CPU Programmer’s Reference Manual
GFK-2950M
Dec 2024

PACSystems ™ CPU Programmer’s
REFERENCE MANUAL

)
“ |
v —— e
v — 1 —
o — s

EMERSON.

CPU Programmer’s Reference Manual Contents

GFK-2950M

Contents

Dec 2024
Contents
Section 1 INtroduCtion.........ccoo i 1
1.1 Revisions inthis Manual ... 2
1.2 PACSystems Programming and Configuration.................cooovviiiiiiieiiiinennn.. 3
1.3 Migrating Series 90 Applications to PACSystems..........coovovieiiiiiiiieiineeenn. 3
1.4 VersaMax SafetyNet Safety System ..o, 3
1.5 PACSystems SImUator..... ... 3
1.6 PACSystems DOCUMENAION.iiueiiii e 4
1.6.1 PACSyStems ManualSccouiiiniiiiiiiei e 4
1.6.2 RSTI-EP ManualScooumiiiii e 4
1.6.3 RXBIMaANUAIS.couiii e 4
1.6.4 Series 0 ManUAEIS i 5
Section 2 Program Organization................ccoeeeeeeiiieeiiiie e, 6
2.1 Structure of a PACSystems Application Program ..o, 6
2.0 BIOCKS .. 6
2.1.2 Functions and Function BIOCKS.ooiuiiiiiiiiiiieee e 7
2.1.3 HowBlocks Are Calledcoouiieiiieee e 7
2.1.4 NeSted Callsooeniiiee e 8
2.1.5 TYPES Of BIOCKS ... cvuiteiie e 8
2.1.6 LOCAIDAtaA. ... 20
2.1.7 Parameter Passing Mechanismscocoiiiiiiiiiiiiiiiceen 22
2.1.8 LANQUAGES.iniieiie e 24
2.2 Controlling Program EXeCULION............ovuiiiiiiii e 26
2.3 Interrupt-Driven BIOCKSooviiiiiiiie e 26
2.3.1 Interrupt Handlingooonieie e 27
2.3.2 Timed INterrupts ... 29
2.3.3 VO INtermUPES ... e 29
2.3.4 Module INterruptS.o 29
2.3.5 InterruptBlock Scheduling...........cc.ooiiiiiiiiiii e 30
2.3.6 PACSystems Simulator Interrupt-Driven Blockscccooieviieniie. 31
Section3 Program Data............ccccoeiiiiiiiiiii 32
3.1 VaAMaDIES .. 33
3.1.1 Mapped Variables........ ..o 33
3.1.2 Symbolic Variables. ..o 33
3.1.3 VO VariabIES ... 35

CPU Programmer’s Reference Manual

GFK-2950M

Contents

3.1.4 Arrays
3.1.5 Variable Indexes and Arrays

Reference Memory
3.2.1 Word (Register) References
3.2.2 Bit (Discrete) References
User Reference Size and Default
3.3.1 %G User References and CPU Memory Locations
Genius Global Data
Transitions and Overrides

Retentiveness of Logic and Data

Data Scope

System Status References
3.8.1 %S References

3.8.2 %SA, %SB, and %SC References
3.8.3 Fault References

How Program Functions Handle Numerical Data
3.9.1 Data Types

3.9.2 Floating Point Numbers

User Defined Types (UDTs)
3.10.1Working with UDTs

3.10.2UDT Properties
3.10.3UDT Limits
3.10.4RUN Mode Store of UDTs
3.10.5UDT Operational Notes

Operands for Instructions
Wordfor-Word Changes
3.12.1Exception: Symbolic Variables

PACSystems Simulator Program Data
3.13.1Variables

3.13.2Reference Memory
3.13.3System Status References

Section4 Ladder Diagram (LD) Programming

Advanced Math Functions
4.1.1 Exponential/Logarithmic Functions
4.1.2 Square Root
4.1.3 Trig Functions
4.1.4 Inverse Trig — ASIN, ACOS, and ATAN
4.2 Bit Operation Functions

Contents
Dec 2024

CPU Programmer’s Reference Manual

GFK-2950M

Contents

4.3

4.4

4.5

4.6

4.2.1
422
4.2.3
4.2.4
4.2.5
4.2.6
4.2.7
4.2.8
4.2.9

Contacts

Control Functions

4.51

4.5.3
454
4.5.5
4.5.6
4.5.7
4.5.8
4.5.9

Conversion Functions
4.6.1 Convert Angles
4.6.2 Convert UINT or INT to BCD4
4.6.3 ConvertDINT to BCD8
4.6.4 Convert BCD4, UINT, DINT, or REAL to INT

Data Lengths for the Bit Operation Functions
BitPositioncoooiiiiiii
Bit Sequencer
Bit Set, Bit Clear
Bit Test. ..o,
Logical AND, Logical OR, and Logical XOR

Logical NOT

Masked Compare
Rotate Bits.........cccoooviiiiiiin.
4.2.10Shift Bits

Mask I/O Interrupt
Read Switch Position

Scan Set 10
Suspend I/O

Suspend or Resume I/O Interrupt

4.4.1 Continuation Contact
4.4.2 Fault Contact
4.4.3 High and Low Alarm Contacts
4.4.4 No Fault Contact
4.4.5 Normally Closed and Normally Open Contacts
4.4.6 Transition Contacts

Do TN L N
4.5.2 Edge Detectors

Contents
Dec 2024

iii

CPU Programmer’s Reference Manual Contents

GFK-2950M

Contents

4.7

4.8

4.9

Dec 2024
4.6.5 Convert BCD4, INT, DINT, orREALto UINTcooiiiiiiiiiiiieeeenn. 145
4.6.6 Convert BCD8, UINT, INT, REAL or LREALtODINTcceevvnvennnnes 147
4.6.7 Convert BCD4, BCD8, UINT, INT, DINT, and LREAL to REAL......... 149
4.6.8 Convert REAL O LREAL.......ccouiiiiiei e 152
4.6.9 ConvertDINT 10 LREAL.......ooiiiiiieiii e 153
4.B8.10TIUNCALE. ... et 153
(070 U 51 =T £ PP 154
4.7.1 Data Required for Counter Function Blocks.............ccccooiiiiiiinis 154
4.7.2 DOWN COUNEET ... et e e 156
4.7.3 UP COUNTEI ...t 157
Data Move FUNCLIONS.iiiiiiii e 159
481 AITAY SIZE. ..o 160
4.8.2 Array Size Dimension FunctionBlocksccoccoviiiiiiiiiiiniinn 162
4.8.3 BIOCK ClEaI......cc.uiiie e 165
4.8.4 BIOCKIMOVE. ... et 167
4.8.5 BUS_FUNCHONS.coiviieiiii et 168
4.8.6 Communication Request (COMMREQ)coovviiiiiniiiiiiiiiniiis 175
4.8.7 Data Initializationcccooiii i 180
4.8.8 Data Initialize ASCIlcoouniiiii e 182
4.8.9 Data Initialize Communications Request................cccoeiiiiiiinil. 182
4.8.10Data Initialize DLAN ..o 183
4B ATMOVE ... 184
4.8.12MOVEDEEA ... i 186
4.8.13Move Data EXPIICIt.......cuoveiiie e 187
4.8.14Move From Flat.........oooniiii e 188
4.8.15MoVE O Flat... ... 189
4.8.16Shift REQISEEru i 192
4.8.17S0ZE Of .o 194
BB A8 WAD . et 195
Data Table FUNCLIONSuiiiiii 197
4.9.1 Array MOVE ... e 199
4.9.2 Array RANGE... ... i 202
4.9.3 FIFO REAA. ... iieiiieeee e 204
4.9.4 FIFO WHEE. ... ittt 206
4.9.5 LIFOREEA. .. .ciiiiiiiiei e 207
4.9.6 LIFO WIIE ... eei et 208
4.9.7 S@AICKH ...t 209

CPU Programmer’s Reference Manual Contents

GFK-2950M Dec 2024

IR T T Y o QO 212

4.9.9 Table REa..........iiiiiiiei e 213

4.9.10TabIE WL ... 214

4.10 Math FUNCHONSccuiieiee e e 216

40 TOVEIIOW. ... 217

4.10.2Absolute Value...... oo 217

A0 BAA. . 218

4.10.4DIVIAE ... 220

A A0.5MOTUIUS ... e 222

A A0BMUIIDIY. ..o 222

410,78 CaIE ... 225

4.10.8SUDLIACE ...oeviee e 226

4.11 Program FIOW FUNCHONScoiiiiiii e 227

4. 11.1AGUMENE PreSENt....ccuiiie e 227

A AT.2CaNL e 230

411, 3C0MMENE. ..t e 234

A A1 AJUMPIN L 234

4.11.5Master Control Relay/End Master Control Relayc...cooceiiiiiis 235

AT WIS et 237

4.12 Relational FUNCLIONS...... ... 237

412, TC0MPAIE .. e ittt e 238
4.12.2Equal, Not Equal, Greater or Equal, Greater Than, Less or Equal, Less Than240

412 BEQ DA T A 242

4 A2 ARENGE. ..o 243

g I T 1 0 1= = N 244

4.13.1Timed CoNaCES ... ceeeieiei e 244

4.13.2Timer Function BIOCKScovuiiiiii e 245

4.14 PACSystems Simulator Ladder Diagram (LD) Program..............cc.c.ccouneeee. 265

4. 14 AMath FUNCHONS......oii e 266

414, 2C0NEACES ..ttt e 266

4.14.3C0oNtrol FUNCHONS.uiiiiii e 266

4.14.4Data Move FUNCHONS.iuuiiie e 266

g N 10 T £ PP 267

4.14.6Motion Function BIOCKScc.uiiiiiiiiici e 267

4.14.7Communication BIOCKSc.iiuiiiiiiiiie e 267

Section 5 Function Block Diagram (FBD)..........cccccceeeeiiees 268

5.1 NoOte ONREENIIANCY . ..uiviitiii e 269

Contents v

CPU Programmer’s Reference Manual Contents

GFK-2950M Dec 2024
5.2 Advanced Math FUNCHONS..........ocuiiiiiiii e 269

5.2.1 EXPT FUNCONuiiiiieii e 271

5.3 Bit Operation FUNCHONScoiii e 271

5.3.1 Logical AND, Logical OR, and Logical XOR...............cccoevviinernnnnn. 273

5.3.2 Logical NOT ... 275

Lo ©o oo g 1T 276

5.4.1 TEXEBIOCK. .. ceeeei e 276

5.5 Comparison FUNCHIONS.........cuuiiiiiiiie e 277

5.5.1 Equal, Not Equal, Greater or Equal, Greater Than, Less or Equal, Less Than278

5.6 Control FUNCHIONS.iieiee e 279
LI A €701 0] o (= £ 280
5.8 DataMove FUNCHONS.......couiiiiie e 282
5.8.1 Fan OUL.. .o 285
5.8.2 MOVEDEA......uiiiiiiii e 286

5.9 Math FUNCHONS. 290
5.9.1 OVEIIOW. ..o e e 291

5.9.2 AQ. . e 292

5.9.3 DIV ettt 293

5.9.4 MOAUIUS ...coniti e 294

5.9.5 MUIIPIY. ..o 295

5.9.6 NEGLE. ...t 296

5.9.7 SUDLIaCt ... 297

5.10 Program Flow FUNCHONSc..oiviiiiii e 299
Lo 0t It O T 0T S 300
5.11.1Built-in Timer Function BIOCKS..........cccviuiiiiiiii e, 300
5.11.2Standard Timer Function BIOCKS.cccoiiiiiiiiiiii e 301

5.12 Type Conversion FUNCLIONSccoviiniiiiiii e 302
5.12.1Convert WORD 0 INT ...t 304
5.12.2Convert WORD 0 UINT ...t 304
5.12.3Convert DWORD t0 DINT......uiiiiiieiii e 305
5.12.4Convert INT or UINT 0 WORDccoouiiiiiiiiiicieiieee e 306
5.12.5Convert DINT 10 DWORD.......ccuuiiiiiiiiieeee e 306

5.13 PACSystems Simulator Function Block Diagram (FBD)ccccvvvnienneee. 307
5.13. 1Math FUNCHONSceiiie e 307
5.13.2C0onNtrol FUNCHIONS.iiiiiiiici e 307
5.13.3Data Move FUNCLIONS........c..iiuiii e 307

BB ATIMEIS. . e 307
Refer to Section 4.14.5 TIMers.........ccooeeiieiiiiiiiieii e 307

Contents vi

CPU Programmer’s Reference Manual Contents

GFK-2950M Dec 2024
5.13.5Communication BIOCKSccuiviiiiiiiii 307
Section 6 Service Request Function.............cccccceeeiieeeeennnnnn. 308
6.1 Operationof SVC_REQ Functionc.ooiiiiiiii e 309
6.1.1 LadderDiagram...... ..o 309
6.1.2 Function Block Diagram...........cociiiiiiiiiiiiiiieiee e 311
6.2 SVC_REQ1: Change/Read Constant Sweep Timer...........c.ccoeveivveiennnne. 311
6.2.1 To disable Constant Sweep mode:cooeiiiiiiiiiiiiiieeen, 312
6.2.2 To enable Constant Sweep mode and use the old timervalue: 312
6.2.3 To enable Constant Sweep mode and use a new timer value........... 313
6.2.4 To change the timer value without changing the selection for sweep mode state:
313
6.2.5 To read the current timer state and value without changing either..... 313
6.3 SVC_REQ 2: Read Window Modes and Time Values................ccccceenneen. 314
6.4 SVC_REQ 3: Change Controller Communications Window Mode.............. 316
6.4.1 To disable the controller communications window: 316

6.4.2 To re-enable or change the controller communications window mode:316
6.5 SVC_REQ 4: Change Backplane Communications Window Mode and Timer Value316

6.5.1 To disable the Backplane Communications window:....................... 317
6.5.2 To enable the Backplane Communications window mode................ 317
6.6 SVC_REQ 5: Change Background Task Window Mode and Timer Value ... 318
6.6.1 To disable the Background Task wWindOW:cccooieiiiiiiieninnns. 318
6.6.2 To enable the Background Task window mode:...............ccccvueenneen. 318
6.7 SVC_REQ 6: Change/Read Number of Words to Checksum.................... 320
6.7.1 Toread theword count:..........coooiiiiiiiiii e, 320
6.7.2 TosetanNeWwWORd COUNL:oouiiniiiiiiiii e 320
6.8 SVC_REQ7: Read or Change the Time-of -Day ClocK................ccoeevennnnes 322
6.8.1 Parameter Block FomMats............cccoiiiiiiiiiiiee . 322
6.9 SVC_REQ 8: Reset Watchdog Timer.........cccuiiiiiiiiiiieiiiiieeieeeeeie 330
6.10 SVC_REQ 9: Read Sweep Time from Beginning of Sweep 330
6.11 SVC_REQ10: Read Target Name............oeieuiiiiiiiiiiieii e 332
6.12 SVC_REQ11: Read Controller ID..........ccoeviviniiiiiiieeeeeeeeee e 333
6.13 SVC_REQ 12: Read Controller Run Statecoooiiiiiiiiii, 334
6.14 SVC_REQ 13: ShutDown (STOP) CPU.....cccuiiiiiiiiiieiiieeieee e 335
6.15 SVC_REQ 14: Clear Controller or I/O Fault Table ..o, 335
6.16 SVC_REQ 15: Read Last-Logged Fault Table Entry..........cccoccoiviiiiiinnnne. 337
6.17 SVC_REQ 16: Read Elapsed Time CloCK...........ccoooviiiiiiiiiiieieceee, 340
6.18 SVC_REQ 17: Mask/Unmask /O Interrupt............ccoooiiiiiiiiiiiiiiee, 343
6.18.1Masking/Unmasking Module Interrupts.............cccooeiiiiiiii s 343
6.19 SVC_REQ 18: Read /O Forced Statuscocoiiiiiiiiiiiiiiiiieee, 345

Contents vii

CPU Programmer’s Reference Manual Contents

GFK-2950M Dec 2024
6.20 SVC_REQ 19: Set Run Enable/Disable............ccoooviiiiiiiiiiiiiiiiee, 345
6.21 SVC_REQ 20: Read Fault Tables.........cccuveiiiiiiiiieiiieieeeeieee e 347

6.21.1Non-Extended FOrmMats..........ccoviiuiiiiiiii e 347
6.21.2Extended FOMaAtS.couiiniiiii e 351
6.22 SVC_REQ 21: User-Defined Fault LOGging.......c.cocvvuieiiiiiiiiiiiiieiiciies 356
6.23 SVC_REQ 22: Mask/Unmask Timed Interrupts..........ccoccovviiiiiiiiinninnn.n. 357
6.24 SVC_REQ 23: Read Master Checksum............ccoviiiiiiiiiiiiiiiicee, 359
6.25 SVC_REQ 24: Reset MOUIE.oveuiiiiaii e 361
6.26 SVC_REQ 25: Disable/Enable EXE Block and Standalone C Program Checksums 363
6.27 SVC_REQ 29: Read Elapsed Power Down Time.........cccoeeuieiiiieiinneennnnes 364
6.28 SVC_REQ 32: Suspend/Resume /O Interrupt..........cooouieiiiiiiiiiiiiniis 365
6.29 SVC_REQ45: Skip Next /O Scan.........cccuuiiiiiiiiieiiiie e 367
6.30 SVC_REQ50: Read Elapsed Time ClocK..........cooviiiiiiiiiiiiiee, 368
6.31 SVC_REQ 51: Read Sweep Time from Beginning of Sweep..................... 370
6.32 SVC_REQ 56: Logic Driven Read of Nonvolatile Storage......................... 371
6.32.1DiSCrete MEMONY.uii et 371
6.32.2Restoring data values on CPE200 Seri€Scccvevieiiiiiniiieninnnn. 371
6.32.3Storage Disabled ConditionS.ovveueviiiiiiii e 372
6.32.4Maximum of One Active Instruction..............cccooeiiiiiiiii i 372
6.32.5ENO and Power Flow To The Right...........ccooiiiiiiiiiien, 372
6.32.6Parameter BIOCKcouiiniiii 372
6.33 SVC_REQ 57: Logic Driven Write to Nonvolatile Storage......................... 376
6.33.1Length of Data Written...........cooviiii e, 377
6.33.2Writ€ FrEQUENCY .. .eneeeeee e 377
6.33.3Nonvolatile Storage Life Span...........ccoieviiiiiiiiiiiiie e 378
6.33.4DiSCrete MEMONY. 379
6.33.5Creating a Removable Nonvolatile Storage Backup........................ 379
6.33.6RetentiVENESSceiiie 380
6.33.7Maximum of One Active Instruction..............cccooiiiiiiiii i 380
6.33.8Storage Disabled Conditions.oeveueiiiiiiiiiiiiie e 380
6.33.9Ermor CheCKINGovuiiieiie e 380
6.33.10 Fragmentation............ccoviiiiiiiiiiii e 380
6.33.11 When nonvolatile storage isfull.............coooiiiiiii 381
6.33.12 EQUAlItY....uieeeie e 382
6.33.13 RedundanCycoooiiiiiiii 382
6.33.14 ENO and Power Flowto the Right..................coiii, 382
6.33.15 Parameter Block for SVC_REQ 57ccccuuviiiiiiiiiiiiiiiiiieeeeennn, 383
6.34 SVC_REQ 63: Logic Driven Write of Reference Memory.............ccococeuneee. 385
6.34. TWIite FrEQUENCY ... cieiiiii i 386

Contents viii

CPU Programmer’s Reference Manual Contents

GFK-2950M

Contents

Dec 2024

6.34.2Data DeltioN........couuiiiiii e 386
B.34.3EQUAIIYceevveeeeiie e 387
6.34.4Function Block Operation............c.ccovieiiiiiiiiii e 387
6.34.5Status WOcoouiiiiiii e 388
6.34.6SVC_REQ B3 EXample.......ccouiiiiiiiiieii e 388

6.35 PACSystems Simulator Service Request Functionsccoooooiiiinie. 389
Section 7 PID Built-In Function Blockccccceeiiiiiiinnne. 391
7.1 Operands of the PID Function..............cooiiiiiiiiii e, 392
7.1.1 Operands for LD Version of PID Function Block................ccocoeeuniin 392

7.1.2 Operands for FBD Version of PID Function Block 393

7.2 Reference Array forthe PID Function............ccoooviiiiiiiiiiiiieeeee 393
7.2.1 Scaling Input and OUPULSuiiiiniiiiii e 394

7.2.2 Reference Array Parametersooooiiiiiiiiiiiiii e 395

7.3 Operationof thePID Function..............cooiiiiiiii e, 400
7.3.1 Automatic Operation...........ccooouiiniiiiii e 400

7.3.2 Manual Operationcouoiiiiiii e, 400

7.3.3 Time Interval for the PID Functionccooooiiiiiiiiiiiiiiee 400

7.4 PID Algorithm Selection (PIDISA or PIDIND) and Gain Calculations 401
7.4.1 Derivative Term ... e 403

7.4.2 Error TerM MOGEeeiieeee e 403
7.4.3 Derivative Actionon PV Bit.......cc.ooiiiiiiii e, 403

7.4.4 Combined Operation of Error Term and Derivative Action Modes 404

745 CVBIas TermM. ..o 404

7.4.6 CV Amplitude and Rate Limitsc.ccooiiiiiiii, 404

7.4.7 Sample Period and PID Function Block Scheduling........................ 405

7.5 Determining the Process Characteristicsccooviiiiiiiiiiiiiis 406
7.6 Setting TUNING LOOP GaiNS ... ceeuiiiiieiii e 408
7.6.1 Basic lterative Tuning ApProach.........cccoeiviiiiiiiiiceeeee e, 408

7.6.2 Setting Loop Gains Using the Ziegler and Nichols Tuning Approach . 409

7.6.3 Ideal Tuning Method..........c.uiiiiiiiii e 409

7.7 PID EXGMPIE... e 410
7.7.1 Reference Array Initialization using %MO0000B.............cc.ceeevneennnne. 410
Section 8 Structured Text (ST) Programming 412
8.1 Language OVEIVIEWcuiiiiiiit e e e eaaaas 412
8.1.1 SHatEMENESeeiii i e 412

