group 21)
	0, I/O Fault Table Full
	Correction

	9.4.16 User Application Fault (Group 22)
	2, Software Watchdog Timer Expired
	Correction

	7, Application Stack Overflow
	Correction

	11 hex/17 decimal, Program Run Time Error
	Correction

	1E - 21 hex (30 - 33 decimal), LAN Interface Fault
	22 hex/34 decimal, Unsupported Protocol
	33 hex/51 decimal, Flash Read Failed
	34 hex/52 decimal, Memory Reference Out of Range
	Correction

	35 hex/53 decimal, Divide by zero attempted in user logic.
	Correction

	36 hex/54 decimal, Operand is not byte aligned.
	Correction

	39 hex/57 decimal, DLB heartbeat not received, All DLBs stopped and deleted
	Correction

	3B hex /59 decimal, PSB called by a block whose %L or %P memory is not large enough to accommodate this reference.
	Correction

	9.4.17 CPU Over-Temperature (Group 24)
	1, Over-Temperature failure.
	Correction

	9.4.18 Power Supply Fault (Group 25)
	1, Power supply failure.
	Correction

	2, Power supply overloaded
	Correction

	3, Power supply switched off
	4, Power-supply has exceeded normal operating temperature
	Correction

	9.4.19 No User Program on Power-Up (Group 129)
	Correction

	9.4.20 Corrupted User Program on Power-Up (Group 130)
	1, Corrupted user RAM on power-up
	Recommended Corrections, Listed in Order

	7, User memory not preserved over power cycle
	Correction

	9.4.21 Window Completion Failure (Group 131)
	0, Window Completion Failure
	Correction

	1, Logic Window Skipped
	Correction

	9.4.22 Password Access Failure (Group 132)
	0, Password Access Failure
	Correction

	9.4.23 Null System Configuration for RUN Mode (Group 134)
	0, Null System Configuration for RUN Mode
	Correction

	9.4.24 CPU System Software Failure (Group 135)
	5A hex/90 decimal, User Shut Down Requested
	Correction

	94 hex/148 decimal, Units Contain Mismatched Firmware, Update Recommended
	Correction

	D8 hex/216 decimal, Processor Exception Trap
	Correction

	DA hex/218 decimal, Critical Over-Temperature Failure
	Correction

	All Others, CPU Internal System Error
	Correction

	9.4.25 Communications Failure During Store (Group 137)
	0, Communications Failure During Store
	Correction

	1, Communications Lost During RUN Mode Store
	Correction

	2, Communications Lost During Cleanup for RUN Mode Store
	Correction

	3, Power Lost During a RUN Mode Store
	Correction

	9.4.26 Non-Critical CPU Software Event (Group 140)
	Error code 53, Access Control Fault
	Fault example
	Meaning of this example fault
	Interpreting the Fault Extra Data

	9.5 I/O Fault Descriptions and Corrective Actions
	9.5.1 Fault Extra Data
	9.5.2 I/O Fault Groups
	9.5.3 I/O Fault Categories
	9.5.4 Circuit Faults (Category 1)
	Fault Extra Data for Circuit Faults
	Genius Bus Controller
	VRD001 RTD/Strain Bridge

	Fault Descriptions for Discrete Faults (Fault Type 1)
	Fault Descriptions for Analog Faults (Fault Type 2)
	Low-Level Analog Faults (Fault Type 4)
	1, Input Channel Low Alarm
	Correction

	2, Input Channel High Alarm
	Correction

	4, Input Channel Under Range
	Correction

	8, Input Channel Over Range
	Correction

	10 hex, Input Channel Open Wire
	Correction

	20 hex/32 decimal, Wiring Error
	Correction

	40 hex/64 decimal, Internal Fault
	Correction

	80 hex/128 decimal, Input Channel Shorted
	Correction

	81 hex/129 decimal, Invalid Data
	Correction

	GENA Fault (Fault Type 3)
	80 hex/128 decimal
	Correction

	9.5.5 Loss of Block (Category 2)
	Loss of Block
	Correction

	Loss of Block - A/D Communications Fault
	Correction
	Fault Extra Data for Loss of Block
	Block Configuration (Byte 2)

	9.5.6 Addition of Block (Category 3)
	Correction
	Fault Extra Data for Addition of Block
	Block Configuration (Byte 2)

	9.5.7 I/O Bus Fault (Category 6)
	Bus Fault
	Correction

	Bus Outputs Disabled
	Correction

	SBA Conflict
	Correction

	9.5.8 Module Fault (Category 8)
	08 hex, Configuration Memory Failure
	Correction

	20 hex/32 decimal, Calibration Memory Failure
	Correction

	40 hex/64 decimal, Shared RAM Fault
	Correction

	80 hex/128 decimal, Module Fault
	Correction

	81 hex/129 decimal, Watchdog Timeout
	Correction

	84 hex/132 decimal, Output Fuse Blown
	Correction

	9.5.9 Addition of IOC (Category 9)
	Addition of IOC
	Correction

	01 hex, Extra Module
	Correction

	02 hex, Reset Request

	9.5.10 Loss of or Missing IO Controller (Category 10)
	Correction
	Fault Extra Data for Loss of or Missing IOC

	9.5.11 IOC (I/O Controller) Software Fault (Category 11)
	Datagram Queue Full, Read/Write Queue Full
	Correction

	Response Lost
	Correction

	9.5.12 Forced and Unforced Circuit (Categories 12 and 13)
	Fault Extra Data for Forced/Unforced Circuit

	9.5.13 Loss of or Missing I/O Module (Category 14)
	Correction

	9.5.14 Addition of I/O Module (Category 15)
	Addition of I/O Module
	Correction

	30 hex/48 decimal, VME Reset on Request

	9.5.15 Extra I/O Module (Category 16)
	Correction

	9.5.16 Extra Block (Category 17)
	Correction

	9.5.17 IOC Hardware Failure (Category 18)
	Correction

	9.5.18 GBC Stopped Reporting Faults (Category 19)
	Correction

	9.5.19 GBC Software Exception (Category 21)
	1, Incoming datagram queue full
	Correction

	2, Read/write request queue full
	Correction

	3, Low priority mail queue from GBC to CPU full
	4, Genius background message requiring CPU action received before CPU completed initialization
	5, GBC software version too old
	Correction

	6, Excessive use of internal GBC memory
	Correction

	9.5.20 Block Switch (Category 22)
	Correction
	Fault Extra Data for Block Switch

	9.5.21 Reset of IOC (Category 27)

	9.6 Diagnostic Logic Blocks (DLBs)
	9.6.1 DLB Operation
	Suspend I/O Function and DLBs
	Restrictions on DLB Operation
	DLB Variables

	9.6.2 Executing DLBs
	DLB Properties
	Target Properties
	Right-click Online Operations for an Active DLB

	DLB Online Operations
	Removing a DLB from the Controller
	Basic Steps for Using a DLB in the Controller
	Monitoring DLB Execution

	9.6.3 Diagnostic Logic Block (DLB) Example
	Logic for the Monitor Scan Block
	DLB Block Icon/Status Bar Once Started.

	9.6.4 PACSystems Simulator Diagnostic Logic Blocks (DLBs)