8.1.2 EXPIESSIONS . .uuititiit it 412

ix

CPU Programmer’s Reference Manual Contents

GFK-2950M

Contents

8.2

8.3

Section 9

9.1

9.2

9.3

9.4

Dec 2024

8.1.3 OPEIaAOrS . ettt 412
8.1.4 Structured Text SYNtaXcccuiviiiiiii 413
Statement TYPES. .. e 415
8.2.1 Assignment Statement............ccooiiiiiiiiiii e, 415
8.2.2 FUNCION Call... ... 417
8.2.3 RETURN Statement..........c.ooiiiiiiiiiiie e 421
8.2.4 IF Statement........coouiii i 421
8.2.5 CASE Statement.......ccouuniiiiiii e 423
8.2.6 FOR...DOStatemMentsccuiiiuiieiiieiiei e 425
8.2.7 WHILE Statement..........ooiiuiiiiie e 427
8.2.8 REPEAT Statement..........couiiiiiiiii e 428
8.2.9 ARG PRES Statement..........cooiviiiiiiii e 429
8.2.10EXit Statement........o.iiii e 430
8.2.11Data_Qual Function Blocks for Structured Text..............ccovvveennnnn. 431
PACSystems Simulator Structured Text (ST) Programming...................... 431
8.3.1 Math FUNCHONS ... ceuieee e 431
8.3.2 Control FUNCHIONS.iiiiiiiiei e 431
8.3.3 DataMove FUNCIONS........ccuiiiiie e 431
8.3.4 TIMIEIS. .t 432
8.3.5 Communication BIOCKSccouiiiiiiiii 432
DiagnoStiCS......uiiiieeiii e 433
Fault Handling OVeINVIEW.........oou e 434
9.1.1 System Responseto Faults..............ccoooviiiiiiiiiiiiee, 434
S 2 o 10 =T o = 434
9.1.3 Fault Actions and Fault Action Configuration..............cccoocevviennnn. 435
Using the Fault Tables...... ..., 436
9.2.1 Controller Fault Table..........cooeuiiiii e 436
9.2.2 IO FaUt TAbIE .ceeeieee e 438
System Handling of Faults. ... 441
9.3.1 System Fault References...........ccoiviiiiiiiiiiiiii e 441
9.3.2 Using Fault Contacts..........covviiiiiiiiiie e 444
9.3.3 Using Point FaUIS............couiiiiii e 446
9.3.4 Using Alarm Contacts..........cooiriuiiiiiii e 446
Controller Fault Descriptions and Corrective Actionsccccccevveeinnn.e. 447
9.4.1 Controller Fault Groups.cccoouiiiiiiiiiiee e, 447
9.4.2 Loss of or Missing Rack (Group 1)........cceeuiiiiiiiiniiiiiiecieei 447
9.4.3 Loss of OptionModule (Group 4).........cevvieiiiiiiiieiiieieeeceeeeen, 448
x

CPU Programmer’s Reference Manual

GFK-2950M

Contents

9.5

Contents

Dec 2024

9.4.4 Addition of, or Extra Rack (Group 5)coevviiiiiiiiiiieiiei e, 450
9.4.5 Resetof, Addition of, or Extra Option Module (Group 8).................. 450
9.4.6 System Configuration Mismatch (Group 11)......cccoeiiiiiiiiiiienn. 451
9.4.7 SystemBus Error (Group 12).......coeuiiiiiiieiiiei e 458
9.4.8 CPU Hardware Failure (Group 13).......coouiiiiiiiiiiiieiieceeeeeen 459
9.4.9 Module Hardware Failure (Group 14)........cooveiiiiiiiiiiieiiieieeee 460
9.4.100ption Module Software Failure (Group 16)..........cccoeevvieniiineinnnnn. 461
9.4.11Program or Block Checksum Failure (Group 17)........cccooieiieennn. 462
9.4.12Battery Status (Group 18).......ceuuiiieieii e 463
9.4.13Constant Sweep Time Exceeded (Group 19)........ccccovvvvviiiiiennnnn. 464
9.4.14System Fault Table Full (Group 20)ccvevvniiiiiiieeiieeeeeeeeee 464
9.4.151/0O Fault Table Full (GrouUp 21)....ciee e 465
9.4.16User Application Fault (Group 22).........cc.ceviiiiiiiiiiiieiiniieeeeeeeen, 465
9.4.17CPU Over-Temperature (Group 24)..........coviuiiiiiiiiiiieiiiceeeiee 467
9.4.18Power Supply Fault (Group 25) ..o 468
9.4.19No User Program on Power-Up (Group 129).........ccceevviiiiiennnnnn. 468
9.4.20Corrupted User Program on Power-Up (Group 130)..........cceeenneen. 469
9.4.21Window Completion Failure (Group 131).....ccoviiiiiiiiiiiiiieiiiees 469
9.4.22Password Access Failure (Group 132)cccviiiiiiiiiiiiiiieeeeeen, 470
9.4.23Null System Configurationfor RUN Mode (Group 134)................... 470
9.4.24CPU System Software Failure (Group 135)........cccoviiiiiiiiiiiiienn. 471
9.4.25Communications Failure During Store (Group 137)ccvvvivveennnen. 472
9.4.26Non-Critical CPU Software Event (Group 140).........c.ccoviiiiieennn. 474
I/O Fault Descriptions and Corrective ACHIONSoeveuiiiiiiiiiieiiieeeee, 476
9.5.1 Fault ExtraData..........ocouiiniiiii 476
9.5.2 /O FaUlt GrOUPScviiiiie i 476
9.5.3 /O Fault Categoriesveuiiiee e 476
9.5.4 Circuit Faults (Category 1).....oueu i 480
9.5.5 Loss of Block (Category 2)oovuviiiiiiiieiiiei e 485
9.5.6 Addition of Block (Category 3).......ceuiieiiiieiieieiee e 486
9.5.7 /O Bus Fault (Category B).........veiuieiiieeieeiee e 486
9.5.8 Module Fault (Category 8).......ccuuvviuiiiiiieiiiee e 487
9.5.9 Addition of I0C (Category 9)......c.oeeuiiiiiiiei e 489
9.5.10Loss of or Missing 10 Controller (Category 10)........cecevvivniiineennnnnn. 490
9.5.1110C (/O Controller) Software Fault (Category 11)........coceevvneennenn. 491
9.5.12Forced and Unforced Circuit (Categories 12and 13)ccoeveevnnees 491
9.5.13Loss of or Missing I/0O Module (Category 14)........cccoveeiiiiiiiiaenneenn. 492
xi

CPU Programmer’s Reference Manual Contents

GFK-2950M

Contents

9.6

Dec 2024
9.5.14Addition of VO Module (Category 15)cevvieiiiiiiiieiieeeeeeen, 492
9.5.15Extra I/0 Module (Category 16)........ccuuiiiiiiiiiiiiieii e 493
9.5.16Extra Block (Category 17) ... o 493
9.5.1710C Hardware Failure (Category 18)........ccccoviiiiiiiiiieiiiiieieeeeeen, 493
9.5.18GBC Stopped Reporting Faults (Category 19).......ccoveeviiiiiiieeneenn. 493
9.5.19GBC Software Exception (Category 21).......ccooveviiieiiiiiiiiieiiiieines 494
9.5.20Block Switch (Category 22)c..vveeiiiiiieiee e 494
9.5.21Reset of IOC (Category 27).....ceu e 495
Diagnostic Logic BIOCKS (DLBS)........ccuiieniiieiiieieeeeeeeee e 496
9.6.1 DLB Operationcc.uieiuneii e e 497
9.6.2 EXECUING DLBS.......iiiiiiieiii e 500
9.6.3 Diagnostic Logic Block (DLB) Example...........ccooieiiiiiiiiiiiiian. 503
9.6.4 PACSystems Simulator Diagnostic Logic Blocks (DLBS)................. 507

xii

CPU Programmer’s Reference Manual Warnings and Cautions
GFK-2950MM Dec 20244

Warnings and Caution Notes as Used in this Publication

A WARNING

Warning notices are used in this publication to emphasize that hazardous voltages, currents, temperatures,
orother conditions thatcould cause personal injury existin this equipment or may be associated with its use.

In situations where inattention could cause either personal injury ordamage to equipment, a Warning notice
is used.

A CAUTION

Caution notices are used where equipment might be damaged if care is not taken.

Note: Notes merely call attention to information that is especially significant to understanding and
operating the equipment.

These instructions do not purport to cover all details or variations in equipment, nor to provide for
every possible contingency to be met during installation, operation, and maintenance. The information
is supplied for informational purposes only, and Emerson makes no warranty as to the accuracy of
the information included herein. Changes, modifications, and/or improvements to equipment and
specifications are made periodically and these changes may or may not be reflected herein. It is
understood that Emerson may make changes, modifications, or improvements to the equipment
referenced herein or to the document itself at any time. This document is intended for trained
personnel familiar with the Emerson products referenced herein.

Emerson may have patents or pending patent applications covering subject matter in this document.
The furnishing of this document does not provide any license whatsoever to any of these patents.

Emerson provides the following document and the information included therein as-is and without
warranty of any kind, expressed or implied, including but not limited to any implied statutory warranty
of merchantability or fitness for particular purpose.

Xiii

CPU Programmer’s Reference Manual Section 1

GFK-2950M

Dec 2024

Section 1 Introduction

Introduction

This manual contains general information about programming a PACSystems CPU. It
also provides detailed descriptions of specific programming requirements.

Forageneralintroduction to the PACSystems family of products, including new features,
product overviews, and specifications, see PACSystems RX3i and RSTi-EP CPU

Reference Manual, GFK-2222.
Programming Features

e Program Organization

e Program Data

e Ladder Diagram (LD) Programming
e Function Block Diagram (FBD)

e Service Request Function

e PID Built-In Function Block

e Structured Text (ST) Programming
Diagnostics

e Diagnostics

CPU Programmer’s Reference Manual Section 1

GFK-2950M Dec 2024
1.1 Revisions in this Manual

Rev | Date Description

M Nov 2024 | Added PACSystems Simulator

L May 2023 | Added CPE400/CPL410 to Section 6.34 covering SVC_REQ 63.

Updates to Section 6.33.3 to resolve issue with outdated data and recommended
SVC_REQ 57 usage.
Updates to Section 4.1.3 to fix the exponent values associated with the Trig

K Feb 2023 functions input value ranges.
Added Section 6.34.
Updates to Section 3.8.1 to add new %S References.
Updates to support the release of RSTi-EP Backplane Controllers (CPE200 Series)
J Nov 2022 Updated fault entries for Section 9.5.3, /0O Fault Categories.
Updates to %S0002 definition to provide clarity on when #LST_SCN transitions from
one to zero.
Updates to Section 4.2.3 Bit Sequencer
G June Updates to Section 6.9, SVC_REQ 8: Reset Watchdog Timer
2020 Updates to Section 6.33.2, Write Frequency
Secure Remote STOP-Halt Restart Mechanism.
F Feb 2020 | Updates to the %S reference table, Section 3.8.1.
Following Emerson’s acquisition of this product, changes have been made to apply
E Nov 2019 | appropriate branding and registration of the product with required certification
agencies. No changes to material, process, form, fit or functionality.
D Nov 2018 | CPE330/CPE400/CPL410increased block count from 512 to 768 including _Main

e Updated for CPE302 throughout.

e Updated SVC_REQ 20 fornewly implemented feature thatmakes it possible to
C Feb 2018 uniquely identify remote PROFINET IO faults recorded in the 10 Fault Table by
Remote Rack, Remote Slot, Remote Sub-Slot, and Device ID. Requires RX3i
firmware version 9.40 or later.

B Oct-2017 | Added Redundancy and FA_OK System Bits (%S) Section 3.8.1.

Changed the document Title and the contact information.

A May-2017
ay-20 Updated the Titles of the GFK’s wherever applicable.

PACSystems RX7iand RX3i CPU Reference Manual GFK-2222U Chapters 5-11 &
Chapter 14 formthe content of this new manual, the PACSystems RX7i and RX3i
CPU Programmer’s Reference Manual, GFK-2950.

GFK-2222V and later versions defer to GFK-2950 for CPU programming content.

- May-2015

Introduction 2

CPU Programmer’s Reference Manual Section 1
GFK-2950M Dec 2024

1.2 PACSystems Programming and
Configuration

PAC™ Machine Edition programming software provides a universal engineering
development environment for all programming, configuration and diagnostics of
PACSystems. A PACSystems CPU is programmed and configured using the
programming software to perform process and discrete automation for various
applications. The supported programming languages are documented in this manual.

1.3 Migrating Series 90 Applications to
PACSystems

The PACSystems control system provides cost-effective expansion of existing systems.
Support for existing Series 90 modules, expansion racks and remote racks protects your
hardware investment. You can upgrade on your timetable without disturbing panel wiring.

e The RX3i supports most Series 90-30 modules, expansion racks, and remote racks.
For alist of supported I/O, Communications, Motion, and Intelligent modules, see the
PACSystems RX3i System Manual, GFK-2314.

e The RX7isupports most existing Series 90-70 modules, expansion racks and Genius
networks. For alist of supported I/O, Communications, and Intelligent modules, see
the PACSystems RX7i Installation Manual, GFK-2223.

e Conversion of Series 90-70 and Series 90-30 programs preserves existing
development effort.

e Conversion of VersaPro and Logicmaster applications to Machine Edition allows
smooth transition to PACSystems.

1.4 VersaMax SafetyNet Safety System

The VersaMax SafetyNet Safety system programming follows the general program
organization and structured as described here, but has a reduced set of logic functions
and restrictions, please refer to the following documentation when programming
IC695CPS400:

e GFK-3277 VersaMax SafetyNet Safety Manual
e GFK-3279 VersaMax SafetyNet Safety Function Blocks

1.5 PACSystems Simulator

The PACSystems Simulator provides end users with the ability to modify, validate, and
test logic for a PACSystems CPU without requiring controller hardware. The
PACSystems Simulator supports the following models:

e RX3i IC695CPE302/305/310/330

e RX3i Rackless IC695CPE400/CPL410

e RSTi-EP EPXCPE205/210/215/220/240
The PACSystems Simulatoris afeature included with PAC Machine Edition 10.6 or later.

Introduction 3

CPU Programmer’s Reference Manual

GFK-2950M

1.6
1.6.1

1.6.2

1.6.3

Introduction

Section 1

Dec 2024

For alist of supported and unsupported features on the PACSystems Simulator, refer to
GFK-2222 PACSystems CPU Reference Manual, Section 2.1.12 PACSystems Simulator

Features.

PACSystems Documentation
PACSystems Manuals

PACSystems RX3i and RSTi-EP CPU Reference Manual

PACSystems RX3i and RSTi-EP CPU Programmer’s
Reference Manual

PACSystems RX3iand RSTi-EP TCP/IP Ethernet Communications
User Manual

PACSystems TCP/IP Ethernet Communications Station Manager User
Manual

C Programmer’s Toolkit for PACSystems

PACSystems Memory Xchange Modules User's Manual
PACSystems Hot Standby CPU Redundancy User Manual
PACSystems Battery and Energy Pack Manual

PAC Machine Edition Logic Developer Getting Started
Proficy Process Systems Getting Started Guide

PACSystems RXi, RX3i, RX7i and RSTi-EP Controller Secure
Deployment Guide

PACSystems RX3i & RSTi-EP PROFINET 1/O Controller Manual
PACSystems VersaMax SafetyNet Safety Manual
PACSystems VersaMax SafetyNet Safety Function Blocks

RSTi-EP Manuals

PACSystems RX3i & RSTi-EP PROFINET 1/O Controller Manual
PACSystems™ RSTi-EP EPSCPE100 Standalone CPU Quick Start Guide
PACSystems™ RSTi-EP EPSCPE115 Standalone CPU Quick Start Guide

PACSystems™ RSTI-EP Controllers Performance Evaluation Manual

RX3i Manuals

PACSystems RX3i System Manual

DSM324i Motion Controller for PACSystems RX3i and Series 90-30
User's Manual

PACSystems RX3i PROFIBUS Modules User's Manual

PACSystems RX3i Max-On Hot Standby Redundancy User's Manual
PACSystems RX3i Ethernet Network Interface Unit User's Manual
PACMotion Multi-Axis Motion Controller User's Manual

PACSystems RX3i PROFINET Scanner Manual

PACSystems RX3i CEP PROFINET Scanner User Manual

PACSystems RX3i Serial Communications Modules User's Manual

GFK-2222

GFK-2950

GFK-2224

GFK-2225
GFK-2259
GFK-2300
GFK-2308
GFK-2741
GFK-1918
GFK-2487

GFK-2830
GFK-2571
GFK-3277
GFK-3279

GFK-2571
GFK-3012
GFK-3039

GFK-3086

GFK-2314

GFK-2347
GFK-2301
GFK-2409
GFK-2439
GFK 2448
GFK-2737
GFK-2883
GFK-2460

CPU Programmer’s Reference Manual Section 1

GFK-2950M Dec 2024
PACSystems RX3i Genius Communications Gateway User Manual GFK-2892
PACSystems RX3i DNP3 Outstation Module IC695EDS001 User's
Manual GFK-2911
PACSystems RX3i IEC 104 Server Module IC695EIS001User's Manual GFK-2949

1.6.4 Series 90 Manuals
Series 90-30 Genius Bus Controller User's Manual GFK-1034

In addition to these manuals, datasheets and product update documents describe
individual modules and product revisions. The most recent PACSystems
documentation is available on the Emerson support website
https://www.emerson.com/Industrial-Automation-Controls/support.

Introduction 5

https://www.emerson.com/Industrial-Automation-Controls/support

CPU Programmer’s Reference Manual Section 2
GFK-2950M Dec 2024

Section 2 Program Organization

This chapter provides information about the operation of application programs in a
PACSystems CPU.

e Structure of a PACSystems Application Program
e Controlling Program Execution

e Interrupt-Driven Blocks

2.1 Structure of a PACSystems Application
Program

A PACSystems application consists of one block-structured application program. The
application program contains all the logic needed to control the operations of the CPU
and the modulesinthe system. Applicationprograms are created using the programming
software and transferred to the CPU. Programs are stored in the CPU’s non-volatie
memory.

During the CPU Sweep, the CPU reads input data from the modules in the system and
stores the datain its configured input memory locations. The CPU then executes the
entire application program once, using this fresh input data. Executing the application
program creates new output data that is placed in the configured output memory
locations.

After the application program completes its execution, the CPU writes the output data to
modules in the system. This completes the CPU Sweep.

A block-structured program always includes a _MAIN block. Program execution begins
with the _MAIN block. Counting the _MAIN block, the CPE330, CPE400, CPL410, and
CPS400 support up to 768 blocks with firmware release 9.70 or later. All other CPU
models support up to 512 blocks. Note that PAC Machine Edition 9.50 SIM 13 or later

is also required for supporting a block count of up to 768.

2.1.1 Blocks

A block is a named section of executable logic that can be downloaded to and run on the
target controller. The logicin a block can include functions, function blocks and calls to
other blocks.

Program Organization 6

CPU Programmer’s Reference Manual Section 2
GFK-2950M Dec 2024

2.1.2 Functions and Function Blocks

A function is a type of instruction that has no internal storage (instance data). Therefore,
it produces the same result for the same set of input values every time it executes.

A function block defines data as a set of inputs and output parameters that can be used
as software connections to other blocks and internal variables. It has an algorithm that
runs every time the function block is executed. Because a function block has instance
data, that is it can store values, it has a defined state.

The following table describes the types of instructions that make up the PACSystems
instruction set.

Instruction Type Instance Data Examples

Functions None BIT_SEQ, ADD, RANGE

Built-in function blocks WORD array. TMR, PID_IND, PID_ISA

Standard function blocks Structure variable. Referto Instance Data | TP, TOF, TON
Structures

Note: A user defined function block (UDFB) is a block of logic that can be called in your
program logic to create multiple instances of the block, allowing you to create a block of
logic once and reuse it as if it was a standard function block instruction. For additional
information, refer to .

Types of Blocks and User-Defined Function Blocks (UDFBs)

2.1.3 How Blocks Are Called

A block executes when called from the program logic in the _MAIN block or another
block. In this example, LD_BLK1 is always called. Conditional logic can be used to
control calling a block. For LD_BLK2 to be called, input %100500 and output % Q00100
must be ON. For details on using the Call function, refer to Section 4 (LD programming),
Section 5 (FBD programming) or Section 8 (ST programming).

Figure 1
LD_ELK1
" LD_ELK2
100500 Q00100

1| 1|
1t i | CALL)

Program Organization 7

CPU Programmer’s Reference Manual Section 2
GFK-2950M Dec 2024

2.1.4 Nested Calls

The CPU allows nested block calls as long as there is enough execution stack space to
support the call. If there is not enough stack space to support a given block call, an
Application Stack Overflow fault is logged. In these circumstances, the CPU cannot
execute the block. Instead, it sets all of the block’s Boolean outputs to FALSE and
resumes execution at the point after the block call instruction.

Note: To halt the CPU when there is not enough stack space to execute a block, there are two
choices. The best method is to add logic to detect the occurrence of any User Application
Fault by testing the diagnostic bit %SA38, and then call SVC_REQ 13 to halt the CPU.
An alternative method is to add logic that tests for a negative OK value coming out of the
block and then call SVC_REQ 13 to halt the CPU.

A call depth of eight levels or more can be expected, exceptin rare cases where several
of the called blocks have very large numbers of parameters. The actual call depth
achieved depends on several factors, including the amount of data (non-Boolean) flow
used in the blocks, the functions called by the blocks, and the number and types of
parameters defined for the blocks. If blocks use less than the maximum amount of stack
resources, more than eight nested calls may be possible. The call level nesting counts
the _MAIN block as level°1.

2.1.5 Types of Blocks

PACSystems supports four types of blocks.

Programmin . ..
Block Type |Local Data 9 9| size Limit Parameters
Languages
LD 0 inputs
Block Has its own local data FBD 128 KB P
1 output
ST
Parameterized Inherits local data from LD 63 inputs
FBD 128 KB P
Block caller 64 outputs
ST
63 inputs
User Defined LD
. . 64 outputs
Function Block | Has its own local data FBD 128 KB Unlimited int |
(UDFB) ST nlimited in .erna
member variables
Inherits local data from user memory size | 63 inputs
Exti | Block C
xternal BIocK | caller limit (10 MB) 64 outputs

All PACSystems block types automatically provide an OK output parameter. The name
used to reference the OK parameter within a block is YO. Logic within the block can read
and write the YO parameter. When a block is called, its YO parameter is automatically
initialized to TRUE. This will resultin a positive power flow outof the block call instruction
when the block completes execution, unless Y0 is set to FALSE within the logic of the
block.

For all block types, the maximum number of input parameters is one less than the
maximum number of output parameters. This is because the EN input to the block callis
not considered to be an input parameter to the block. It is used in LD language to
determine whether or not to call the block butis not passed into the block if the block is

called.

Program Blocks

Program Organization 8

CPU Programmer’s Reference Manual Section 2
GFK-2950M Dec 2024

Any block can be a program block. The _MAIN block is automatically declared when you
create a block-structured program. When you declare any other block, you must assign
it a unique block name. A block is automatically configured with no input parameters and
one output parameter (OK).

When a block-structured program is executed, the _MAIN block is automatically
executed. Other blocks execute when called from the program logic in the _MAIN block,
another block, oritself. In the following example, if %M00001 is ON, the block named
ProcessEGD will be executed:

Figure 2 Conditional Block Call

‘ EgdAvailable CALL

|} ProcessEGD

A NNNNT

Program Blocks and Local Data

Program blocks support the use of %P global data. In addition, each block, except
_MAIN, has its own %L local data. Blocks do notinherit %L local data from their callers.

Using Parameters with a Program Block

Every block is automatically defined to have one formal ‘power flow’ (or OK) output
parameter, named YO0. YO is a BOOL parameter of LENGTH 1, passed by initial -value
result. It indicates successful execution of the block. It can be read and written to by the
logic within the block.

Program Organization 9

CPU Programmer’s Reference Manual Section 2
GFK-2950M Dec 2024

Parameterized Blocks

Any block except _MAIN can be a parameterized block. When you declare a
parameterized block, you must assignit a unique block name. A parameterized block
can be configured with up to 63 input and 64 output parameters.

A parameterized block executes when called from the program logic in the _MAIN block,
another block, oritself. In the following example, if %100001 is set, the parameterized
block named LOAD_41 will be executed.

Figure 3 Block Call with Parameters

100001 CALLLOAD 41 Qooool
I —
h—y

100100 — ABC Y1— T00001

100200 —|X2 Y2— R0O0200

Parameterized Blocks and Local Data

Parameterized blocks support the use of %P global data. Parameterized blocks do not
have their own %L data, but instead inherit the %L data of their calling blocks.
Parameterized blocks also inherit the FST_EXE system reference and time-stamp data
that is used to update timer functions from their calling blocks. If %L references are used
within a parameterized block and the block is called by _MAIN, %L references will be
inherited from the %P references wherever encountered in the parameterized block (for
example, %L0005 = %P0005).

Note: It is possible, by using Online Editing in the programming software to cause a
parameterized block to use %L higher than allowed because of the way it inherits data.
Using a word-for-word change to restore this reference to a valid address does not correct
the block because the variable still exists in the variable list. Deleting the variable from the
variable list does not cause an update to the CPU, so the parameterized block still sees
the reference out of range fault. To correct this condition, you must remove the unused
variables from the variable list after deleting them from the logic.

Using Parameters with a Parameterized Block

A parameterized block may be defined to have between 0 and 63 formal input
parameters, and between 1 and 64 formal output parameters. A ‘power-flow out’ (or OK)
parameter, named YO0, is automatically defined for every parameterized block. It is a
BOOL parameter of LENGTH 1 and indicates the successful execution of the
parameterized block. It can be read and written to by the parameterized block’s logic.

Program Organization 10

CPU Programmer’s Reference Manual Section 2
GFK-2950M Dec 2024

The following table lists the TYPEs, LENGTHSs, and parameter-passing mechanisms
allowed for parameterized block parameters. For definitions of the parameter passing
types, refer to Section 2.1.7, Parameter Passing Mechanisms.

Type Length |Default Parameter Passing Mechanism
INPUTS: by reference
BOOL 1 to 256
OUTPUTS: by value result; except YO, which is by initial-value result
INPUTS: by reference
BYTE 1to 1024
OUTPUTS: by reference
INT. UINT. and INPUTS: by reference
' ' 1to 512
WORD OUTPUTS: by reference
DINT. REAL. and INPUTS: by reference
DWdRD ' 1 to 256
OUTPUTS: by reference
INPUTS: by reference
LREAL 1to 128
OUTPUTS: by reference
INPUTS: by reference
function block' 1
OUTPUTS: not allowed
INPUTS: by reference
UDFB' 1
OUTPUTS: not allowed
i INPUTS: by reference
User Defined Type 110 1024
(UDT) OUTPUTS: not allowed

The PACSystems default parameter passing mechanisms correspond to the way that
parameterized subroutine block (PSB) parameters are passed on 90-70 controllers. The
parameter passing mechanisms of formal parameters cannot be changed from their
default values.

Arguments, or actual parameters, are passed into a parameterized block whenever a
parameterized block call is executed. In general, arguments to formal parameters may
come from any memory type, may be data flow, and may be constants (when the fomal
parameter's LENGTH is 1). The following list contains the restrictions on arguments

relative to this general rule:

e %S memory addresses cannot be used as arguments to any output parameter. This
is because user logic is not allowed to write to %S memory.

e Indirect references used as arguments are resolved immediately before the
parameterized block is called, and the corresponding direct reference is passed into
the block. For example, where %R1 contains the value 10 and @R1 is used as an
argument to a call, immediately before calling the block, @R1 is resolved to be %R10,
and %R10is passed in as the argument to the block. During execution of the block,
the argument remains as %R10, regardless of whether the value in %R1 changes.

In general, formal parameters within a parameterized block may be used with any

instruction or with any block call, if their TYPE and LENGTH are compatible with what
the instruction, function, or block call requires. The following list contains the restrictions

on formal parameters relative to this general rule:

' A maximum of 16 input parameters can be of type function block or UDFB.
Program Organization 11

CPU Programmer’s Reference Manual Section 2
GFK-2950M Dec 2024

e Formal parameters cannot be used on legacy transitional contacts or coils, or on
FAULT, NOFLT, HIALM, or LOALM contacts. However, formal parameters can be
used on IEC transitional contacts and coils.

e Formal BOOL input parameters cannot be used on coils or as outputarguments to a
function or to a block call.

e Formal parameters cannot be used with the DO I/O function.

e Formal parameters cannot be used with indirect referencing.

User-Defined Function Blocks (UDFBs)

Users can define their own blocks, which have parameters and instance data, instead of
being limited to the standard and built-in function blocks provided in the PACSystems
instruction set. In many cases, the use of this feature results in a reduction in total
program size.

Once defined, multiple instances of a UDFB can be created by calling it within the
program logic. Each instance has its own unique copy of the function block’s instance
data, which consists of the function block’s internal member variables and all of its input
and output parameters except those that are passed by reference. When a UDFB is
called on a given instance, the UDFB’s logic operates on that instance’s copy of the
instance data. The values of the instance data persist from one execution of the UDFB
to the next.

Note: A member variable is not passed into or out of a UDFB as a parameter. A member
variable is used only within the logic of that function block.

A UDFB cannot be triggered by an interrupt.

UDFB logic is created using FBD, LD or ST. UDFB logic can make calls to all the other
types of PACSystems blocks (blocks, parameterized blocks, external blocks and other
UDFBSs). Blocks, parameterized blocks, and other UDFBs can make calls to UDFBs.

Unless otherwise stated, the PACSystems implementation of UDFBs meets the IEC
61131-3 requirements for user defined function blocks.

Program Organization 12

CPU Programmer’s Reference Manual Section 2
GFK-2950M Dec 2024

Defining a UDFB

To create a UDFB in the programming software, create an LD, FBD or ST blockin the
Program Blocks folder. In the Properties for the block, select Function Block.

To define instance data for a UDFB, select Parameters in the block’s properties. Input
and output parameters are defined in the same way as for parameterized blocks. In the
following example, three internal member variables are defined: temp, speed, and
modelno.

Figure 4 Defining Member Variables for a User-Defined Function Block

Porameters x|

Inputs | Outputs Members |

Name Type |Length| Public [Ret] InitVal Description
temp BOOL 1 v (Vi1 over temperature
speed DWORD 1 vV (v motor speed
modelno DWORD 1 v model number

ITI Cancel >> Help

Creating UDFB Instances

You create an instance of a UDFB by calling it in your logic and assigning an instance
name in the function properties.

Figure 5 Creating a User-Defined Function Block

MOTORS

?222?

— I oUT1—

In the following LD example, the first rung creates two instances of the UDFB, Motors.
The instance variables associated with the Motors instances are motor1 and motor2. The
second rung uses the two instances of the internal variable temp in logic.

Program Organization 13

CPU Programmer’s Reference Manual

GFK-2950M

Section 2
Dec 2024

Figure 6 Use of User-Defined Function Block in Ladder Logic

MOTORS

maclerd

—IN1 ouTi—

MOTORS

retars

IN1 oot

Instance Data Structures

A variable with the format function_block_name.instance_name is automatically
created for each instance of a UDFB. The instance data makes up a single composite
variable that is of a structure type. The example to the rightshows the variable structures
associated with two instances of the UDFB named Motors. Each instance variable has
elements corresponding to parameters In1, Out1, and YO0, and internal variables model

no, speed, and temp.

Instances are created as symbolic variables, never as mapped variables. This ensures
thatinstance datais only referenced by the instance name and not by a memory address,
which means that no aliases can be created for the UDFB data elements. The indirect
reference operator cannot be used on an instance variable because indirect references

are not permitted on symbolic variables.

Figure 7: Display of Instance Data Structures

o GS R¥7i.Motors.motorl

':EH-_, Ini

GER modelno
GEF
TU Qurl

G_E.F speed

GJE{l temp
GEF
Tu Yo
= GS RX7i.Motors.motor2
SEF) Int
G_E.P modelno
GEF, Out1

G_EP speed

(_;H:' temp
Hv

Program Organization

14

CPU Programmer’s Reference Manual Section 2
GFK-2950M Dec 2024

UDFBs and Scope

Unlike a parameterized subroutine, a UDFB has its own %L memory.

By default, internal variables of a UDFB have local scope, making them visible only to
the logicinside the UDFB. They cannot be read or written by any external logic or by the
hardware configuration. An internal variable can be made visible outside the UDFB by
changing its scope to global. Logic outside the UDFB can read but cannot write to intemal
variables whose scope is global.

Note: If you give internal variables global scope, your application will not conform to IEC
requirements.

Using Parameters with UDFBs
UDFBs support up to 63 inputs and up to 64 outputs.

Each UDFB has a predefined Boolean output parameter, YO0, which the CPU sets to true
upon each invocation of the block. YO can be controlled by logic within the block and
provides the output status of the block.

The following table lists the TYPEs, LENGTHs, and parameter-passing mechanisms
allowed for UDFB parameters. For definitions of the parameter passing types, refer to

Section 2.1.7, Parameter Passing Mechanisms..

Type Length |Parameter Passing Retentiveness of
Mechanism Instance Data for
Parameters
BOOL 1 to 256 INPUTS: by reference, constant | Not Applicable if passed by
reference, value, or value result | reference, since not stored in
(Default: value) instance data.

Can be retentive (default) or non-
retentive forvalue or value result.

OUTPUTS: by result; except YO, | Retentive (default) or
which is by initial-value result Non-retentive
BYTE 1to 1024 |INPUTS: by reference, constant| Retentive forvalue orvalue result.

reference, value, or value result [Not applicable for reference
(Default: value)

OUTPUTS: by result

INT, UINT, and 11to 512 INPUTS: by reference, constant | Retentive forvalue orvalue result.
WORD reference, value, or value result | Not applicable for reference
(Default: value)

OUTPUTS: by result

DINT, REAL, and | 1 to 256 INPUTS: by reference, constant | Retentive forvalue orvalue result.
DWORD reference, value, or value result [Not applicable for reference
(Default: value)

OUTPUTS: by result

LREAL 1to0 128 INPUTS: by reference, constant| Retentive forvalue orvalue result.

reference, value, or value result [Not applicable for reference
(Default: value)

OUTPUTS: by result

1 INPUTS: by reference, constant | Not applicable since passed by
reference, (Default: reference) reference

Program Organization 15

CPU Programmer’s Reference Manual

Section 2

GFK-2950M Dec 2024

Type Length |Parameter Passing Retentiveness of

Mechanism Instance Data for
Parameters

Function block OUTPUTS: by result

(standard or

PACMotion)

UDFB? 1 INPUTS: by reference, constant| Not applicable since passed by
reference, friend reference
OUTPUTS: not allowed

ubDT 110 1024 |[INPUTS: by reference, constant| Not applicable since passed by
reference reference
OUTPUTS: not allowed

If an input parameter is passed by reference or by value result, it requires an argument.
All other parameters of a UDFB are optional. That is, they do not have to be given
arguments on each instance of the UDFB. If no argument is given for an optional
parameter, the variable element associated with the parameter retains the value it
previously had.

UDFB outputs cannot be passed as arguments to input parameters that are passed by
reference or passed by value result. This restriction prevents modification of a UDFB
output.

Using Internal Member Variables with UDFBs

A UDFB can have any number of internal member variables. The values of internal
variables are not passed viathe input and output parameters. Aninternal variable cannot
have the same name as a parameter of the UDFB it is defined in.

An internal variable can be:

e Any basic type supported by PACSystems (BOOL, INT, UINT, DINT, REAL, LREAL,
BYTE, WORD, and DWORD).

e A UDFB type. Such member variables are known as nested instances. For example,
the function block Motor can have an internal variable of type Valve, where Valve is
a UDFB type. Note that defining a member variable as a UDFB type does not create

an instance.
A nested instance cannot be of the same type as the UDFB being defined because
this would set up an infinitely recursive definition. Nor can any level of a nested
instance be of the same type as the parent UDFB being defined. For example, the
UDFB Motor cannot have an internal variable of type Valve, if the Valve UDFB

contains an internal variable of type Motor.

e A UDT: astructured, user-defined data type consisting of elements of other selected
data types.

e A one-dimensional array.

Internal variables of TYPE BOOL can be retentive (default) or non-retentive. All other
TYPEs must be retentive.

2 A maximum of 16 input parameters can be of type UDFB.
Program Organization 16

CPU Programmer’s Reference Manual Section 2
GFK-2950M Dec 2024

Member variables corresponding toa UDFB’sinput parameters cannot be read or written
outside of the UDFB (This is more restrictive thanthe IEC 61131-3 requirements for user
defined function blocks.). Member variables corresponding to the UDFB’s output

parameters can be read but not written outside the UDFB.

Internal member variables that have basic types may be given initial values. The same
initial values apply to all instances of a UDFB. If an initial value isn’t given, the internal
member variable is set to zero when the application transitions to RUN mode for the first
time.

An internal member variable that is a nested instance has initial values as specified by
its UDFB type definition.

Initial values are not stored during a RUN mode store. They will not take effect until a
STOP Mode Store is performed.

UDFB Logic

An instance of a BOOL parameter or internal variable can be forced ON or OFF, or used
with transition-detecting instructions. The exception to thisis that BOOL input parameters
passed by reference cannot be forced or used with the Series 90-70 legacy transition-
detecting instructions (POSCOIL, NEGCOIL, POSCON and NEGCON) because their
values are not stored in instance data.

All input parameters to a UDFB, and their corresponding instance data elements, can be
read by the logic of that particular UDFB.

Input parameters that are passed by reference or passed by value result to a UDFB can
be written to by their UDFB's logic. Input parameters passed by value cannot be written
to by their UDFB logic. Note that the restriction onwriting to input parameters passed by

value does not apply to other types of blocks.

All UDFB output parameters can be both read and written to by their logic.

UDFB Operation with Other Blocks

A UDFB instance thatis of global scope can be invoked by another UDFB’s logic or any
other block’s logic.

A UDFB instance that is passed (byreference)as an argumenttoa UDFB can be invoked
by the UDFB’s logic.

A UDFB instance thatis passed (by reference) as an argument to a parameterized block
can be invoked by the parameterized block’s logic.

The output parameters, and their corresponding instance data elements, of a UDFB
instance that is passed as an argument can be read but not modified by the receiving
block’s logic. The input parameters of a UDFB instance that is passed as an argument
cannot be read or modified by the receiving block’s logic. The internal variables of a
UDFB instance that are passed as arguments cannot be modified by the receiving block’s
logic. They can be read if their scope is global, but not if their scope is local.

External Blocks

Program Organization 17

CPU Programmer’s Reference Manual Section 2
GFK-2950M Dec 2024

External blocks are developed using external development tools as well as the C
Programmer’s Toolkit for PACSystems. Refer to the C Programmer’s Toolkit for
PACSystems, GFK-2259 for detailed information regarding external blocks.

Any block except _MAIN can be an external block. When you declare an external block,
you must assign it a unique block name. It can be configured with up to 63 input

parameters and 64 output parameters.

An external block executes when called from the program logic in the _MAIN block or
from the logic in another block, parameterized block, or UDFB. External blocks
themselves cannot call any other block. In the following example, if %100001 is set, the
external block named EXT_11 is executed.

Program Organization 18

CPU Programmer’s Reference Manual Section 2
GFK-2950M Dec 2024

Figure 8: Calling an External Block in Ladder Logic

100001 CALLEXT 1 Qoooo
11 Y
{ | ey
100100 — X1 Yi— T00001
100200 —{X2 Y2— R00200

Note: Uniike other block types, external blocks cannot call other blocks.

External Blocks and Local Data

External blocks support the use of %P global data. External blocks do not have their own
%L data, but instead inherit the %L data of their calling blocks. They also inherit the
FST_EXE system reference and the time-stamp data that is used to update timer function
blocks from their calling blocks. If %L references are used within an external block and
the block s called by _MAIN, %L references will be inherited from the %P references
wherever encountered in the external block (for example, %L0005 = %P0005).
Initialization of C Variables

When an external block is stored to the CPU, a copy of the initial values for its global and
static variables is saved. However, if static variables are declared without an initial value,
the initial value is undefined and must be initialized by the C application (Refer to Global
Variable Initialization and Static Variable in the C Programmer’s Toolkitfor PACSystems,
GFK-2259). The saved initial values are used to re-initialize the block’s global and static
variables whenever the CPU transitions from STOP Mode to RUN Mode.

Using Parameters with an External Block

An external block may be defined to have between zero and 63 formal input parameters
and between one and 64 formal output parameters. A ‘power-flow out’ (or OK) parameter,
named YO, is automatically defined for every external block. YO is a BOOL parameter of
LENGTH 1 and indicates the successful execution of the block. It can be read and written
to by the external block’s logic.

The following table gives the TYPEs, LENGTHSs, and parameter-passing mechanisms
allowed for external block parameters.

Program Organization 19

CPU Programmer’s Reference Manual Section 2
GFK-2950M Dec 2024

Type Length |Default Parameter Passing Mechanism
BOOL 1 to 256 INPUTS: by reference

OUTPUTS: by reference; except Y0, which is by initial-value result
BYTE 110 1024 INPUTS: by reference

OUTPUTS: by reference

INT, UINT, and 1to 512 INPUTS: by reference

WORD OUTPUTS: by reference

DINT, REAL, and | 1 to 256 INPUTS: by reference

DWORD OUTPUTS: by reference

LREAL 110 128 INPUTS: by reference
OUTPUTS: by reference

uDT® 110128 INPUTS: by reference

OUTPUTS: not allowed

The PACSystems default parameter passing mechanisms correspond to the way that
external block parameters are passed on 90-70 controllers. The parameter passing

mechanisms of formal parameters cannot be changed from their default values.
You must define a name for each formal input and output parameter.

Arguments, or actual parameters, are passed into an external block whenever an
external block call is executed.

Arguments may be any valid reference address including an indirect reference, may be
flow, or may be a constant if the corresponding parameter's LENGTH is 1.

2.1.6 Local Data

Each block or UDFB in a block-structured program has an associated local data block.
_MAIN’s data block memory is referenced by %P; all other data block memories are
referenced by %L.

The size of the data block is dependent on the highest reference in its block for %L and
in all blocks for %P.

® To use a UDT, you must include the UDT definition as a C structure in the external block. For details, referto Using a UDT as a C
block input parameter data type in the online help.
Program Organization 20

CPU Programmer’s Reference Manual Section 2
GFK-2950M Dec 2024

Figure 9: Relationship of %L & %P to Program Blocks

data data
%P %L
_MAIN]

block —

Block
2

Data
%L

= Block
3

Data
%L

= Block

All blocks withinthe program can use data associated with the _MAIN block (% P). Blocks
and UDFBs can use theirown %L data as well as the %P data that is available to all
blocks. The _MAIN block cannot use %L.

External blocks and parameterized blocks can use the Local Data (%L) of their calling
block as well as the %P data of the _MAIN block. If a parameterized block or extemal
block is called by MAIN, all %L references in the parameterized block or external block
will be references to corresponding %P references (for example, %L0005 = %P0005). In
addition to inheriting the Local Data of their calling blocks, parameterized blocks and
external blocks inherit the FST_EXE status of their calling blocks.

Figure 10: Local Data (%L) Usage by Program Blocks

data
%P
Inherits as %L PSB 1
_MAIN or
Block ——— EB1

Inherits as %L PSB 2

BL1OCK — EB2

S ——%

Program Organization 21

CPU Programmer’s Reference Manual Section 2
GFK-2950M Dec 2024

2.1.7 Parameter Passing Mechanisms

All blocks (except _MAIN) have at least one parameter and thus are affected by
parameter passing mechanisms. A parameter passing mechanism describes the way
that datais passed froman argumentinacalling block to a parameterin the called block,
and from the parameter in the called block back to the argument in the calling block.

PACSystems supports the following parameter-passing mechanisms: pass by reference,
pass by constant reference, pass by value, pass by value result, pass by result and pass
by initial-value result. An additional type, pass by friend, is available when the input Data
Typeis a UDFB. A parameter is defined by its TYPE, LENGTH, and parameter passing
mechanism.

e When a parameteris passed by reference, the address of its argument is passed
into the function block instance or parameterized block. All logic within the called
block that reads or writes to the parameter directly reads or writes to the actual
argument.

e When a parameter is passed by constant reference, the CPU passes a reference
address pointer, symbolic variable pointer, or /O variable pointer into the function
block instance or parameterized block. The instance or block can only read the
reference address or variable.

e When a parameter is passed by friend (UDFB inputs only), the CPU passes a UDFB
instance variable pointer into the function block instance or parameterized block. The
instance or block can write to any output or member, whether public or private, of the
UDFB instance variable passed as a friend.

Tip
In the logic ofa UDFB, when youwant to pass the UDFB as a friend, assign the pseudo -variable
#This to the inputthat expects an instance variable of that UDFB type. In the following example,

the In2 input of the LDPSB parameterized block expects a UDFB instance variable friend of the
ABC data type. Inside the logic of ABC, assign #This to In2 in the call to LDPSB.

Program Organization 22

CPU Programmer’s Reference Manual Section 2
GFK-2950M Dec 2024

Figure 11: Parameter Passing Example

Err CALL
OESE
1/t LOPSE |

SALW_ON

ErrOn
fain
S

- |
]
m

#This =—{In2

LDPSB Parameters

Inputs |Ou10uts | Members |

Name Data Type Length | Pass By Retentive | Initial Value | Description
> quint BooL |1 vave ~ |

& n2 ABC ~|1 Frend v |
#* ~| ~

e When aparameteris passedby value (UDFB inputs only), the value of its argument
is copied into a local stack memory associated with the called block. All logic within
the called block that reads or writes to the parameter is reading or writing to this stack
memory. Thus, no changes are ever made to the actual argument.

e When a parameteris passed by value result (UDFB inputs only), the value of its
argument is copied into a local stack memory associated with the called block, and
the address of its argument is saved. All logic within the called block that reads or
writes to the parameter is reading or writing to this stack memory. When the called
block completes its execution, the value in the stack memory is copied back to the
actual argument’s address. Thus, no changes are made to the actual argument while
the called block is executing, but when it completes execution, the actual argument
is updated.

Program Organization 23

CPU Programmer’s Reference Manual Section 2
GFK-2950M Dec 2024
2.1.8 Languages

Ladder Diagram (LD)

Logic written in Ladder Diagram language consists of a sequence of rungs that execute

from top to bottom. The logicexecution isthought of as power flow, which proceeds down
along the left rail of the ladder, and from left to right along each rung in sequence.

Figure 12: Explanation of Ladder Diagram Rung

Power . h . Coil
Rail Relay Power flow into function Power flow out of function
\ MUL INT \
\ 100001 Qoooo1
] L

t - - {)_|

ROO123 1IN1 O RODI24

000002 —IN2 \

Multiplication function

The flow of logical power through each rung is controlled by a set of simple program
instructions that work like mechanical relays and output coils. Whether or not a relay
passes logical power flow along the rung depends on the content of a memory location
with which the relay has been associated in the program. For instance, a relay might
pass positive power flow if its associated memory location contains the value 1. The
same relay passes negative power flow if the memory location contains the value 0.

Usually an instruction that receives negative power flow does not execute and
propagates the negative power flow on to the next instruction in the rung. However, some
instructions such as timers and counters execute even when they receive negative power
flow and may even pass positive power flow out. Once a rung completes execution, with
either positive or negative power flow, power flows down along the left rail to the next
rung.

Within a rung, there are many complex functions that are part of the standard function
library and can be used for operations like moving data stored in memory, performing
math operations, and controlling communications between the CPU and other devices
in the system. Some program functions, such as the Jump function and Master Control
Relay, can be used to control the execution of the program itself. Together, this large
group of Ladder Diagram instructions and standard library functions makes up the
instruction set of the CPU.

Program Organization 24

CPU Programmer’s Reference Manual

GFK-2950M

Function Block Diagram

Function Block Diagram (FBD) is an IEC 61131-3 graphical programming language that
represents the behavior of functions, function blocks and programs as a set of
interconnected graphical blocks.

FBD depicts a system in terms of the flow of signals between processing elements, in a
manner very similar to signal flows depicted in electronic circuit diagrams. Instructions
are shown with inputs entering from the left and outputs exiting on the right. A function
block type name is always shown within the element and the name of the function block
instance is shown above the element.

Figure 13: lllustration of Function Block Diagram

INPUT1 oUTPUTH _—I—_ 3
Instance of o IM1 Q DIV

Instance of
UDFB, “Weight” ™4 Solve Order

Weightt
Weigm/ Wire indicates data flow
1 from output to input

= EN ENQ =
A/ ADD

UDFB, "Weight” 0 0 4
\ M2 N1 Q = AvErage
Weight2 1}

| 0 1]
Weight 2 - N2

2
=-{ EM ENO ju

INPUT1 OUTPUT1

The order of execution of instructions in an FBD is determined by the following:

a. The display position of the instruction in the FBD editor

b. Whether the inputs to the FBD instruction are resolved.

To determine the order of execution of FBD instructions in the FBD editor, the FBD
compiler performs the following steps:

Program Organization

1.

The FBD compiler scans the instructions in the FBD editor, beginning from left
to right, and top to bottom. When an instruction is encountered, the compiler
attempts to resolve theinstruction, that is, the inputs are known. If the inputs
are known, the instruction is solved, and scanning continues for the next
instruction.

If the current instruction cannot be resolved, that is, the inputs are not known,
then the compiler scans for the previous instruction, using the wire connecting
the output of the previous instruction to the input of the current instruction.

If the previous instruction can be resolved, the compiler calculates the output.
The output of the previous instruction then becomes the input to the current
instruction, the current instruction is resolved, and scanning continues for the
next instruction.

If the previous instruction cannot be resolved, that is, the inputs are not known,
then step 2 is repeated until an instruction is encountered, which can be
resolved.

25

Section 2
Dec 2024

CPU Programmer’s Reference Manual Section 2
GFK-2950M Dec 2024

Structured Text

The Structured Text (ST) programming language is an IEC 1131-3 textual programming
language. A structured text program consists of a series of statements, which are
constructed from expressions and language keywords. A statement directs the PLC to
perform a specified action. Statements provide variable assignments, conditional
evaluations, iteration, and the ability to call other blocks. For details on ST statements,
parameters, keywords, and operators supported by PACSystems, refer to Structured
Text (ST) Programming in Section 8.

Blocks, parameterized blocks, and UDFBs can be programmed in ST. The _MAIN
program block can also be programmed in ST.

A block programmed in ST can call blocks, parameterized blocks, and UDFBs.

2.2 Controlling Program Execution

There are many ways in which program execution can be controlled to meet the system’s
timing requirements. The PACSystems CPU instruction set contains several powerful
control functions that can be included in an application program to limit or change the
way the CPU executes the program and scans I/O. For details on using these functions,
refer to Section 4.

The following is a partial list of the commonly used methods:

e The Jump (JUMPN) function can be used to cause program execution to move either
forward or backward in the logic. When a JUMPN function is active, the coils in the
part of the program that is skipped are leftin their previous states (not executed with
negative power flow, as they are with a Master Control Relay). Jumps cannot span
blocks.

e The nested Master Control Relay (MCRN) function can be used to execute a portion
of the programlogic with negative power flow. Logicis executed in aforward direction
and coils in that part of the program are executed with negative power flow. Master
Control Relay functions can be nested to 255 levels deep.

e The Suspend I/O function can be used to stop both the input scan and output scan
forone sweep. I/O can be updated, as necessary, during the logic execution using
DO I/O instructions.

e The Service Request function can be used to suspend or change the time allotted to
the window portions of the sweep.

e Program logic can be structured so that blocks are called frequently, depending on
theirimportance and on timing constraints. The CALL function can be used to cause
program execution to go to a specific block. Conditional logic placed before the Call
function controls the circumstances under which the CPU executes the block logic.
After the block execution is finished, program execution resumes at the point in the
logic directly after the CALL instruction.

2.3 Interrupt-Driven Blocks

Three types of interrupts can be used to start a block’s execution:

Program Organization 26

CPU Programmer’s Reference Manual Section 2
GFK-2950M Dec 2024

e Timed Interrupts are generated by the CPU based on a user-specified time interval
with an initial delay (if specified) applied on STOP Mode to RUN Mode transition of
the CPU.

e |/O Interrupts are generated by I/O modules to indicate discrete input state changes
(rising/falling edge), analog range limits (low/high alarms), and high-speed signal
counting events.

e Module Interrupts are generated by VME modules. A single interrupt is supported per
module.

ACAUTION

Interrupt-driven block execution can interrupt the execution of non-interrupt-driven logic.
Unexpected results may occur if theinterrupting logic and interrupted logic access the same data.
If necessary, Service Request #17 or Service Request #32 can be used to temporarily mask 11O
and Timed Interrupt-driven logic from executing when shared data is being accessed.

2.3.1 Interrupt Handling

An 1/O, Module, or Timed interrupt can be associated with any block except MAIN, as
long as the block has no parameters otherthan an OK output. Afteraninterrupt has been
associated with a block, that block executes each time the interrupt SVC occurs. A given
block can have multiple timed, I/O, and module interrupt triggers associated with it. It is
executed each time any one of its associated interrupts triggers. For details on how
interrupt blocks are prioritized, refer to

Program Organization 27

CPU Programmer’s Reference Manual Section 2
GFK-2950M Dec 2024

Interrupt Block Scheduling.

If a parameterized block or external block is triggered by an interrupt, it inherits %P data
as its %L local data. For example, a %L00005 reference in the parameterized block or C
blockactually references %P00005. Interruptblocks (C, LD, FDBor ST)inherit FST_EXE
from the _MAIN block.

Note: Timer function blocks do not accumulate time if used in a block that is executed as a
result of an interrupt.

Blocks that are triggered by interrupts can make calls to other blocks. The application
stack used during interrupt-driven execution is different from the stack used during
normal block-structured program execution. In particular, the nested call limit is different
from the limitdescribed for calls fromthe _MAIN block. If a call resultsin insufficient stack
space to complete the call, the CPU logs an Application Stack Overflow fault.

Note: We strongly recommend that interrupt-driven blocks not be called from the _MAIN block
or other non-interrupt driven blocks because the interrupt and non-interrupt driven blocks
could be reading and writing the same global memories at indeterminate times relative
to each other. In the following example (Figure 14) INT1, INT2, BLOCKS5, and PB1
should not be called from _MAIN, BLOCK2, BLOCKS3, or BLOCK4.

Figure 14: Conflict Avoidance when using Interrupt-Driven Blocks

INT Block 1
_MAIN - Block INT Block 2 |
Block _ 2
Block
5
’ Block
3
—_— PB
1
Block
_ 4

Program Organization 28

CPU Programmer’s Reference Manual Section 2
GFK-2950M Dec 2024

2.3.2 Timed Interrupts

A block can be configured to execute on a specified time interval with an initial delay (if
specified) applied on a STOP Mode to RUN Mode transition of the CPU.

To configure a timed interrupt block, specify the following parameters in the scheduling
properties for the block:

Time Base | The smallest unit of time that you can specify for Interval and Delay. The time base canbe 1.0
second, 0.10 second, or 0.01 second, or 0.001 second.

Interval Specifies how frequently the block executes in multiples of the time base.
Delay (Optional) Specifies an additional delay for the first execution of the block in multiples of the
time base.

The first execution of a Timed Interrupt block will occur at
((delay * time base) + (interval * time base)) after the CPU is placed in RUN Mode.

2.3.3 1/O Interrupts
A block can be triggered by an interrupt input from certain hardware modules. For
example, on the 32-Circuit 24 Vdc Input Module (IC697MDL650), the firstinput can be
configured to generate an interrupt on either the rising or falling edge of the input signal.
If the interrupt is enabled in the module configuration, that input can serve as a trigger to
cause the execution of a block.

To configure an I/O interrupt, specify a trigger in the scheduling properties for the block.
The trigger must be a global variable in %I, %Al or %AQ memory, or an I/O variable (An
I/O variable is a form of symbolic variable that is mapped to a module /O point in

hardware configuration.).

PACSystems modules that can trigger user interrupt logic always send the interrupt to
the CPU when configured to do so. If the CPU is in STOP mode when it receives the
interrupt, it does not runthe userinterrupt block. The CPU does notrunthe userinterrupt
block when it transitions from STOP Mode to RUN Mode.

2.3.4 Module Interrupts

A block can be triggered by an interrupt from a module that supports I/O interrupts if the
Interrupt parameter is enabled in the module’s hardware configuration.

To configure a module interrupt, specify the module by rack/slot/interrupt ID as the
Trigger in the scheduling properties for the block.

Program Organization 29

CPU Programmer’s Reference Manual Section 2
GFK-2950M Dec 2024

2.3.5 Interrupt Block Scheduling

You can select one of two types of interrupt block scheduling at the target level:

¢ Normal block scheduling allows you to associate a maximum of 64 I/O and Module
Interrupts and 16 Timed Interrupts. With normal block scheduling, all interrupt-
triggered blocks have equal priority. This is the default scheduling mode.

e Preemptive block scheduling allows you to associate a maximum of 32 interrupt
triggers. With preemptive block scheduling, each trigger can be assigned a relative
priority.

Normal Block Scheduling

Interrupt-driven logic has the highest priority of any user logic in the system. The
execution of a block triggered from an interrupt preempts the execution of the normal
CPU sweep activities. Execution of the normal CPU sweep activitiesis resumed after the

interrupt-driven block execution completes.

If the CPU receives one or more interrupts while executing an interrupt block, it places
the incoming interrupts into the queue while it finishes executing the current interrupt
block. Timed interrupt driven blocks are queued ahead of I/O or Module driven blocks.
I/O or Module interrupt driven blocks are queued in the order in which the interrupts are
received. If an interrupt driven block is already in the queue, additional interrupts that
occur for this block are ignored.

Preemptive Block Scheduling

Preemptive scheduling allows you to assign a priority to each interrupt trigger. The
priority values range from 1 to 16, with 1 being the highest. A single block can have
multiple interrupts with different priorities or the same priorities.

Anincoming interrupt is handled according to its priority compared to that of the currently
executing block as follows:

e [If an incoming interrupt has a higher priority than the interrupt associated with the
block that is currently executing, the currently executing block is stopped and putin
the interrupt queue. The block associated with the incoming interrupt begins
executing.

e If anincoming interrupt has the same priority as the interrupt trigger associated with
the blockthat is currently executing, that block continues to execute, and the incoming
interrupt is placed in the queue.

e If anincominginterrupt has alower priority than the interrupt associated with the block
that is currently executing, the incoming interrupt is placed in the queue.

When the CPU completes the execution of an interrupt block, the block associated with
the interrupt trigger that has the highest priority in the queue begins execution — or
resumes execution if the block's executionwas preempted by anotherinterrupt block and

was placed in the queue.

If multiple blocks in the queue have the same interrupt priority, their execution order is
not deterministic.

Program Organization 30

CPU Programmer’s Reference Manual

GFK-2950M

2.3.6

Program Organization

Note: Certain functions, such as DOIO, BUS_RD, BUS WRT, COMMREQ, SCAN_SET IO,

and some SVC_REQs may cause a block to yield to another queued block that has the
same priority.

PACSystems Simulator Interrupt-Driven Blocks

The PACSystems Simulator does not support I/O Interrupts or Module Interrupts at this
time. Timed Interrupts are not fully qualified on the PACSystems Simulator, but they can
still be triggered in logic. However, the timing of Timed Interrupts run on a PACSystems
Simulator may differ from a PACSystems CPU.

31

Section 2
Dec 2024

CPU Programmer’s Reference Manual Section 3

GFK-2950M

Dec 2024

Section 3 Program Data

This chapter describes the types of data that canbe used in an application program and
explains how that data is stored in the PACSystems CPU’'s memory.

Program Data

Variables

Reference Memory

User Reference Size and Default
Genius Global Data

Transitions and Overrides
Retentiveness of Logic and Data
Data Scope

System Status References

How Program Functions Handle Numerical Data
User Defined Types (UDTs)
Operands for Instructions
Word-for-Word Changes

32

CPU Programmer’s Reference Manual Section 3
GFK-2950M Dec 2024

3.1 Variables

A variable is a named storage space for data values. It represents a memory location in
the target PACSystems CPU.

A variable can be mapped to a reference address (for example, %R00001). If you do not
map a variable to a specific reference address, it is considered a symbolic variable. The
programming software handles the mapping for symbolic variables in a special portion
of PACSystems user space memory.

The kinds of values a variable can store depend on its data type. For example, variables
with a UINT data type store unsigned whole numbers with no fractional part. Data types
are described in Section 3.9, How Program Functions Handle Numerical Data.

In the programming software, all variables in a project are displayed in the Variables tab
of the Navigator. You create, edit, and delete variables in the Variables tab. Some
variables are also created automatically by certain components (such as TIMER
variables when you add a Timer instruction to ladder logic). The data type and other
properties of a variable, such as reference address are configured in the Inspector.

Formore information aboutsystem variables, which are created when you create a target
in the programming software, refer to Section 3.8, System Status References.

3.1.1 Mapped Variables

Mapped (manually located) variables are assigned a specific reference address. For
details on the types of Reference Memory and their uses, refer to Reference Memory.

3.1.2 Symbolic Variables

Symbolic variables are variables for which you do not specify a reference address
(similar to a variable in a typical high-level language). Except as noted in this section,
you can use these in the same ways that you use mapped variables.

In the programming software, a symbolic variable is displayed with a blank address. You
canchange amapped variable to asymbadlic variable by removing the reference address
from the variable’s properties. Similarly, you can change a symbolic variable into a

mapped variable by specifying a reference address for the variable in its properties.

The memory required to support symbolic variables counts against user space. The
amount of space reserved for these variables is configured on the Memory tab in the
CPU hardware configuration.

Restrictions on the Use of Symbolic Variables

e Symbolic variables cannot be used with indirect references (for example, @Name).
For a full description, refer to Indirect References.

e Only global scope Symbolic variables can be used in EGD pages.

e Avariable mustbe globally scoped and published (internal or external) to be used in
a C block.

e Symbolic variables cannot be used in the COMMREQ status word.
e Use of symbolic variables is not supported on web pages.

e Symbolic Boolean variables are not allowed on non-BOOL parameters.
Program Data 33

CPU Programmer’s Reference Manual Section 3
GFK-2950M Dec 2024

e Symbolic non-discrete variables cannot be used on Series 90-70 style Transition
contacts and coils (Symbolic discrete variables are supported.).

e Overrides and Forces cannot be used on symbolic non-discrete variables (Symbolic
discrete variables are supported.).

e Arrays of the following data types are not supported:
— Arrays of user defined function block (UDFB) instance variables.

— Arrays of PAC Motion function block instance variables.

— Arrays of TON, TOF, or TP instance variables.

— Arrays of reference ID variables (RIVs) that contain one or more linked RV
elements.

Note: An RIV array is supported when none of its elements is linked.

Program Data 34

CPU Programmer’s Reference Manual Section 3
GFK-2950M Dec 2024

3.1.3 /O Variables

An I/O variable is a symbolic variable that is mapped to a terminal in the hardware
configuration. A terminalcan be one of the following: Physical discrete oranalog I/O point
on a PACSystems module or on a Genius device, a discrete or analog status retumed
from a PACSystems module, or Global Data. The use of I/O variables allows you to
configure hardware modules without having to specify the reference addresses to use
when scanning their inputs and outputs. Instead, you can directly associate variable
names with a module’s inputs and outputs.

As with symbolic variables, memory required to support I/O variables counts against user
space. You can configure the space available for I/O variables in the Memory tab of the
PACSystems CPU.

For a given module or Genius bus, you must use either I/O variables or manually located
mapped variables: you cannot use both in combination. It is not necessary to map all
pointsonamodule. Points thatare disconnected orunused can be skipped. When points
are skipped, space is reserved in user memory for that point (thatis, a 32-point discrete
module will always use 32 bits of memory).

The hardware configuration (HWC) and logic become coupled in a PACSystems target
on your computer as soon as you do one of the following: Enable I/O variables for a
module or Genius bus (even if you don't create any I/O variables), use one or more
symbolic variables in the Ethernet Global Data (EGD) component, or upload a coupled
HWC and logic from a PACSystems PLC. The HWC and logic become coupled in a
PACSystems controller when coupled HWC and logic are downloaded to it.

Effects of coupled HWC and logic:

e Whether the HWC and logic are coupled in the PACSystems target on your computer
orin the PACSystems controller, you cannot download or upload the HWC and logic
independently.

e Whenthe HWCand logic are coupledinthe PACSystems controller, you cannotclear
the HWC and the logic independently.

e As for any download, you cannot RUN Mode Store (RMS) the HWC and logic
independently.

e The HWC must be completely equal for you to make word-for-word changes, launch
the Online Test mode of Test Edit, or accept the edits of Test Edit.

I/O variables can be used any place that other symbolic variables are supported, such
as in logic as parameters to built-in function blocks, user defined function blocks,
parameterized function blocks, C blocks, bit-in-word references, and transition contacts
and coils.

Restrictions on the Use of I/O Variables

e Since I/O variables are a form of symbolic variable, the same restrictions that apply to other
symbolic variables of the same data type and array bounds apply to I/O variables.

e Only a global variable can become an I/O variable. A local variable cannot become an /O
variable.

e Youcan map only adiscrete variable to a discrete terminal.

e Youcan map only a non-discrete variable to an analog terminal.
Program Data 35

CPU Programmer’s Reference Manual Section 3
GFK-2950M Dec 2024

e Arrays and UDT variables must fit on the number of terminals in the reference address node
counting fromand including the terminal where you enter the array head or UDT variable. For
example, if you have 32 analog terminals and you have a WORD array of 12 elements, you
can map it to terminal 21 or any terminal before it (1 through 20).

e Youcan map a discretearray only to a terminal 8n+1, wheren =0, 1, 2, and soon. The "+1"
is included because the terminals are numbered beginning with 1. If you map it to a terminal
other than 8n+1, an error occurs upon validation.

e An |/O variable cannot be mapped to more than one location in hardware configuration.

e FortheDO_lO function block, ifan I/O variable is assigned to the ST parameter, then the same
1/O variable must also be assigned to the END parameter, and the entire module is scanned.

e Some I/O modules do notsupporttheuse of I/O variables. For a listof modules that support

/O variables, please refer to the Important Product Information for Logic Developer — PLC
programming software.

I/0 Variable Format

To map an I/O variable, use the format %vdr.s.[z.]g.t:
v = | (input) or Q (output)

d = data type: X (discrete) or W (analog).

r = rack number

s = slot number

[z] = sub-slot number. This element and the period that follows it appear only if there is
a sub-slot, for example, the SBA number of a Genius device. For an Ethernet
daughterboard, set this value to 0.

g = segment number or number of the reference address node. Set to 0 for the first
reference address node on the Terminals tab, 1 for the second reference node, and so
on.

t = terminal number. One-based, that is, the numbering begins at 1.

Program Data 36

CPU Programmer’s Reference Manual

GFK-2950M

3.1.4

Program Data

Supported 1/O Variable Types

Section 3
Dec 2024

sla::r;ll'z:ec Supported Data Types ::;r::?zdof Consecutive Terminals
BOOL variable 1
BOOL array Number of elements in array.
X BYTE variable 8
BYTE array 8n, where n is the number of array elements.
DINT variable 2
DINT array Number of elements in array times 2
DWORD variable 2
DWORD array Number of elements in array times 2
INT variable 1
INT array Number of elements in array
LREAL variable 4
W
LREAL array Number of elements in array times 4
REAL variable 2
REAL array Number of elements in array times 2
UINT variable 1
UINT array Number of elements in array
WORD variable 1
WORD array Number of elements in array

/0 Variable Examples

Figure 15

- @) OW1 Sample_|0_Vanable %z0w0.8.01

The I/O variable, Sample_IO_Variable is mapped to a non-discrete (W) output point (Q)
on the module located in rack 0, slot 8. The variable is mapped to the first pointin the
first group of non-discrete output reference addresses.

Figure 16

= 1V I0_VAR_EXAMPLE %1X0.5.2.2

The I/O variable, I0_VAR_EXAMPLE, is mapped to a discrete (X) input point (I) on the
module located in rack 0, slot 5. The pointis in the module’s third group of discrete input
points and is point 2 in that group.

Arrays

An array is a complex data type composed of a series of variable elements with identical
data types. Any variable can become an array, except for another array, a variable

37

CPU Programmer’s Reference Manual Section 3
GFK-2950M Dec 2024

element, ora UDFB. In Machine Edition, you can create single-dimensional arrays and
two-dimensional arrays.

In the controller CPU, each element of an array is treated as a separate variable with a
separate, read-only reference address. The root node of the array variable also has a
reference address that is editable. When you set or change the reference address of the
root node of an array variable, the reference addresses of its elements are filled in with
a range of addresses starting at that reference address and incremented for each
element to create contiguous non-overlapping memory.

3.1.5 Variable Indexes and Arrays
PACSystems CPUs with firmware version 6.00 or later support variable indexes
for arrays. With a variable index, when logic is executed, the value of the variable is
evaluated, and the corresponding array element is accessed.

Note: The numbering of array elements is zero-based.

For example, to access an element of the array named ABC, you could write ABC[DEF]
in logic. When logic is executed, if the value of DEF is 5, then ABC[DEF] is equivalent to
ABC [5], and the sixth element of array ABC is accessed.

If the value of the variable index exceeds the array boundary, a non<atal fault is logged
to the CPU faulttable. In LD, the instruction for which this occurred does not pass power

to the right.
Requirements and Support

An index variable must be of the INT, UINT, or DINT data type.

The valid range of values for an index variable is 0 through Y, where Y = [the number of
array elements in the array] - 1. Refer to Ensuring that a Variable Index does not Exceed

the Upper Boundary of an Array

An index variable can be one of the following:

e Symbolic variable

e |/O variable

e Variable mapped to % memory areas such as %R
e Structure element

e Array element with a constant index

e Array element with a variable index

e Alias variable

¢ Inthe logic of a UDFB or parameterized block: formal parameter
The following support a variable index:

e Array elements of any data type except STRING

e Parameter array elements of any data type

e Alias variables

Dimensional support:

Program Data 38

CPU Programmer’s Reference Manual Section 3
GFK-2950M Dec 2024

e One-dimensional (1D) formal parameter arrays in the logic of a UDFB or
parameterized block

e 2D support for the top level of an array of structures and 1D support for a structure
element that is an array. For example:

PQRJ[a, b].STRU[y].Zed,

where Zed is an element of the array of structures STRU, which itseff is an
element of the 2D array of structures PQR.

e 1D and 2D arrays for other variables

Other features:

e An array with a variable index supports a bit reference, for example
MyArray[nindex].X[4],

where .X[4] is the fifth bit of the value stored in MyArray[nindex]. The bit
reference itself, [4] in the example, must be a constant.

e In LD, the following word-for-word changes are supported for array elements with
variable indexes:

Replacing an index variable with another index variable
Replacing an index variable with a constant
Replacing a constant with an index variable

In LD, Diagnostic Logic Blocks support the use of array elements with variable indexes.

Program Data 39

CPU Programmer’s Reference Manual Section 3
GFK-2950M Dec 2024

Where Array Elements with Variable Indexes are Not
Supported:

The following do not support array elements with variable indexes:

¢ Indirect references
e EGD variables

e Reference ID variables (RIVs) and I/O variables when accessed in the Hardware
Configuration

Note: In logic, RIVs and I/O variables support variable indexes.

e STRING variables

A variable index cannot be one of the following:

e A math expression. For example, ABC[GH+1] is not supported.
e Anindirect reference. For example, W[(@XYZ] is not supported.

o A bit references. For example, ABC [DEF.X[3]] is not supported.

Note You can use a bit reference on an array element designated by a variable index.
For example, ABC[DEF].X[3] is supported.

e An array head. For example, if MNP and QRS are arrays, MNP[QRS] is not
supported, but MNP[QRS][3]] and MNP[QRS[TUV]] are, where TUV is an index
variable.

e A negative index. This generates a run-time non-fatal CPU fault.

e Avalue greaterthan Y, where Y = [number of array elements] - 1. This generates a
run-time non-fatal CPU fault.

Program Data 40

CPU Programmer’s Reference Manual Section 3

GFK-2950M

Program Data

Dec 2024

Ensuring that a Variable Index does not Exceed the Upper
Boundary of an Array

One-Dimensional Array

1. Once per scan, execute ARRAY_SIZE DIM1 to countthe number of elements
in the array.

Note: The array size of a variable can be changed in a RUN Mode Store but it will not be
changed while logic is executing.

ARRAY_SIZE DIM1 places the count value in the variable associated with its output Q.

2. Before executing an instruction that uses a variable index, compare the value
of the index variable with the number of elements in the array.

Tip
In LD, use a RANGE instruction.

Notes Checking before executing each instruction that uses an indexed variable is
recommended in case logic has modified the index value beyond the array size or in
case the array size has been reduced before the scan to less than the value of an index
variable that has not been reduced accordingly since.

Valid range of an index variable: 0 through (n—1), where n is the number of array
elements. Array indexes are zero-based.

Two-Dimensional Array

e Execute both ARRAY_SIZE DIM1 and ARRAY_SIZE DIM2 to count the number of
elements in respectively the first and second dimensions of the array.

41

CPU Programmer’s Reference Manual Section 3
GFK-2950M Dec 2024

3.2 Reference Memory

The CPU stores program data in bit memory and word memory. Both types of memory
are divided into different types with specific characteristics. By convention, each type is
normally used for a specific type of data, as explained below. However, there is great
flexibility in actual memory assignment.

Memory locations are indexed using alphanumeric identifiers called references. The
reference’s letter prefix identifies the memory area. The numerical value is the offset
within that memory area, for example %AQ0056.

3.2.1 Word (Register) References

Type |Description

%Al The prefix %Al represents an analoginputregister. An analoginput register holds the value of one
analog input or other non-discrete value.

%AQ The prefix %AQ represents an analog outputregister. An analog oufputregister holds the value of
one analog output or other non-discrete value.

%R Use the prefix %R to assign system register references that will store program data such as the
results of calculations.

%W Retentive Bulk Memory Area, which is referenced as %W (WORD memory).

%P Use the prefix %P to assign program register references that will store program data with the
_MAIN block. This data can be accessed fromall program blocks. The size of the %P data block
is based on the highest %P reference in all blocks. %P addresses are available only to the LD
program they are used in, including C blocks called from LD blocks; they are not system-wide.

Note: Al register references are retained across a power cycle to the CPU.

Indirect References

An indirect reference allows you to treat the contents of a variable assigned to an LD
instruction operand as a pointer to other data, rather than as actual data. Indirect
references are used only with word memory areas (%R, %W, %Al, %AQ, %P, and %L).
An indirect reference in %W requires two %W locations as a DWORD indirect index
value. For example, @%WO0001 would use the %W2:W1 as a DWORD index into the
%W memory range. The DWORD index is required because the %W size is greater than
65K.

Indirect references cannot be used with symbolic variables.

To assign an indirect reference, type the @ character followed by a valid reference
address or variable name. For example, if %R00101 contains the value 1000, @R00101
instructs the CPU to use the data location of %R01000.

Indirect references can be useful when you want to perform the same operation to many
word registers. Use of indirect references can also be used to avoid repetitious logic
within the application program. They can be used in loop situations where each register
is incremented by a constant or by a value specified until a maximum is reached.

Bit in Word References

Bit in word referencing allows you to specify individual bits in a word reference type as
inputs and outputs of Boolean expressions, functions, and calls that accept bit
parameters (such as parameterized blocks). This feature is restricted to word references

in retentive memory. The bit number in the bit within word construct must be a constant.
Program Data 42

CPU Programmer’s Reference Manual

GFK-2950M

Program Data

Section 3
Dec 2024

You can use the programmer or an HMI to set an individual bit on or off within a word or
monitor a bit within a word. Also, C blocks can read, modify, and write a bit within a word.

Bit in Word references can be used in the following situations:

In retentive 16-bit memory (Al, AQ, R, W, P, and L) and symbolics.
On all contacts and coils except legacy transition contacts (POSCON/NEGCON) and

transition coils (POSCOIL/NEGCOIL).

On all functions and call parameters that accept single or unaligned bit parameters.

Functions that accept unaligned discrete references Parameters
ARRAY MOVE (BIT) SR and DS
ARRAY RANGE (BIT) Q

MOVE (BIT) INand Q
SHFR (BIT) IN, ST and Q

Restrictions

The use of Bit in Word references has the following restrictions:

Bit in Word references cannot be used on legacy transition contacts
(POSCON/NEGCON) and transition coils (POSCON/NEGCON).

The bit number (index) must be a constant; it cannot be a variable.

Bit addressing is not supported for a constant.

Indirect references cannot be used to address bits in 16-bit memory.

You cannot force a bit within 16-bit memory.

43

CPU Programmer’s Reference Manual

GFK-2950M

Program Data

Examples:

%R2.X [0] addresses the first (least significant) bit of %R2
%R2.X [1] addresses the second bit of %R2. In the examples

Section 3
Dec 2024

In the examples [0] and [1] are the bit indexes. Valid bit indexes for the different variable

types are:
BYTE variable [0] through [7]
WORD, INT, or UINT variable [0] through [15]
DWORD or DINT variable [0] through [31]

44

CPU Programmer’s Reference Manual Section 3
GFK-2950M Dec 2024

3.2.2 Bit (Discrete) References
Type |[Description

%l Represents input references. %I reference are located in the input status table, which stores the
state of all inputs received from input modules during the last input scan. A reference address is
assigned to discrete input modules using your programming software. Until a reference address is
assigned, no data will be received from the module. %! memory is always retentive.

%Q Represents physical output references. The coil check function checks for multiple uses of %Q
references with relay coils or outputs on functions. You can select the level of coil checking desied
(Single, Warn Multiple, or Multiple).

%Q references are located in the output status table, which stores the state ofthe output references
as last set by the application program. This output status table’s values are sent to outputmodules
atthe end of the program scan. A reference address is assigned to discrete outputmodules using
your programming software. Until a reference address is assigned, no data is sent to the module.
A particular %Q reference may be either retentive or non-retentive.

%M Represents internal references. The coil check function of your programming software checks for
multiple uses of %M references with relay coils or outputs on functions. A particular %M reference
may be either retentive or non-retentive.

%T Represents temporary references. These references are never checked for multiple coil use and
can, therefore, be used many times in the same program even when coil use checkingis enabled—
this is not a recommended practice because it makes subsequent troub le-shooting more difficut.
%T may be used to prevent coil use conflicts while using the cut/paste and file write/include
functions. Because this memory is intended for temporary use, it is cleared on STOP Mode to RUN
Mode transitions and cannot be used with retentive coils.

%S Represent system status references. Thesereferences are usedto access special CPU data such
%SA as timers, scan information, and fault information. Forexample, the %SC0012 bit can be used to
%SB check the status of the CPU fault table. Once the bitis seton by an error, it will not be reset until
%SC after the sweep. %S, %SA, %SB, and %SC can be used on any contacts.

e %SA, %SB, and %SC can be used on retentive coils -(M)-.

Note: Although the programming software forces the logic to use retentive coils
with %SA, %SB, and %SC references, most of these references are not
preserved across power cycles regardless of the state of the battery or
Energy Pack.

%S can be used as word or bit-string input arguments to functions or function blocks.

%SA, %SB, and %SC can be usedas word or bit-string input or outputarguments to functions and
function blocks.

For a description of the behavior of each bit, refer to System Status References.

%G Represents global data references. These references are used to access data shared among
several control systems.

Note: For details on retentiveness, refer to Retentiveness of Logic and Data.

Program Data 45

CPU Programmer’s Reference Manual

GFK-2950M

3.3

User Reference Size and Default

Maximum user references and default reference sizes are listed in the table below.

Section 3
Dec 2024

Item Range Default
EPXCPE205 EPXCPE210 EPXCPE215 EPXCPE220 EPXCPE240
Reference Points
%I reference 1024 2048 2048 4096 4096
%Q reference 1024 2048 2048 4096 4096
%M reference 2048 4096 4096 8192 8192
%S total (S, SA, SB, SC) 512 bits (128 each) Same ?:orj;ge per
%T reference 256 bits
%G 1280 points
Total Reference Points 6144 14336 14336 18432 18432
Reference Words
%Al reference 64 words (same for all
0 models)
%AQ reference 0—16,320 words 0—32,640 words
%R, 1K word increments 1,024 words (same for
all models)
%W . . 0 words (same for all
O0—maximum available user RAM
models)
Total Reference Words 1152 words
%L (per block) 8,192 words 8,192 words (same for
%P (per program) all models)
Managed Memory
Symbolic Discrete 0—3,670,016 0—7,864,320 0—12,058,624 | 0—16,252,928 | 0—3,3030,144 | 32,768 (same for all
(bits) (bits) (bits) (bits) (bits) models)
Symbolic Non-Discrete 0—229,376 0—491,520 0—753,664 0—1,015,808 0—2,064,384 65,536 (same for all
(words) (words) (words) (words) (words) models)
1/0 Discrete 0 through 0 through 0 through 0 through 0 through
3,670,016 7,864,320 12,058,624 16,252,928 33,030,144
0 (same for all models)
1/0 Non-Discrete 0 through 0 through 0 through 0 through 0 through
229,376 491,520 753,664 1,015,808 2,064,384
Total Symbolic (Total
Managed Memory). (This is
the total ilabl
© totalmemory avalable | 4 587 500 | 0—9,830,400 | 0—15,073,280 | 0—20,316,160 | 0—41,287,680
for the combined total of byt byt byt byt byt 147,456
symbolic memory. This also ytes ytes ytes ytes ytes
includes otheruser memory
use, program etc.)

3.3.1

3.4

Program Data

%G User References and CPU Memory Locations

The CPU contains one data space for all the global data references (%G). The internal
CPU memory for this data is 7680 bits long. For Series 90-70 systems, the programming
software subdivides thisrange using %G, % GA, %GB, %GC, %GD, and % GE prefixes—
allowing each of these prefixes to be used with bit offsets in the range 1-1280. For
PACSystems, these ranges are converted to %G.

Genius Global Data

46

CPU Programmer’s Reference Manual Section 3
GFK-2950M Dec 2024

PACSystems supports the sharing of data among multiple control systems that share a
common Genius /O bus. This mechanism provides a means for the automatic and
repeated transfer of %G, %l, %Q, %Al, %AQ, and %R data. No special application
programming is required to use global data since it is integrated into the I/O scan. All
devices that have Genius I/O capability can send and receive global data from a
PACSystems CPU.

Using I/O Variables, you can directly associate variable names to a module’s Genius
global data that is scanned as part of an input/output scan.

3.5 Transitions and Overrides

The %I, %Q, %M, and %G user references, and symbolic variables of type BOOL, have
associated transition and override bits. % T, %S, %SA, %SB, and %SC references have
transition bits but not override bits. The CPU uses transition bits for counters, transition
contacts, and transitional coils. Note that counters do not use the same kind of transition
bits as contacts and coils. Transition bits for counters are stored within the locating
reference.

The transition bit for a reference tells whether the most recent value (ON, OFF) written
to the reference is the same as the previous value of the reference. Therefore, when a
reference is written and its new value is the same as its previous value, its transition bit
is turned OFF. When its new value is different from its previous value, its transition bit is
turned ON. The transition bitforareferenceis affected every time the reference is written
to. The source of the write is immaterial; it can result from a coil execution, an executed
function’s output, the updating of reference memory after an input scan, etc.

When override bits are set, the associated references cannot be changed from the
program or the input device; they can only be changed on command from the
programmer. Overrides do not protect transition bits. If an attempted write occurs to an

overridden memory location, the corresponding transition bit is cleared.

Program Data 47

CPU Programmer’s Reference Manual Section 3

GFK-2950M

3.6

Program Data

Dec 2024

Retentiveness of Logic and Data

Datais defined as retentive if it is saved by the CPU when the CPU transitions from
STOP Mode to RUN Mode.

The following items are retentive:

program logic

fault tables and diagnostics

checksums for program logic

overrides and output forces

word data (%R, %W, %L, %P, %Al, %AQ)

bit data (%I, %G, fault locating references, and reserved bits)

%Q and %M variables that are configured as retentive (%T data is non-retentive and
therefore not saved on STOP Mode to RUN Mode transitions).

symbolic variables that have a data type other than BOOL
symbolic variables of BOOL type that are configured as retentive

Retentive data is also preserved during power-cycles of the CPU with battery backup
or Energy Pack backup. Exceptions to this rule include the fault locating references
and most of the %S, %SA, %SB, and %SC references. These references are
initialized to zero at power-up regardless of the state of the battery or Energy Pack
(Foradescription of the behavior of each, refer to System Status References).

When %Q or %M variables are configured as retentive, the contents are retained through
power loss and Run-to-Stop-to-Run transitions.

48

CPU Programmer’s Reference Manual Section 3
GFK-2950M Dec 2024

3.7 Data Scope

Each of the userreferences has scope; thatis, it may be available throughout the system,
available to all programs, restricted to a single program, or restricted to local use within

a block.

User Reference Type Range |[Scope

%l, %Q, %M, %T, %S, %SA, Global From any program, block, or host computer. Variables

%SB, %SC, %G, %R, %W, %Al, defined in these registers have system (global) scope by

%AQ, convenience references, default. However, variables with local scope can also be

fault locating references assigned in these registers.

Symbolic variable Global From any program, block, or host computer. Symbolic
variables have system (global) scope by default. However,
symbolic variables with local scope can be created using
the naming conventions for local variables.

1/O variable Global From any program, block, or host computer.

%P Program From any block, but not from other programs (also available
to a host computer).

%L Local From within a block only (also available to a host
computer).

In an LD block:

e %P should be used for program references that are shared with other blocks.

e %L are local references that can be used to restrict the use of register data to that
block. These local references are not available to other parts of the program.

o %I, %Q, %M, %T, %S, %SA, %SB, %SC, %G, %R, %W, %Al, and %AQ references
are available throughout the system.

Program Data 49

CPU Programmer’s Reference Manual Section 3
GFK-2950M Dec 2024

3.8 System Status References

System status references in the CPU are assigned to %S, %SA, %SB, and %SC
memory. The four timed contacts (time tick references) include #T_10MS, #T_100MS,
#T _SEC, and #T_MIN. Examples of other system status references include #FST_SCN,
#ALW_ON, and #ALW_OFF

Note: %S bits are read-only bits; do not write to these bits. However, you can write to %SA,
%SB, and %SC bits.

Listed below are available system status references that can be used in an application
program. When entering logic, either the reference or the nickname can be used. Refer
to Section 9 for detailed fault descriptions and information on correcting faults.

3.8.1 %S References

Reference | System Variable | Definition

%S0001 #FST_SCN Current sweep is the first sweep in which the LD executed. Set the
first time the userprogramis executed aftera STOP Mode to RUN
Mode transition and cleared upon completion of its execution.

%S0002 #LST_SCN Setwhen the CPU transitions to RUN Mode; cleared when the CPU
is performing its final sweep. The CPU clears this bit and then
performs one more complete sweep before transitioning to STOP
or STOP Faulted mode. If the number of last scans set to 0,
%S0002 willbe cleared afterthe CPU is stopped and user logic wil
not see this bit cleared.

Note: The #LST_SCN system bit transitions from one to zeroduring
a PLC run to stop transition.

%S0003 #T_10MS 0.01 second timed contact.

%S0004 #T_100MS 0.1 second timed contact.

%S0005 #T_SEC 1.0 second timed contact.

%S0006 #T_MIN 1.0-minute timed contact.

%S0007 #ALW_ON Always ON.

%S0008 #ALW_OFF Always OFF.

%S0009 #SY_FULL Setwhen the CPU fault table fills up (size configurable with a default

of 16 entries). Cleared when anentry is removed fromthe CPU fault
table and when the CPU fault table is cleared.

%S0010 #lO_FULL Setwhen the I/O Fault Table fills up (size configurable with a default
of 32 entries). Cleared when an entry is removed from the 1/0 Fault
Table and when the I/0O Fault Table is cleared.

%S0011 #0OVR_PRE Set when an override exists in %I, %Q, %M, or %G, or symbolic
BOOL memory.

%S0012 #FRC_PRE Set when force exists on a Genius point.

%S0013 #PRG_CHK Set when background program check is active.

Program Data 50

GFK-2950M

CPU Programmer’s Reference Manual Section 3
Dec 2024

Reference | System Variable | Definition

%S0014 #PLC_BAT CPUs with batteries, including CPU310, CPU315, CPU/CRU320
and NIU0O1

° If the battery is disconnected, this contact is set to 1.

. Whenevera Smart Battery fails during operation, this contact
is set to 1. If used in conjunction with a legacy (non-smart)
battery, this indication is not reliable.

Battery-less CPUs, including CPE302, CPE305, CPE310 and
CPE330:

° Energy Pack is connected and functioning = 0

. Energy Pack is not connected or has failed = 1
Setto 1ifthe local unitis configured as the Primary CPU: otherwise

%S0033 #PRI_UNT it is cleared. For any given local unit, if PRI_UNT is set, SEC_UNT
cannot be set.

Set to 1 if the local unit is configured as the Secondary CPU:

%S0034 #SEC_UNT otherwise it is cleared. Forany given local unit, if SEC_UNT is set,
PRI_ UNT cannot be set.

%S0035 #LOC_RDY Setto 1iflocalunitisin Run mode with outputs enabled. Otherwise
setto 0.

Set to 1 if local unit is currently the Active unit; otherwise it is

%S0036 #LOC_ACT cleared. For any given local unit, if LOC_ACT is set, REM_ACT
cannot be set.

%S0037 #REM_RDY Set to .1 if remote unit is in Run mode with outputs enabled.
Otherwise set to 0.

Set to 1 if remote unit is currently the Active unit; otherwise it is

%S0038 #REM_ACT cleared. For any given local unit, if REM_ACT is set, LOC_ACT
cannot be set.

Setto 1 if the application logic for both units in the redundant system

0,

%S0039 #LOGICEQ is the same. Otherwise set to 0.

%S0041 #RDN_COMM_AVAIL | Redundancy Communication Link Available: 1indicates that the two
CPUs can communicate with each other and will be able to
synchronize when required.

%S0042 #RDN_P1_LINK_UP [Redundancy Ethernet Port 1 on LAN3 has link on its PHY.

%S0043 #RDN_P2_LINK_UP | Redundancy Ethernet Port 2 on LAN3 has link on its PHY.

%S0049 #FA_OK Field Agent OK: 1 indicates Field Agent running and connected to
cloud.

%S0050 #LG_CFG_SRC Set to 1 if the CPU logic and hardware configuration is retrieved

(R9.98 and later) from Flash memory during last powerup. If setto 0, the CPU logic
and hardware configuration was retrieved from RAM or was not
retrieved.

%S0051 #DATA_SRC Setto 1if the CPU reference data is retrieved from Flash memory
(R9.98 and later) during last powerup. If set to 0, the CPU reference data was

retrieved from RAM or was not retrieved.
Initial Values are stored in User Flash.

%S0052 #DSPOVTMP Setto 1ifthe OLED display is in an overtemperature state and has
(CPx4x0 R9.99 and | turned itself off. The bit is self clearing when the CPU cools and the
later) OLEDis able to turn itself back on. If setto 0, the OLED display is

not in an over temperature state.

%S0053 #LG_CFG_SRC_RAM| Set to 1 if the CPU logic and hardware configuration is retrieved

Program Data

from User RAM memory during last powerup (i.e. Energy Pack). If
set to 0, the CPU logic and hardware configuration was NOT
retrieved from User RAM.

51

CPU Programmer’s Reference Manual
GFK-2950M

3.8.2

Program Data

Reference

System Variable | Definition

%S0054

#DATA_SRC_RAM Set to 1 if the CPU reference data is retrieved from User RAM

memory during last powerup (i.e. Energy Pack). If set to 0, the CPU
reference data was NOT retrieved from User RAM.

%S0055

#DATA_SRC_NV Set to 1 if the CPU reference data is retrieved from any of the NV

Storage locations (in regard to SVC_REQ 63) during last powerup.
If set to 0, the CPU reference data was NOT retrieved from the NV
Storage locations.

%S0056

#SIM

Setto 1ifrunning on a PACSystems Simulator. Set to 0 on all other
platforms.

Note: The #FST_EXE name is not associated with a %S address, it must be referenced by the
name #FST_EXE only. This bit is set when transitioning from STOP Mode to RUN Mode
and indicates that the current sweep is the first time this block has been called.

%SA, %SB, and %SC References

Note: %SA, %SB, and %SC contacts are not set or reset until the input scan phase of the sweep
following the occurrence of the fault or a clearing of the fault table(s). %SA, %SB, and
%SC contacts can also be set or reset by user logic and CPU monitoring devices.

Reference

System
Variable

Definition

%SA0001

#PB_SUM

Set when a checksum calculated on the application program does not match
the reference checksum. If the fault was due to a temporary failure, the
condition can be cleared by again storing the program to the CPU. If the
fault was due to a hard RAM failure, then the CPU must be replaced.

To clear this bit, clear the CPU fault table or power cycle the CPU.

%SA0002

#OV_SWP

Set when the CPU detects that the previous sweep took longerthanthe time
specified by the user. To clear this bit, clear the CPU fault table or power
cycle the CPU. Only occurs if the CPU is in Constant Sweep mode.

%SA0003

#APL_FLT

H#SA0003 | #APL_FLT | Set when an application fault (Fault Group 22)
occurs. To clear this bit, clear the CPU fault table or power cycle the CPU.

%SA0009

#CFG_MM

Set when a configuration mismatch fault is logged in the fault tables. To
clear this bit, clear the CPU fault table or power cycle the CPU.

%SA0008

#OVR_TMP

Set when the operating temperature of the CPU exceeds the normal
operating temperature, 58°C. To clear this bit, clear the CPU fault table or
power cycle the CPU.

%SA0010

#HRD_CPU

Set when the diagnostics detects a problem with the CPU hardware. To
clear this bit, clear the CPU fault table or power cycle the CPU.

%SA0011

#LOW_BAT

The low battery indication is not supported forall CPU modules. For details,
refer to Section 9.4.12, Battery Status (Group 18).

The CPU may set this contact when an 1/0O module or special-purpose
module has reported a low battery. In this case, a fault will be reported in the
I/0 Fault Table.

To clear this bit, clear the CPU fault table or power cycle the CPU.

%SA0012

#LOS_RCK

Set when an expansion rack stops communicating with the CPU. To clear
this bit, clear the CPU fault table or power cycle the CPU.

%SA0013

#LOS_IOC

Set when a Bus Controller stops communicating with the CPU.
To clear this bit, clear the 1/0 Fault Table or power cycle the CPU.

%SA0014

#LOS_IOM

Set when an 1/0O module stops communicating with the CPU.
To clear this bit, clear the 1/0 Fault Table or power cycle the CPU.

52

Section 3
Dec 2024

CPU Programmer’s Reference Manual

GFK-2950M

Program Data

Dec 2024

Reference [System Definition

Variable

%SA0015 [#LOS_SIO Set when an option module stops communicating with the CPU.

To clear this bit, clear the CPU fault table or power cycle the CPU.

%SA0017 [#ADD_RCK Set when an expansion rack is added to the system.

To clear this bit, clear the CPU fault table or power cycle the CPU.

%SA0018 [#ADD_IOC Set when a Bus Controller is added to a rack.

To clear this bit, clear the 1/0 Fault Table or power cycle the CPU.

%SA0019 [#ADD_IOM Set when an 1/0 module is added to a rack.

To clear this bit, clear the 1/0 Fault Table or power cycle the CPU.

%SA0020 [#ADD_SIO Set when an intelligent option module is added to a rack.

To clear this bit, clear the 1/0 Fault Table or power cycle the CPU.

%SA0022 |#IOC_FLT Set when a Bus Controller reports a bus fault, a global memory fault, or an
IOC hardware fault. To clear this bit, clearthe I/O Fault Table or power cycle
the CPU.

%SA0023 |#IOM_FLT Set when an 1/O module reports a circuit or module fault.

To clear this bit, clear the 1/0 Fault Table or power cycle the CPU.

%SA0027 [#HRD_SIO Set when a hardware failure is detected in an option module.

To clear this bit, clear the 1/0 Fault Table or power cycle the CPU.

%SA0029 [#SFT_IOC Set when there is a software failure in the 1/0 Controller.

To clear this bit, clear the 1/0 Fault Table or power cycle the CPU.

%SA0030 |#PNIO_ALARM |A PROFINET alarm has been received and an I/O fault has been logged in
group 28. To clear this bit, clear the I/O Fault Table or power cycle the CPU.

%SA0031 [#SFT_SIO Set when an option module detects an intemnal software error.

To clear this bit, clear the 1/0 Fault Table or power cycle the CPU.

%SA0032 [#SBUS_ER Set when a bus error occurs on the VME bus backplane.

To clear this bit, clear the 1/0 Fault Table or power cycle the CPU.

%SA0081 — Set when a user-defined fault is logged in the CPU fault table.

%SA0112 To clear these bits, clear the CPU fault table or power cycle the CPU. For
more information, see discussion of
SVC_REQ 21: User-Defined Fault Logging in Section 7.

%SB0001 |[#WIND_ER Set when there is not enough time to start the Programmer Window in
Constant Sweep mode.

To clear this bit, clear the CPU fault table or power cycle the CPU.

%SB0009 [#NO_PROG Set when the CPU powers up with memory preserved, but no user program
is present. Cleared when the CPU powers up with a program present or by
clearing the CPU fault table.

%SB0010 [#BAD_RAM Set when the CPU detects corrupted RAM memory at power-up. Cleared
when the CPU detects that RAM memory is valid at power-up or by clearing
the CPU fault table.

%SB0011 [#BAD_PWD Set when a password access violation occurs. Cleared when
the CPU fault table is cleared or when the CPU is power cycled.

%SB0012 |#NUL_CFG Set when an attempt is made to putthe CPUin RUN Mode when there is no
configuration data present.

To clear this bit, clear the CPU fault table or power cycle the CPU.

%SB0013 [#SFT_CPU Set when the CPU detects an error in the CPU operating system software.
To clear this bit, clear the CPU fault table or power cycle the CPU.

%SB0014 [#STOR_ER Set when an error occurs during a programmer store operation.

To clear this bit, clear the CPU fault table or power cycle the CPU.

53

Section 3

CPU Programmer’s Reference Manual Section 3

GFK-2950M

3.8.3

Program Data

Dec 2024

Reference [System Definition

Variable

%SB0016 [#MAX_IOC Set when more than 32 10Cs are configured for the system.

To clear this bit, clear the CPU fault table or power cycle the CPU.

%SB0017 [#SBUS_FL Set when the CPU fails to gain access to the bus.

To clear this bit, clear the CPU fault table or power cycle the CPU.

%SC0009 |#ANY_FLT Set when any fault occurs that causes an entry to be placed in the CPU or
I/O Fault Table. Cleared when both fault tables are cleared orwhen the CPU
is power cycled.

%SC0010 [#SY_FLT Set when any fault occurs that causes an entry to be placed in the CPU fault
table. Cleared when the CPU fault table is cleared or when the CPU is
power cycled.

%SC0011 |#IO_FLT Set when any fault occurs that causes an entry to be placed in the 1/0 Fault
[Table. Cleared when the 1/O Fault Table is cleared or when the CPU is
power cycled.

%SC0012 [#SY_PRES Set as long as there is at least one entry in the CPU fault table. Cleared
when the CPU fault table is cleared.

%SC0013 |#IO_PRES Setif there is atleast one entry in the I/O Fault Table. Cleared when the 1/0
Fault Table is cleared.

%SC0014 |#HRD_FLT Set when a hardware fault occurs. Cleared when both fault tables are
cleared or when the CPU is power cycled.

%SC0015 [#SFT_FLT Set when a software fault occurs. Cleared when both fault tables are cleared

or when the CPU is power cycled.

Fault References

The fault references are discussed in Section 9 of this manual but are also listed here for
your convenience.

System Fault References

System Fault Ref | Description

#ANY_FLT Any new faultin eithertable since the last power-up or clearing of the fault tables

#SY_FLT Any new system fault in the CPU fault table since the last power-up or clearing of
the fault tables

#O_FLT Any new faultin the 1/0 Fault Table since the last power-up or clearing of fault tables

#SY_PRES Indicates that there is at least one entry in the CPU fault table

#IO_PRES Indicates that there is at least one entry in the I/O Fault Table

#HRD_FLT Any hardware fault

#SFT_FLT Any software fault

Configurable Fault References

Configurable Faults | Description
(Default Action)

#SBUS_ER (diagnostic) Systembus error. (The BSERR signal was generated on the VME system bus.)

#SFT_IOC (diagnostic) Non-recoverable software error in a Genius Bus Controller.

#LOS_RCK (diagnostic) Loss of rack (BRM failure, loss of power) or missing a configured rack.

#LOS_IOC (diagnostic) Loss of Bus Controller missing a configured Bus Controller.

#LOS_IOM (diagnostic) Loss of /O module (does not respond) or missing a configured I/O module.

54

CPU Programmer’s Reference Manual

GFK-2950M

Program Data

Section 3
Dec 2024

Configurable Faults
(Default Action)

Description

#LOS_SIO (diagnostic)

Loss of intelligent option module (does not respond) or missing a configured
module.

#IOC_FLT (diagnostic)

Non-fatal bus or Bus Controller error—more than 10 bus errorsin 10 seconds
(error rate is configurable).

#CFG_MM (fatal)

Wrong module type detected during power-up, store of configuration, or RUN
Mode. The CPU does not check the configuration parameters set up for
individual modules such as Genius 1/O blocks.

Non-Configurable Faults

Non-Configurable Faults
(Action)

Description

#SBUS_FL (fatal)

Systembus failure. The CPU was not able to access the VME bus. BUSGRT-NMI error.

#HRD_CPU (fatal)

CPU hardware fault, such as failed memory device or failed serial port.

#HRD_SIO (diagnostic)

Non-fatal hardware fault on any module in the system.

#SFT_SIO (diagnostic)

Non-recoverable software errorin a LAN interface module.

#PB_SUM (fatal)

Program or block checksum failure during power-up or in RUN Mode.

#LOW_BAT (diagnostic)

The low battery indication is not supported for all CPU modules. For details, refer to
Battery Status (Group 18) in Section 9.

The CPU may set this contact when an I/Omodule or special-purpose module has reported
a low battery. In this case, a fault will be reported in the 1/0 Fault Table.

To clear this bit, clear the CPU fault table or power cycle the CPU.

#0OV_SWP (diagnostic)

Constant sweep time exceeded.

#SY_FULL, I0_FULL
(diagnostic)

CPU fault table full
1/0 Fault Table full

#IOM_FLT (diagnostic)

Point or channel on an I/O module—a partial failure of the module.

#APL_FLT (diagnostic)

Application Fault (Fault Group 22)

#ADD_RCK (diagnostic)

New rack added, extra, or previously faulted rack has returned.

#ADD_IOC (diagnostic)

Extra I/0O Bus Controller or reset of I/0 Bus Controller.

#ADD_IOM (diagnostic)

Previously faulted 1/0 module is no longer faulted or extra I/O module.

#ADD_SIO (diagnostic)

New intelligent option module is added, extra, or reset.

#NO_PROG (information)

No application programis present at power-up. Should only occur the first time the CPU
is powered up or if the user memory is not retained.

#BAD_RAM (fatal)

Corrupted program memory at power-up. Program could not be read and/ordid not pass
checksum tests.

#WIND_ER (information)

Window completion error. Servicing of Programmer or Logic Window was skipped.
Occurs in Constant Sweep mode.

#BAD_PWD (information)

Change of privilege level request to a protection level was denied; bad password.

#NUL_CFG (fatal)

No configuration present upon transitionto RUN Mode. Running without a configuration
is similar to suspending the 1/O scans.

#SFT_CPU (fatal)

CPU software fault. A non-recoverable error has been detected in the CPU. May be
caused by Watchdog Timer expiring.

#MAX_IOC (fatal)

The maximum number of bus controllers has been exceeded. The CPU supports 32 bus
controllers.

#STOR_ER (fatal)

Download of datato CPU from the programmer failed; some data in CPU may be corrupted.

55

CPU Programmer’s Reference Manual Section 3
GFK-2950M Dec 2024

3.9 How Program Functions Handle Numerical
Data

Regardless of where data is stored in memory — in one of the bit memories or one of the
word memories — the application program can handle it as different data types.

3.9.1 Data Types
Type Name Description Data Format
BOOL Boolean The smallest unit of memory. It has two
states: 1 or0. A BOOL array may have
length N.
BYTE Byte Has an 8-bit value. Has 256 values (0—
255). A BYTE array may have length
N.
WORD Word Uses 16 consecutive bits of data Register
memory. The valid range of word (16 bit states)
values is 0000 hex to FFFF hex. 16 1
DWORD Double Word Has the same characteristics as a Register 2 I Register 1 !
. .]
single word data type, .exc.:ept that it 32 7 16 1
uses 32 consecutive bits in data (32 bit states)
memory instead of only 16 bits.
UINT Unsigned Uses 16-bit memory data locations. Register
Integer They have a valid range of 0 to +65535 (Binary value)
(FFFF hex). 16 1
INT Signed Integer [Uses 16-bit memory data locations, Register 1 (Two's
and are represented in 2’s complement Complement
notation. The valid range of an INT 16 1 value)
data type is —32768 to +32767.
s=sign bit
(0=positive, 1=negative)
DINT Double Stored in 32-bit data memory locations | Register 2 Register 1
Precision (two consecutive 16-bit memory [s]] | |
Integer locations). Always signed values (bit 32 32 716 1
. .) ; (Binary value)
is the sign bit). The valid range of a)]
DINT data type is 2147483648 to | S=Sign bit
+2147483647 (0=positive, 1=negative)
REAL Floating Point | Uses 32 consecutive bits (two Register 2 Register 1
consecutive 16-bit memory locations). | [] | |
The range of numbers that can be 32 17 16 1
stored in this format is from (IEEE format)
+1.401298E-45 to +3.402823E+38.
For the IEEE format, refer to
Floating Point Numbers.
LREAL Double Uses 64 consecutive bits (four Register 2 Register 1
Precision consecutive 16-bit memory locations). | | | | |
Floating Point | The range of numbers that can be 32 17 16 1
stored in this format is from Register 4 Register 3
+2.2250738585072020E-308 to [1|]
+1.7976931348623157E+308. 64 29 48 33
Forth.e IEEE format, refer to (IEEE format)
Floating Point Numbers.

Program Data 56

CPU Programmer’s Reference Manual Section 3
GFK-2950M Dec 2024

Type Name Description Data Format

BCD-4 Four-Digit BCD | Uses 16-bit data memory locations. Register 1 »
Each binary coded decimal (BCD) digit (4 BCD digits)

uses four bits and can represent 139 51
numbers between 0 and 9. This BCD
coding of the 16 bits has a legal value
range of 0 to 9999.

BCD-8 Eight-Digit BCD | Uses two consecutive 16-bit data Register 2 Register 1
memory locations (32 consecutive [sl7]6]5] [4]3]8]1]
bits). Each BCD digit uses 4 bits per 3229252117 1613 9 5 1
digit to represent numbers from 0 to 9. (8 BCD digits)

The complete valid range of the 8-digit
BCD data type is 0 to 99999999.

MIXED Mixed Available only with the MUL and DIV 16 16 32
functions. The MUL function takes two
integer inputs and produces a double | 1 1 =]
integerresult. The DIV function takes a
double integerdividendand an integer
divisor to product an integer result.

ASCII ASCII Eight-bitencoded characters. A single
word reference is required to make two
(packed) ASCII characters. The first
character of the pair corresponds to the
low byte of the reference word. The
remaining 7 bits in each section are
converted.

Note: Using functions that are not explicitly bit-typed will affect transitions for all bits in the
written byte/word/dword. For information about using floating point numbers, refer
to Section 3.9.2, Floating Point Numbers.

3.9.2 Floating Point Numbers

Floating point numbers are stored in one of two IEEE 754 standard formats that uses
adjacent 16-bit words: 32-bit single precision or 64-bit double precision.

The REAL datatyperepresents single precision floating pointnumbers. The LREAL data
typerepresents double precision floating point numbers. REAL and LREAL variables are

typically used to store data from analog I/O devices, calculated values, and constants.

Types of Floating-Point Variables

Data Type Precision and Range

REAL Limited to 6 or 7 significant digits, with a range of approximately +1.401298x10*
through +3.402823x10%,

LREAL Limited to 17 significant digits, with a range of approximately
+2.2250738585072020x10™*® to +1.7976931348623157x10°%,

Note: The programming software allows 32-bit and 64-bit arguments (DWORD, DINT, REAL,
and LREAL) to be placed in discrete memories such as %I, %M, and %R in the
PACSystems target. This is not allowed on Series 90-70 targets. (Note that any bit
reference address that is passed to a non-bit parameter must be byte-aligned. This is the
same as the Series 90-70 CPU.)

Internal Format of REAL Numbers

Figure 17
Program Data 57

CPU Programmer’s Reference Manual

GFK-2950M

Program Data

Section 3
Dec 2024

44— Bit 17-22 I | - Bits 1-18 —b{
2l I [[[T [T TP TP pebef [T LILLT L[4
-} 23-bit mantiss a
etk 1 4 8-hit exponent
= | 1-bit sign {Bit 3.2)

Register use by a single floating-point number is diagrammed below. For example, if the

floating-point number occupies registers R5
and RG6 is the most significant register.

and R6, RS is the least significant register

Figure 18
Most Significant Register ————»
Bits 17-32 —— P
F2 I N T 0 A
Most Significant Bit Least Signfficant Bit

Least Significant Register ———
Bits 1-16 ———— P

pel [1 [V I T T T T TTT1I]
\

Most Significant Bit

v
Least Significant Bit

Internal Format of LREAL Numbers

Figure 19
Bits 49-64 —p-4—— Bils 33-48 ——Mm4—— Bits 17-32 —p4—— Bits 1-16 —»
L T e T T
-] 52-bit mantissa 1 4
—» 11-bit exponent
[g—— 1-bit sign (Bit 64)

Errors in Floating Point Numbers and Operations

Overflow occurs when a REAL or LREAL function generates a number outside the
allowed range. When this occurs, the Enable Out output of the function is set Off, and
the result is set to positive infinity (for a number greater than the upper limit) or negative
infinity (for a number less than the lower limit). You can determine where this occurs by
testing the sense of the Enable Out output.

Binary representations of Infinity and NaN values have exponents that contain all 1s.

IEEE 754 Infinity Representations

REAL LREAL
POS_INF (positive infinity) = 7F800000h = 7FF0000000000000h
NEG_INF (negative infinity) = FF800000h = 7FF0000000000001h

If the infinities produced by overflow are used as operands to other REAL or LREAL
functions, they may cause an undefined result. This undefined resultis referred to as an

NaN (NotaNumber). Forexample, the result
is undefined. When the ADD_REAL function

of adding positive infinity to negative infinity
is invoked with positive infinity and negative

58

CPU Programmer’s Reference Manual Section 3
GFK-2950M Dec 2024

infinity as its operands, it produces an NaN. If any operand of a function is a NaN, the
result will be some NaN.

Note: For NaN, the Enable Out output is Off (not energized).

IEEE 754 Representations of NaN values:

REAL LREAL

7F800001 through 7FFFFFFF | 7FF8000000000001 through 7FFFFFFFFFFFFFFF
FF800001 through FFFFFFFF [FFFO000000000001 through FFFFFFFFFFFFFFFF

Note: For releases 5.0 and greater, the CPU may return slightly different values for NaN
compared to previous releases. In some cases, the result is a special type of NaN
displayed as #IND in Machine Edition. In these cases, for example, EXP(-infinity), power
flow out of the function is identical to that in previous releases.

3.10 User Defined Types (UDTs)

A UDT is astructured datatype consisting of elements of other selected data types. Each
top-level UDT element can be one of the following:

Top-level UDT Element Example

Simple data type, except STRING INT

Another UDT, except any in which the current UDT | A UDT named UDT_ABC has a top-level element
is nested at any level. whose data type is another UDT, named UDT_2.

Note: A UDT cannot be nested within itself.

Array of a simple data type LREAL array of length 8.

Array of UDTs A UDT named UDT_ABC has a top-level element that
is an array whose data type is another UDT, named
Note: A UDT cannot be nested within itself. UDT_row.

3.10.1 Working with UDTs

Figure 20
=B Logic
+ T:g Program Blocks
=- g} User Defined Types
&b Cmdsicks
ob Cmdsicks

1. In Machine Edition, add a UDT as a node under a target in the Project tab of
the Navigator. A UDT will be saved with the target in which it is used.

2. Edit the UDT properties and define the elements in the UDT's structure.

3. Create a variable whose data type is the UDT. By default, the variable resides
in symbolic memory. You can convert the symbolic variable to an I/O variable
by assigning it to an I/O terminal.

4. Use the variable in logic.

Program Data 59

CPU Programmer’s Reference Manual Section 3
GFK-2950M Dec 2024

3.10.2 UDT Properties

Name: The UDTs name. Maximum length: 32 characters.
Description: The user-defined description of the UDT.

Memory Type: The type of symbolic or I/O variable memory in which a variable of this
UDT resides.

Non-Discrete: (Default) Word-oriented memory organized in groups of 16
contiguous bits.

Discrete: Bit-oriented memory.

Notes: You cannot nest a UDT of one memory type in a UDT of a different memory type.
Changing the memory type propagates to existing variables of this UDT only after target
validation.

Is Fixed Size: If set to True, you can increase the Size (Bytes) value to a maximum of
65,535 bytes to create a buffer at the end of the UDT. The buffer is included in the
memory allocated to every downloaded variable of that UDT data type. Use of a buffer
may allow RUN Mode store of a UDT when the size of the UDT définition has changed.
For details, refer to RUN Mode Store of UDTs.

If set to False (default), the Size (Bytes) value is read-only and does notinclude a buffer
at the end of the UDT.

Size (bytes): (Read-only when Is Fixed Size is setto False.) The total number of bytes
required to store a structure variable of the user-defined data type (UDT).

Bytes Remaining: (Read-only; displayed if Is Fixed Size is set to True.) The UDT's buffer
size; the number of bytes available before the actual size of the UDT reaches the value
of the Size (bytes) property.

Program Data 60

CPU Programmer’s Reference Manual Section 3
GFK-2950M Dec 2024
3.10.3 UDT Limits
e Maximum number of UDTs per target: 2048
e Maximum UDT size: 65,535 bytes
Note: Bit spares created to line up the end of a section of BOOL variables or arrays with the
end of a byte will count toward the maximum size.
e Maximum number of top-level UDT elements: 1024
e Maximum array size of a top-level UDT element: 1024 array elements
e UDTs do not support the following:
— Two-dimensional arrays
— Function block data types
— Enumerated data types
e Youcannotnesta UDT of one memory type in a UDT of a different memory type.
e You cannot alias a variable to a UDT variable or UDT variable element.
e AFAULT contact supports a BOOL element of a UDT I/O variable, but nota BOOL
element of a UDT parameter in a UDFB or parameterized block.
e POSCON and NEGCON do not support BOOL elements of UDT parameters in
parameterized blocks or UDFBs.
3.10.4 RUN Mode Store of UDTs

Program Data

An RMS can be performed on a target that contains a variable of a UDT, unless:

e Anoperationin the UDT editor modifies the offset or bit mask of an element that has
the same name before and after the operation.

e The size of the UDT definition increases.
e Array length increases.
e The memory type of the UDT definition changes.

e There is a data type change in the UDT definition, except for the following
interchangeable data types:

— WORD, INT, UINT
— DWORD, DINT

e The UDT definition is renamed.

61

CPU Programmer’s Reference Manual Section 3
GFK-2950M Dec 2024

3.10.5 UDT Operational Notes

e Bydefault,aUDTvariableresidesin symbolicmemory. You can convertthe symbolic
variable to an I/O variable.

e All UDT elements are public and, therefore, readable and writeable.

e Properties of elements of UDT variables:

The Input Transfer List and Output Transfer List properties are read-only and set to
False.

The Retentive property is editable only for BOOLs and only if the UDT Memory Type is
discrete. For UDTs whose Memory Type is non-discrete, a BOOL variable has its
Retentive property set to True during validation.

e UDT variables are supported in LD, FBD, and ST blocks, as well as in Diagnostic
Logic Blocks.

For additional operational notes, refer to the programmer Help.
Example

You want to set up six COMMREQ commands to send values to a series of six identical
intelligent modules that require individualized data of the same data types in the same
format, specified by the manual for the intelligent module. This data contains header
information and several words of data. You could proceed as follows:

1. Add a UDT named COMMREQS6 and edit it to contain the data in the required
data types and sequence.

2. Create an array of length 6, named ABC, of the COMMREQ6 data type.

3. The array resides in symbolic memory. You can convert the symbolic variable
to an I/O variable.

4. Populate the variable. If the value of an element needs to be the same for all
six COMMREQE6 elements, you can setup an ST for loop that uses a variable
index to populate each element with the same data, for example:

fori=1to 6do
ABCIi].WaitFlag := 0;
end for;
5. Just before issuing one or more COMMREQss, use the Move to Flat instruction
to flatten the COMMREQE6 array or one or more of its top-level elements from a

structure to a flat series of contiguous registers in an area of % memory
supported by COMMREQ.

6. Issue the COMMREQs based on the % memory registers that you just
populated with the Move to Flat instruction.

Although you can populate the memory registers directly withouta UDT and Move to
Flat, there are advantages when working with UDT variables:

e UDT variables reside in symbolic or I/O variable memory, which protects them from
memory overlaps and offers more protection against overwriting, whereas reference

memory areas offer no such protection. It is best to use reference memory just before
issuing a COMMREQ.

Program Data 62

CPU Programmer’s Reference Manual Section 3
GFK-2950M Dec 2024

e You can work with meaningful structure variable names and structure element
names.

e You can set up loops with variable indexes to populate some of the values.

3.11 Operands for Instructions

The operands for PACSystems instructions can be in the following forms:
e Constants

e Variables that are located in any of the PACSystems memory areas (%!, %Q, %M,
%T, %G, %S, %SA, %SB, %SC, %R, %W, %L, %P, %Al, %AQ)

e Symbolic variables, including I/O variables

e Parameters of a Parameterized block or C block

e Power flow

e Dataflow

e Computed references such as indirect references or bit-in-word references
e BOOL arrays

An operand’s type and length must be compatible with that of the parameter it is being
passed into. PACSystems instructions and functions have the following operand
restrictions:

e Constants cannotbe used as operands to output parameters because output values
cannot be written to constants.

e Variables located in %S memory cannot be used as operands to output parameters
because %S memory is read-only.

e Variables located in %S, %SA, %SB, and %SC memories cannot be used as
operands to numerical parameters such as INTs, DINTs, REALs, LREALs, etc.

e Data flow is prohibited on some input parameters of some functions. This occurs
when the function, during the course of its execution, actually writes a value to the
input parameter. Data flow is prohibited in these cases because data flow is stored in
a temporary memory and any updated value assigned to it would be inaccessible to
the user application.

e The arguments to EN, OK, and many other BOOLEAN input and output parameters
are restricted to be power flow.

e Restrictions on using Parameterized block or External block parameters as operands
to instructions or functions are documented in Section 2.

e References in discrete memory (I, Q, M, and T) must be byte-aligned.
Note the following:

e Indirect references, which are available for all WORD -oriented memories (%R, %W,
%P, %L, %Al %AQ), can be used as arguments to instructions wherever located
variables in the corresponding WORD-oriented memory are allowed. Note that
indirect references are converted into their corresponding direct references
immediately before they are passed into an instruction or function.

Program Data 63

CPU Programmer’s Reference Manual Section 3

GFK-2950M

3.12

3.12.1

3.13

Program Data

Dec 2024

e Bit-in-word references are generally allowed on contact and coil instructions other
than legacy transition contacts and coils (POSCON, NEGCON, POSCOIL and
NEGCOIL). They are also allowed as arguments to function parameters that accept
single or unaligned bits.

BOOL arrays can be used as parameters to an instruction instead of variables of other

data types. The array must be of enough length to replace the given data type. For
example, instead of using a 16-bit INT variable, you could use aBOOL array of length 16

or more.
The following conditions must be met:

e The BOOL array must be byte-aligned, that is, the reference address of the first
element of the BOOL array mustbe 8n + 1, where n =0, 1, 2, 3, and so on. For
example, %MO00033 is byte-aligned, because 33 = (8 x 4) + 1.

e The parameterin question must support discrete memory reference addresses.

e Theinstructionin question mustnothave aLength parameter. (The Length parameter
is displayed as ?? in the LD editor until a value has been assigned.)

e The data type to be replaced with a BOOL array must be one of the following:

Data Type Minimum Length
BYTE 8

INT, UINT, WORD 16

DINT, DWORD, REAL 32

REAL 64

e Excess bits are ignored. For example, if you use a BOOL array of length 12 instead
of an 8-bit BYTE, the last four bits of the BOOL array are ignored.

Word-for-Word Changes

Many changes to the program that do not modify the size of the program are considered
word-for-word changes. Examples include changing the type of contact or coil or
changing a reference address used for an existing function block.

The following are word-for-word changes:

e Switching between two symbolic variables
e Switching between a symbolic variable and a mapped variable

e Switching between a constant and a symbolic variable

Exception: Symbolic Variables
Creating, deleting, or modifying a symbolic variable definition is not a word -for-word
change.

PACSystems Simulator Program Data

The following sections outline Program Data differences for the PACSystems Simulator.

64

CPU Programmer’s Reference Manual Section 3
GFK-2950M Dec 2024

3.13.1 Variables

The PACSystems Simulator does not support I/O or backplane modules. Therefore, /O
symbolic variables, I/O reference addresses, and EGD exchange variables will not be
updated on an input or output scan on a PACSystems Simulator.

For information on using simulated inputs with the PACSystems Simulator, refer to
GFK-2222 PACSystems CPU Reference Manual, Section 4.12 PACSystems Simulator
CPU Operation.

3.13.2 Reference Memory

Reference memory constraints on a PACSystems Simulator are equal to reference
memory constraints on a corresponding PACSystems CPU.

3.13.3 System Status References

This section details differences for system status references when utilized in logic on the
PACSystems Simulator.

%S References

Reference | System Variable | Definition
%S0014 #PLC_BAT Batteries do not exist for the PACSystems Simulator. Therefore, this
value is always 0 when used in logic run on a given PACSystems
Simulator.
%S0052 #DSPOVTMP Displays do not exist for the PACSystems Simulator. Therefore, this
(CPx4x0 R9.99 and | valueis always 0 when used in logic run on a given PACSystems
later) Simulator.

%SA, %SB, and %SC References

Reference [System Definition
Variable

%SA0008 |[#OVR_TMP The PACSystems Simulator does not control hardware, so the CPU over
temperature bit is not applicable and is always 0.

%SA0010 |#HRD_CPU The PACSystems Simulator does not control hardware, so the CPU
hardware problem bit is not applicable and is always 0.

%SA0011 |#LOW_BAT Batteries do not exist for the PACSystems Simulator. Therefore, this value is
always 0 when used in logic run on a given PACSystems Simulator.

%SA0012 [#LOS_RCK

%SA0013 |#LOS_IOC
%SA0014 [#LOS_IOM
%SA0015 [#LOS_SIO

%SA0017 [#ADD_RCK The PACSystems Simulator does not support I/O or backplane modules, so
%SA0018 [#ADD_IOC these values are always 0.

%SA0019 |#ADD_IOM

%SA0020 |#ADD_SIO
%SA0022 [#IOC_FLT
%SA0023 [#IOM_FLT

Program Data 65

CPU Programmer’s Reference Manual Section 3

GFK-2950M

Program Data

Dec 2024
Reference [System Definition
Variable

%SA0027 |#HRD_SIO

%SA0029 |#SFT_IOC

%SA0030 |#PNIO_ALARM

%SA0031 [#SFT_SIO

%SA0032 |#SBUS_ER

%SB0010 |#BAD_RAM The PACSystems Simulator does not monitor RAM, so the bad RAM bit is
not applicable and is always 0.

%SB0016 [#MAX_IOC [The PACSystems Simulatordoes not support I/0 or backplane modules, so
this value is always 0.

%SC0014 |#HRD_FLT The PACSystems Simulator does not control hardware, so the hardware

fault bit is not applicable and is always 0.

66

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Section 4 Ladder Diagram (LD)
Programming

This chapter describes the programming instructions that can be used to create ladder
logic programs for the PACSystems control system.

For an overview of the types of operands that can be used with instructions, refer to
Operands for Instructions in Section 3.

For CPS400 programming refer to GFK-3279 VersaMax SafetyNet Function Block
Manual for the list of allowed instructions.

The ladderlogicimplementation of the PACSystems instruction set includes the following
categories:

e Advanced Math Functions

e Bit Operation Functions

e Coils

e Contacts

e Control Functions

e Conversion Functions

e Data Move Functions

e Data Table Functions

e Math Functions

e Program Flow Functions

e Relational Functions

e Timers

e Motion Functions and Function Blocks

o RX3i CPUs support PLCopen compliant motion functions and function
blocks. Details of these function blocks can be found in the PACMotion
Multi-Axis Motion Controller User's Manual, GFK-2448.

e PROFINET I/O Communication

o Consists of the PNIO_DEV_COMM function. For details, refer to the
PACSystems RX3i & RSTi-EP PROFINET I/O Controller Manual, GFK-
2571.

Ladder Diagram (LD) Programming 67

CPU Programmer’s Reference Manual
GFK-2950M

A

Section 4
Dec 2024

Advanced Math Functions

The Advanced Math functions perform logarithmic, exponential, square root,
trigonometric, and inverse trigonometric operations.

Function |Mnemonic Description
Exponential EXP_REAL Raises e to the value specified in IN (¢™). Calculates the inverse natural

EXP_LREAL logarithm of the IN operand.

EXPT_REAL Calculates IN1 to the IN2 power (IN1™?).

EXPT_LREAL

Inverse Trig ACOS_REAL Calculates the inverse cosine of the IN operand and expresses the

ACOS_LREAL result in radians.

ASIN_REAL Calculates the inverse sine of the IN operand and expresses the result

ASIN_LREAL in radians.

ATAN_REAL Calculates the inverse tangent of the IN operand and expresses the

ATAN_LREAL result in radians.

Logarithmic LN_REAL Calculates the natural logarithm of the operand IN.

LN_LREAL

LOG_REAL Calculates the base 10 logarithm of the operand IN.

LOG_LREAL

Square Root |[SQRT_DINT Calculates the square root of the operand IN, adouble-precision integer,
and storesin Q the double-precision integer portion of the square root
of the input IN.

SQRT_INT Calculates the square root of the operand IN, a single-precisioninteger,
and stores in Q the single-precision integer portion of the square root of
the input IN.

SQRT_REAL Calculates the square root of the operand IN, a real number, and stores

SQRT_LREAL the real-number result in Q

Trig COS_REAL Calculates the cosine of the operand IN, where IN is expressed in

COS_LREAL radians.

SIN_REAL Calculates the sine of the operand IN, where IN is expressed in radians.

SIN_LREAL

TAN_REAL Calculates the tangent of the operand IN, where IN is expressed in

TAN_LREAL radians.

Ladder Diagram (LD) Programming

68

CPU Programmer’s Reference Manual

GFK-2950M

4.1.1

Exponential/Logarithmic Functions
When an exponential or logarithmic function receives power flow, it performs the
appropriate operation on the REAL or LREAL input value(s) and places the result in
output Q.

Section 4
Dec 2024

The inverse natural log (EXP) function
raises e to the power specified by IN.

m
!
n

¥

il

Bk
m
=
=

m
-

The Power of X (EXPT) function raises
the value of input IN1 to the power
specified by the value IN2.

—{I1

EXFT LREAL

—{IN2

i
|

The Base 10 Logarithm (LOG) function
calculates the base 10 logarithm of IN.

)

(¥

The Natural Logarithm (LN) function
calculates the logarithm of IN.

LN REAL

-

i

The power flow output is energized when the function is performed, unless or one of the
following invalid conditions occurs:

IN< O, forLOG or LN
IN1 < 0, for EXPT
IN is negative infinity, for EXP

IN, IN1, or IN2 is a NaN (Not a Number)

Ladder Diagram (LD) Programming

69

CPU Programmer’s Reference Manual

GFK-2950M

Section 4
Dec 2024

Operands of the Exponential/Logarithmic Functions

Parameter |Description Allowed Operands|Optional
IN or IN1 For EXP, LOG, and LN, IN contains the REAL or|All except variables|No
LREAL value to be operated on. located in %S—%SC
The EXPT function has two inputs, IN1 and IN2. For
EXPT, IN1 is the base value and IN2 is the
exponent.
IN2 (EXPT) The REAL or LREAL exponent for EXPT. All except variables|No
located in %S—%SC
Q Contains the REAL or LREAL [All except constants and[No
logarithmic/exponential value of IN or of IN1 and [variables located in %S—|
IN2. %SC

4.1.2

Square Root

SOHET DINT

Mnemonics:
SQRT_DINT
SQRT_INT

SQRT_REAL
SQRT_LREAL

)

When the Square Root function receives power flow, it finds the square root of IN and
stores the result in Q. The output Q must be the same data type as IN.

The power flow output is energized when the function is performed without

OverflowOverflow unless one of these invalid REAL operations occurs:
If IN<O, Qis setto 0and ENO is set FALSE.
If INis a NaN (Not a Number), Q will also be a NaN value and ENO will be set false.

Ladder Diagram (LD) Programming

70

CPU Programmer’s Reference Manual
GFK-2950M

Example

Section 4
Dec 2024

The square root of the integer number located at %AI0001 is placed into %R00003 when

%100001 is ON.

Figure 21

SQRT INT
100004

L]

Moooi —IN QI RO0003

Operands for the Square Root Function

Parameter |Description Allowed Operands Optional
IN The value to calculate the square root of.[All except variables located in %S -|No
If IN <0, the function does not pass power| %SC
flow.
Q The calculated square root. All except constants and variables|No
located in %S - %SC
Ladder Diagram (LD) Programming 71

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

4.1.3 Trig Functions

REA Mnemonics:
SIN_REAL
SIN_LREAL
COS_REAL
COS_LREAL
TAN_REAL
TAN_LREAL

iX

The SIN, COS, and TAN functions are used to find the trigonometric sine, cosine, and
tangent, respectively, of an input whose units are radians. When one of these functions
receives power flow, it computes the sine (or cosine or tangent) of IN and stores the
result in output Q.

While these trig functions will accept as input the full range of REAL or LREAL, the
outputs lose accuracy as the input value’s magnitude approaches the type’s value
precision range. For REAL, the value precision range is —2* < IN < 2% (2% s
approximately 107). For LREAL, the value precision range is —2% < IN < 2%, (2% is
approximately 10%). As input values approach and exceed this range, the inaccurate
values in the output may differ between PACSystems CPU models. The power flow
output is energized unless the following invalid condition occurs:

e INorQis aNaN (Not a Number)
Operands of Trig Functions

Parameter | Description Allowed Operands Optional
Number of radians.

IN REAL: —224 <IN <2% [All exceptvariableslocated in %S—%SC| No

LREAL: 2% <|IN<2%
Q Trigonometric value of IN| All except constants and variables
(REAL or LREAL) located in %S—%SC

No

Example

The COS of the value in V_R00001 is placed in V_R00033.

Figure 22
RO00O1 — Qf— RO0022
41.4 Inverse Trig — ASIN, ACOS, and ATAN
ASIN LREAL Mnemonics:
| | ASIN_REAL
ASIN_LREAL
ACOS_REAL
— ~|_ ACOS_LREAL

Ladder Diagram (LD) Programming 72

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

ATAN_REAL
ATAN_LREAL

When an Inverse Sine (ASIN), Inverse Cosine (ACOS), or Inverse Tangent (ATAN)
function receives power flow, it respectively computes the inverse sine, inverse cosine
or inverse tangent of IN and stores the result in radians in output Q.

The ASIN and ACOS functions accept a narrow range of input values, where —1 < IN <
1. Given a valid value for the IN parameter, the ASIN function produces a result Q such

that:

ASIN(IN) =-— <Q<

N
N

The ACOS function produces a result Q such that:
ACOS(IN) =—-0<Q<Tr
The ATAN function accepts the broadest range of input values, where —< <IN < +,

Given a valid value for the IN parameter, the ATAN function produces a result Q such
that:

ATAN(IN) =—gsosg

The power flow outputis energized unless one of the following invalid conditions occurs:

¢ INis outside the valid range for ASIN, ACOS, or ATAN
e INis a NaN (Not a Number)

Ladder Diagram (LD) Programming 73

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Operands of Inverse Trig Functions

Parameter Description Allowed Operands Optional

IN The REAL or LREAL value to process. All except variables located in |No
ASIN and ACOS: -1 < IN < 1 %S - %SC
ATAN: —© < IN < +

Q Trigonometric value of IN. REAL or LREAL |All except constants and No
value expressed in radians. variables located in %S - %SC

ASIN: (-1/2) < Q < (W/2)
ACOS: 0<Q<n
ATAN: (-w/2) < Q < (n/2)

4.2 Bit Operation Functions

The Bit Operation functions perform comparison, logical, and move operations on bit
strings.

Function [(Mnemonics Description

Bit Position BIT_POS_DWORD Bit Position. Locates a bit set to 1 in a bit string.
BIT_POS_WORD
Bit Sequencer |BIT_SEQ Bit Sequencer. Sequences a string of bit values, starting at ST.

Performs a bit sequence shift through an array of bits. The
maximum length allowed is 256 words.

Bit Set, Clear |BIT_SET_DWORD Bit Set. Sets a bit in a bit string to 1.
BIT_SET_WORD
BIT_CLR_DWORD Bit Clear. Clear a bit within a string by setting that bit to 0.
BIT_CLR_WORD

Bit Test BIT_TEST_DWORD Bit Test. Tests a bit within a bit string to determine whetherthatbit
BIT_TEST_WORD is currently 1 or 0.

Logical AND AND_DWORD Compares the bit strings IN1 and IN2 bit by bit. When a pair of
AND_WORD corresponding bits are both 1, places a 1 in the corresponding

location in output string Q; otherwise, places a 0 in the
corresponding location in Q.

Logical NOT NOT_DWORD Logicalinvert. Sets the state of each bit in outputbit string Q to the
NOT_WORD opposite state of the corresponding bit in bit string IN1.

Logical OR OR_DWORD Compares the bit strings IN1 and IN2 bit by bit. When a pair of
OR_WORD corresponding bits are both 0, places a 0 in the corresponding

location in output string Q; otherwise, places a 1 in the
corresponding location in Q.

Logical XOR |XOR_DWORD Compares the bit strings IN1 and IN2 bit by bit. When a pair of
XOR_WORD corresponding bits are different, places a 1 in the corresponding
location in the output bit string Q; when a pair of corresponding
bits are the same, places a 0 in Q.

Masked MASK_COMP_DWORD |Masked Compare. Compares the contents of two separate bit

Compare MASK_COMP_WORD |strings with the ability to mask selected bits.

Rotate Bits ROL_DWORD Rotate Left. Rotates all the bits in a string a specified number of
ROL_WORD places to the left.
ROR_DWORD Rotate Right. Rotates all the bits in a string a specified number of
ROR_WORD places to the right.

Shift Bits SHIFTL_DWORD Shift Left. Shifts all the bits in a word or string of words to the left
SHIFTL_WORD by a specified number of places.

Ladder Diagram (LD) Programming 74

CPU Programmer’s Reference Manual Section 4

GFK-2950M Dec 2024
Function |Mnemonics Description
SHIFTR_DWORD Shift Right. Shifts all the bits in a word or string of words to the
SHIFTR_WORD right by a specified number of places.
4.2.1 Data Lengths for the Bit Operation Functions

The Bit Operation functions operate on a single WORD or DWORD of data or up to 256
WORDs or DWORDs that occupy adjacent memory locations.

Bit Operation functions treat the WORD or DWORD data as a continuous string of bits,
with bit 1 of the first WORD or DWORD being the Least Significant Bit (LSB). The last bit
of the last WORD or DWORD is the Most Significant Bit (MSB). For example, if you
specify three WORDs of data beginning at reference %R0100, they are treated as 48
contiguous bits.

Figure 23

WBROIOO| 1B (1S (14 (13 [12 |11 |10 9| 8| 7| 6| S| 4| 3| 2| 1 |hit1(LSBE)
P%RO10T (3231 (3029|258 |27 |26|125|24 |23 (22|21 |20(19(18 |17
%RO102| 45 | 47 |46 | 45 (44 | 43 |42 (41 | 40 |39 (38 | 37 |36 | 35 | 34 | 33
T
(MSB)

Overlapping input and output reference address ranges in multiword functions is not
recommended, as it can produce unexpected results

Note that for all functions (Bit Test, Bit Set, Bit Clear, and Bit Position) that return a bit
position indicator as an output parameter (POS), bit position numbering starts at 1, not
0, as shown in the diagram above.

Ladder Diagram (LD) Programming 75

CPU Programmer’s Reference Manual Section 4

GFK-2950M Dec 2024
4.2.2 Bit Position
Figure 24
BIT BIT
| POS | - POS |
DVYORD HORD
2? 22
—IN aF —IN aF
POS| POS|

The Bit Position function locates a bit set to 1 in a bit string.

Each scan that power is received, the function scans the bit string starting at IN. When
the function stops scanning, either a bit equal to 1 has been found or the entire length of
the string has been scanned.

POS is set to the position within the bit string of the first non-zero bit; POS is set to zero
if no non-zero bit is found.

A string length of 1to 256 WORDs or DWORDs can be selected. The function passes
power flow to the right whenever it receives power.

Operands of Bit Position

Parameter Description Allowed Operands (Optional
Length (displayed |The number of WORDs or DWORDs in the [Constants No

as ??) bit string. 1 < Length < 256.

IN The data to operate on All. Constants may only be [No

used when Length is 1.

Q Energized if a bit set to 1 is found Flow Yes

POS An unsigned integer giving the position of|All except constants and No
the first nonzero bit found, or zero if no |variables located in %S -
non-zero bit is found %SC

Ladder Diagram (LD) Programming 76

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Examples

When V_I00001 is set, the bit string starting at V_MO00001 is searched until a bit equal
to 1is found, or 6 words have been searched. Coil V_Q00001 is turned on. If a bit equal
to 1 is found, its location within the bit string is written to V_AQO0001 and V_Q00002 is
turned on. For example, if V_00001 is set, bitV_MO00001 is 0, and bit V_MO0002is 1, the
value written to V_AQO0001 is 2.

Figure 25
V_I00001 [Brrros| V_Q00001

- — WORD (:I 1
(3 V_Qooooz

v_Moo001 -1 of—— »—i

FOS— ¥_AQ000

Ladder Diagram (LD) Programming 77

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

4.2.3 Bit Sequencer

The Bit Sequencer (BIT_SEQ) function performs a bit sequence shift through a series of
contiguous bits.

The operation of BIT_SEQ depends on the value of the reset input (R), and both the
current value and previous value of the enabling power flow input (EN):

Figure 26

BIT SEQ

?222?
??

R

—DIR

—5T

R Current |[EN Previous |[EN Current |Bit Sequencer Execution
Execution |[Execution Execution

ON ON/OFF ON/OFF Bit sequencer resets
OFF OFF ON Bit sequencer increments/decrements by 1
OFF Bit sequencer does not execute
ON ON/OFF Bit sequencer does not execute

The reset input (R) overrides the enabling power flow (EN) and always resets the
sequencer. When R is active, the current step number is set to the value of the optional
N operand. If you did not specify N, the step number is set to 1. All bits in the bit
sequencer, ST, are set to 0, except for the bit pointed to by the current step, which is set
to 1.

When EN is active and R is not active, and the previous EN was OFF, the bit pointed to
by the current step number is cleared. The current step number is incremented or
decremented, based on the direction (DIR) operand. Then the bit pointed to by the new
step number is set to 1.

e When the step number is being incremented and it goes outside the range of
(1 < step number < Length), it is set back to 1.

e When the step numberis being decremented and it goes outside the range of
(1 < step number < Length), it is set to Length.

The parameter ST is optional. If it is not used, BIT_SEQ operates as described above,
except that no bits are set or cleared. The function just cycles the current step number
through its allowed range.

BIT_SEQ passes power to the right whenever it receives power.

Note:

e Before using the BIT_SEQUENCER function block, the current step number (Word 1 in
the control block) must be set to an integer value between 1 and the length, as defined in
the function block properties. Failure to properly initialize the step number in the

Ladder Diagram (LD) Programming 78

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

BIT_SEQUENCER function block may result in the CPU stopping and going to an error
state.

e Asserting the Reset parameter (R), before using the BIT SEQUENCER function block
assures that the current step number is set to a valid value.

Memory Required for Bit Sequencer

Each bit sequencer uses a three-word array of control block information. The control
block can be a symbolic variable, or it can be located in %R, %W, %L, or %P memory:

Word 1 current step number
Word 2 length of sequence (in bits)
Word 3 control word
Note: Do not write to the control block memory registers from other functions.

Word 3 (the control word) stores the state of the Boolean inputs and outputs of its
associated function in the following format:

Figure 27
[15]14]13]12]11[10] 9 [8] (71eflsfa4f3]2]1]0]
— —
Reserved
Reserved
OK (status input
EN (enable input
Note:

e Bits 0through 13 are not used.
e In the N operand, bits are entered as 1 through 16, not 0 through 15.

Ladder Diagram (LD) Programming 79

CPU Programmer’s Reference Manual

GFK-2950M

Operands for Bit Sequencer

A WARNING

Do not write to the Control Block memory with other instructions. Overlapping references may
cause erratic operation of BIT_SEQ.

Section 4
Dec 2024

Parameter

Description

Allowed
Operands

Optional

Address (??7?7)

Beginning address of the Control Block, which is a
three-word array:

Word 1: current step numbe
Word 2: length of sequence in bits
Word 3: control word, which tracks the status of the
last enabling power flow and the status of the
power flow to the right.

Symbolic variables,
variables located in
%R, %W, %P, or %L

No

Length (?7?)

The number of bits in the bit sequencer, ST, that
BIT_SEQ will step through. 1 < Length < 256.

Constants

No

R

When Ris energized, the step number of BIT_SEQ
is set to the value in N (default = 1), and the bit
sequencer, ST, isfilled with zeroes, except for the
current step number bit.

Flow

No

DIR

(Direction) When DIR is energized, the step
number of BIT_SEQ is incremented prior to the
shift. Otherwise, it is decremented.

Flow

No

The value that the step numberis setto when R is
energized. Defaultvalueis1. 1 <N <Length.IfN
< 1, the step number will be reset to 1 when R is|
energized. If N > Length, the step number will be
reset to Length. Must be an integer variable or|
constant.

All except variables
located in %S - %SC

Yes

ST

Contains the first word of the bit sequencer.

If ST is not used, the Bit Sequencer function
operates as described above, except that no bits
are set or cleared. The function just cycles the
current step number (in word 1 of the control block)
through its allowed range.

If ST is in %M memory and the Length is 3, the bi]
sequencer occupies 3 bits; the other 5 bits of the
byte are notused. If ST is in %R memory, and the
Lengthis 17, the bit sequenceruses 4 bytes, al of]
%R1 and %R2.

All except constants,
flow, and variables
located in %S

Yes

Ladder Diagram (LD) Programming

80

CPU Programmer’s Reference Manual

GFK-2950M

424

Example

In the following example, a #FST_SCN system variable is used to set CLEAR to ON for
one scan. This sets the step number in Word 1 of the Bit Sequencer’s control block to an

initial value of 3.

The Bit Sequencer operates on register memory %R00001. Its control block is stored in
registers %R0010, %R0011, and %R0012. When CLEAR is active, the sequencer is
reset and the current step is set to step number 3, as specified in N. The third bit of
%R0001 is set to one and the other seven bits are set to zero.

When NXT_CYC is active and CLEAR is not active, the bit for step number 3 is cleared
and the bit for step number 2 or 4 (depending on whether DIRECTION is energized) is
set.

Figure 28
#FST_SCN CLEAR
11 gt
' p—y
NXT_CYC BIT SEQ
1| -
1T
CLEAR RO0O200
11 g
17 R
DIRECTION
| | DIR
3 —{N
ROOOO1 —ST

Bit Set, Bit Clear

BIT BIT Mnemonics
d SET | - CLE |
DWORD DWORD BIT_SET_DWORD BIT_SET_WORD
?? ?? BIT_CLR_DWORD
-IN -IN BIT_CLR_WORD
—EIT —EIT

The Bit Set (BIT_SET_DWORD and BIT_SET_WORD) function sets a bitin a bit string
to 1. The Bit Clear (BIT_CLR_DWORD and BIT_CLR_WORD) function clears a bitin a

string by setting the bit to 0.

Each scanthat poweris received, the function sets orclears the specified bit. If a variable
rather than a constantis used to specify the bit number, the same function can set or
clear different bits on successive scans. Only one bit is set or cleared, and the transition
information for that bitis updated. The transition status of all the other bits in the bit string
is not affected.

The function passes power flow to the right, unless the value for BIT is outside the
specified range.

Operands for Bit Set, Bit Clear

Ladder Diagram (LD) Programming 81

Section 4
Dec 2024

CPU Programmer’s Reference Manual

GFK-2950M

4.2.5

Section 4

Dec 2024

Parameter |Description Allowed Operands Optional
Length (??) |The numberof WORDs or DWORDs in the| Constants No

bit string. 1 < Length < 256.
IN The first WORD or DWORD of the data to|All except constants, flow, and|No

process variables located in %S
BIT The number of the bit to set orclearin IN. 1| All except variables located in %S {No

< BIT < (16 x Length) for WORD. %SC

1 < BIT < (32 x length) for DWORD
Example 1
Figure 29

V_I100001 BIT SET
|} WORD |
148
V_R00040 —IN
12 —{BIT

Whenever input V_10001 is set, bit 12 of the string beginning at reference %R00040 (as
specified by variable V_R0040) is set to 1.

Example 2

Figure 30

V_Io0om

] |
LI |}

V_MO00041 —

3—!

BIT SET
WOERD

IN

BIT

Whenever V_100001 is set, %M00043, the third bit of the string beginning at %MO00041,
is set to 1. Note that neither the status nor the transition value of any of the other bits in
the same byte as %M00043 (e.g., %M00041, %M00042, %M00044, etc.) is affected by

the BIT_SET function

Bit Test
Figure 31
BIT BIT
- TEST | _| TEST
DWORD WORD
?? ??

—IN OfF 1IN ar

—BIT —BIT

Ladder Diagram (LD) Programming 82

CPU Programmer’s Reference Manual

GFK-2950M

Section 4
Dec 2024

When the Bit Test function receives power flow, it tests a bit within a bit string to
determine whether that bitis currently 1 or 0. The result of the testis placed in output Q.

Eachscanthat poweris received, the Bit Test function setsits outputQ to the same state
as the specified bit. If a register rather than a constant is used to specify the bit number,
the same function can test different bits on successive sweeps. If the value of BIT is
outside the range (1 <BIT < (16 x length) fora WORD and 1 <BIT < (32 x length) fora
DWORD), then Q is set OFF.

You can specify a string length of 1 to 256 WORDs or DWORDs.

Note: When using the Bit Test function, the bits are numbered 1 through 16 fora WORD, not 0
through 15. They are numbered 1 through 32 for a DWORD.

Operands for Bit Test
Parameter [Description Allowed Optional
Operands

Length (?7?) The number of WORDs or DWORDs in the data stiing| Constant No
to test. 1 < Length < 256.

IN The first WORD or DWORD in the data to test All No

BIT The number of the bit to test in IN. 1 < BIT <|All except variables [No
(16xLength). located in %S - %SC

Q The state of the specific bit tested; Q is energized if| Flow No
the bit tested is a 1.

Ladder Diagram (LD) Programming 83

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Example 1

Figure 32

_I0noo EBIT TEST
1} WORD [

1 A0
PED CDE—IN QO oo L

PICEBIT —BIT FND_ON —IH O~ FND_ON

1 —INz

When input V_I0001 is set, the bit at the location contained in reference PICKBIT is
tested. The bit is part of string PRD_CDE.

If itis 1, output Q passes power flow to the ADD function, causing 1 to be added to the
current value of the ADD function input IN1.

Example 2
Figure 33
_100001 BIT
1} TEST
WORD
43 v_aQoooo1

PRD_CDE —IN a—— —

PICKBIT —|EIT

When input V_I0001 is set, the bit at the location contained in reference PICKBIT is
tested. The bit is part of string PRD_CDE.

If itis 1, output Q passes power flow and the coil V_Q0001 is turned on.

4.2.6 Logical AND, Logical OR, and Logical XOR
Figure 34
AND AND OR OR XOR XOR
|DHORD| _| WORD | |DHORD| _| QORD | _DHORD| _| QORD |
72 27 27 72 27 27
=IM OF <IN oF ={IN1 aF —INt oF = IN1 OoF —IMm aF
—INZ —{IN2 —INZ —INZ —INZ —INZ

Each scan that power is received, the Logical function examines each bitin bit string IN1
and the corresponding bit in bit string IN2, beginning with the least significant bit in each.
You can specify a string length of 1 to 256 WORDs or DWORDs. The IN1 and IN2 bit
strings specified may overlap.

Logical AND

Ladder Diagram (LD) Programming 84

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

If both bits examined by the Logical AND function are 1, AND places a 1 in the
corresponding location in output string Q. If either bitis 0 or both bits are 0, AND places
a 0in string Q in that location.

AND passes power flow to the right whenever it receives power.

Tip
You can use the Logical AND function to build masks or screens, where only certain bits are
passed (the bits opposite a 1in the mask), and all other bits are set to 0.

Logical OR

If either bit examined by the Logical OR function is 1, OR places a 1 in the corresponding
location in output string Q. If both bits are 0, Logical OR places a 0 in string Q in that
location. The function passes power flow to the right whenever it receives power.

Tip
e You canuse the Logical ORfunction to combine strings or to control many outputs with

one simple logical structure. The Logical OR function is the equivalent of two relay
contacts in parallel multiplied by the number of bits in the string.

e Youcanuse thelLogical ORfunction to driveindicator lamps directly frominput states or
to superimpose blinking conditions on status lights.

Logical XOR

When the Exclusive OR (XOR) function receives power flow, it compares each bitin bit
string IN1 with the corresponding bitin string IN2. If the bits are different, a 1 is placed in
the corresponding position in the output bit string.

For each pair of bits examined, if only one bit is 1, then XOR places a 1 in the
corresponding location in bit string Q. XOR passes power flow to the right whenever it
receives power.

Ladder Diagram (LD) Programming 85

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Tip for Logical XOR

e Ifstring IN2and output string Q begin atthe same reference, a 1 placed in string IN1 will
cause the corresponding bit in string IN2 to alternate between 0 and 1, changing state
with each scan if power is received.

e You can program longer cycles by pulsing the power flow to the function at twice the
desired rate of flashing. The power flow pulse should be one scan long (one-shot type
coil or self-resetting timer).

e Youcan use XOR to quickly compare two bitstrings, or to blink agroup of bits atthe rate
of one ON state per two scans.

e XOR is useful for transparency masks.

Operands for Logical AND, OR, and XOR

Parameter Description Allowed Operands Optional

Length (?7?) The number of words in the bit string on|Constant No
which to perform the logical operation.

1 < Length < 256.

IN1 The first WORD or DWORD of the first(All No
string operate on.
IN2 (Must be the same |The first WORD or DWORD of the|All No
data type as IN1.) second string to operate on.
Q (Must be the same The first WORD or DWORD of the[All except constants and[No
data type as IN1.) operation’s result. variables located in %S
memory

Ladder Diagram (LD) Programming 86

CPU Programmer’s Reference Manual

GFK-2950M

4.2.7

Section 4
Dec 2024

Example: Logical AND

When input v_l0001 is set, the 16-bit strings represented by variables WORD1 and
WORD?2 are examined. The logical AND places the results in output string RESULT.

Figure 35

V_I0000 AND
11 WORD L

WORD1 —|IN1 O RESULT

WORD2 —|IN2

WORD1 (0 |0 O (1 (1)1 (1|1 |1 (1|0 |0 (1|0 |0 (O
WORD2 (1 |1 (0|1 |1 (1|0 |0 (0|0 |0 (O |1 |1 (1|1

RESULT In |o |o |1 |1 |1 |n |n |n |n |n |u |1 |u |n |u |

Example: Logical XOR

Whenever V_10001 is set, the bit string represented by the variable WORD3 is cleared

(set to all zeroes).

Figure 36

_I00001 Y¥OR
11 WORD [

[u]

WORD3 —|IN1 ~ WORD3

WORD3 —IN2

IICWORD3) (0(O0 |0 |X1|(1|1|1(1l|1|{1|O0|Oo|Y1|0O|O|0DO
R(WORD3) (0(O|O|X1|(1|1|1(L1|1|{1|O|Oo|Y1|O|O|0DO

Q (WORD3) |o|o|n[nIololn|n|u|o|n[n|o|o|n|n|

Logical NOT
Figure 37
MOT MOT
JDWORD|_ | HORD |
22 22
—IN ar —IN o

When the Logical Not or Logical Invert (NOT) function receives power flow, it sets the
state of each bitinthe output bit string Q to the opposite of the state of the corresponding
bit in bit string IN1.

Ladder Diagram (LD) Programming 87

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Allbits are altered oneach scanthat power is received, making output string Q the logical
complement of input string IN1. Logical NOT passes power flow to the right whenever it
receives power. You can specify a string length of 1 to 256 WORDs or DWORDs

Operands for Logical NOT

Parameter Description Allowed Operands (Optional

L th (22 The number of WORDs or DWORDs in the bit c N
ength (27) string to NOT. 1 < Length < 256. onstant ©

The first WORD or DWORD of the input string to
NOT.

IN1 All No

All except constants
The first WORD or DWORD of the NOT's result.[and variables located in[No
%S memory

Q (Must be the same
data type as IN1)

Example

WheninputV_10001is set, the bitstring represented by the variable A is negated. Logical
NOT stores the resulting inverse bit string in variable B. Variable A retains its original bit
string value.

Figure 38

¥_100001 NOT
- WORD

A-IN OFB

4.2.8 Masked Compare
Figure 39
MASK MASK
| COMP A COMP
DWORD WORD
-IN1 MC —=1IN1 MCH
-IN2 QpF -IN2 QpF
-M BN —“M BN
- BIT —EBIT

The Masked Compare (MASK_COMP_DWORD and MASK_COMP_WORD) function
compares the contents of two-bit strings. It provides the ability to mask selected bits.

Tip
Inputstring 1 mightcontain the states of outputs such as solenoids or motor starters. Input string
2 might contain their input state feedback, such as limit switches or contacts.

Ladder Diagram (LD) Programming 88

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

When the function receives power flow, it begins comparing the bits in the first string with
the corresponding bits in the second string. Comparison continues until a miscompare is
found or until the end of the string is reached.

The BIT input stores the bit number where the next comparison should start. Ordinarily,
this is the same as the number where the last miscompare occurred. Because the bit
number of the last miscompare is stored in output BN, the same reference can be used
forboth BITand BN. The comparison begins 1bit following BIT; therefore, the initial value
of BITshouldbe 1lessfirstbittobe compared (forexample, zero (0) to begin comparison
at %100001). Using the same reference for BIT and BN causes the compare to start at
the next bit position after a miscompare; or, if all bits compared successfully upon the
next invocation of the function, the compare starts at the beginning.

Tip
If youwant to startthe nextcomparison atsome other location inthe string, you can enter different

references for BIT and BN. If the value of BIT is a location thatis beyondthe end ofthe string, BIT
is reset to 0 before starting the next comparison.

The function passes power flow whenever it receives power. The other outputs of the
function depend on the state of the corresponding mask bit.

If all corresponding bits in strings IN1 and IN2 match, the function sets the
miscompare output MC to 0 and BN to the highest bit number in the input strings. The
comparison then stops. On the nextinvocation of a Masked Compare, it is reset to 0.

If a Miscompare is found, thatis, if the two bits being compared are not the same, the
function checks the correspondingly numbered bit in string M (the mask).

If the mask bit is a 1, the comparison continues until it reaches another miscompare or
the end of the input strings.

If a miscompare is detected and the corresponding mask bit is a 0, the function does the
following:

1. Sets the corresponding mask bit in M to 1.

Sets the miscompare (MC) output to 1.

2

3. Updates the output bit string Q to match the new content of mask string M.
4. Sets the bit number output (BN) to the number of the miscompared bit.

5

Stops the comparison.

Operands for Masked Compare Function

Parameter |Description Allowed Operands Optional
Length (??) |The numberof DWORDs or WORDs in the| Constant No

two compared strings.
DWORD: 1 < Length < 2,048
WORD: 1 < Length < 4,096

IN1 The first bit string to be compared All. Constants are legal only when|No
Length is 1

IN2 The second bit string to be compared All. Constants are legal only when|No
Length is 1

Ladder Diagram (LD) Programming 89

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024
Parameter |Description Allowed Operands Optional
M The bit string mask containing the ongoing|All except flow or variables in %S|No
status of the compare memory. Constants are legal only
when Length is 1
BIT BIT+1=the bit number where the next|All except variables in %S - %SC|No
comparison starts memories
Q The output copy of the compare mask bit| All except constants No
string
BN The number of the bit where the latest|All except constants and variables in|No
miscompare occurred, or the highest bit| %S memory
number in the inputs if no miscompare
occurred
MC Can be used to determine if a miscompare|flow Yes
has occurred.
Ladder Diagram (LD) Programming 90

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Masked Compare Example 1

Figure 40
V_100001 MASK | V_000001
— 1 Gogp [L
25 v_000002

VALUES —{IM1 MCl——(}—i
EXPECT —{IN2 Q|- NEWVALS

RESULT M EN[— EBITNOM

BITNOUM —|BIT

When %I00001 is set, MASK_COMP_WORD compares the bits represented by the
reference VALUES against the bits represented by the reference EXPECT. Comparison
begins at BITNUM+1. If an unmasked miscompare is detected, the comparison stops.
The corresponding bit is setin the mask RESULT. BITNUM is updated to contain the bit
number of the miscompared bit. In addition, the output string NEWVALS is updated with
the new value of RESULT, and coil %Q00002 is turned on. Coil %Q00001 is turned on
whenever MASK_COMP_WORD receives power flow.

Ladder Diagram (LD) Programming 91

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Masked Compare Example 2

Figure 41
M ASK COMP
BFET_SCH WORD
_| |— -

Qo0and

Wanndq =N M @-

Mmoo 7 —INE A Mooz

WonnEs —M BN = Ro0a01

RO0001 —{ET

On the first scan, the Masked Compare Word function executes. %M0001 through
%MO0016 is compared with %M0017 through %MO0032. %MO0033 through %M0048
contains the mask value. The value in %R0001 determines the bit position in the two
input strings where the comparison starts.

Before the function is executed, the contents of the above references are:

Figure 42
(I1) - %0001 = 6CECh =
o411 fofJr]aJofofofafaJof1[1]0]

(12) = 710017 = 606Fh=

(o114 foJaf1fof1fofa1]afo]af1f1]1]
(MIQ) - %0033 = D00Fh =
(ofofJofoJofofoJofoJoJofo]1[1f1]1]

(BIT/BN) -%R0001 =0
{MC) -%Q0001 = OFF

The contents of these references after the function block is executed are as follows:

{(I1) - %0001 =

LofaJ1fJoJaJaJoJofoJaJaJof1[1]0o]o]
(12) - %aM0017 =

(o141 fof1f1]Jof1fofj1fa]Jofaf1]1]1]
(MIQ) - %0033 =

(o0lofofJoJoJoJo 1 ofoJoJo[a1]1]1]1]
(BIT/BN) - %R0001 = 8

{MC) -%Q0001 =ON

The #FST_SCN contact forces one and only one execution; otherwise, the function
would repeat with possibly unexpected results.
Ladder Diagram (LD) Programming 92

CPU Programmer’s Reference Manual Section 4

GFK-2950M Dec 2024
429 Rotate Bits
ROL Mnemonics:
—DWORD ROL_DWORD
2 ROL_WORD
v al ROR_DWORD
ROR_WORD
—x

When receiving power flow, the Rotate Bits Right (ROR_DWORD and ROR_WORD)
and Rotate Bits Left (ROL_DWORD and ROL_WORD) functions rotate all the bits in a
string of WORDs or DWORDs N positions respectively to the right or to the left. When
rotation occurs, the specified number of bits is rotated out of the input string respectively

to the right or to the left and back into the string on the other side.

The Rotate Bits function passes power flow to the right, unless the number of bits to
rotate is less than 0 or is greater than the total length of the string. The result is placed
in output string Q. If you want the input string to be rotated, the output parameter Q must
use the same memory location as the input parameter IN. The entire rotated string is
written on each scan that power is received.

A string length of 1 to 256 words or double words can be specified.

Operands for Rotate Bits

Parameter|Description Allowed Operands Optional
Length (??) |The number of WORDs or DIVORDs |Constant No
in the string to be rotated. 1 <Length <
256.
IN The string to rotate All. Constants are legalwhen Length|No
is 1
N The number of positions to rotate. All except variables in %S - %SC |No
0 < N < Length. memories
Q The resulting rotated string All except constants and variables in|No
%S memory

Ladder Diagram (LD) Programming 93

CPU Programmer’s Reference Manual Section 4

GFK-2950M Dec 2024
Example
Figure 43
V_I00001 ROL
| WORD |

LI |

V_R00001 —IN QF V_R00002

3—N

Whenever input V_I0001 is set, the input bit string in location %R0001 is rotated left 3
bits and the result is placed in %R00002. The actual input bit string %R0001 is left
unchanged. If the same reference had been used for IN and Q, a rotation would have
occurred in place.

Figure 44
MSB
%R0O001 <_E1|1|1|1[1|o|o|o|n|u|u;o§o|n|u]u;<-
MSB
%R0O002 (after %I00001 is set) [1]1]oJoJofofofofoJofoo]o]1]1]1]
4.2.10 Shift Bits
_g:g;""i i Mnemonics:
» SHIFTL_DWORD
- B2r SHIFTL_WORD
4 o SHIFTR_DWORD
SHIFTR_WORD
—B1
Shift Left

When the Shift Left (SHIFTL_WORD) function receives power flow, it shifts all the bits in
a word or group of words to the left by a specified number of places, N. When the shift
occurs, the specified number of bits is shifted out of the output string to the left. As bits
are shifted out of the high end of the string (Most Significant Bit(MSB)), the same number
of bitsis shifted in at the low end (Least Significant Bit (LSB)). The SHIFTL_DWORD
function operates in a similar manner on DWORDs instead of WORD s.

Figure 45
B2 [1|1]of1]1[1]1]1]1]1]oJo[1][o]0]0]|B1

Shift Right

When the Shift Right (SHIFTR_WORD) function receives power flow, it shifts all the bits
in a word or group of words a specified number of places to the right (N). When the shift
occurs, the specified number of bits is shifted out of the output string to the right. As bits
Ladder Diagram (LD) Programming 94

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

are shifted out of the low end of the string (LSB), the same number of bits is shifted in at
the high end (MSB).

Figure 46

MSB LSB
E|1—>|1|1|n|1|1|1|1|1|1|1|0|0|1|U|D|U|->E|2

Shift Left and Shift Right

A string length (Length) of 1 to 256 words can be specified.

The bits being shifted into the beginning of the string are specified via input parameter
B1. If the value of N is greater than 1, each bitis filled with the same value (0 or 1). This
can be:

e The Boolean output of another program function.
e All 1s. To do this, use the #AWL_ON (always on) system bit (in memory location
%S7), as a permissive to input B1.

e AllOs. To do this, use the #ALW_OFF (always off) system bit (in memory location
%S8), as a permissive to input B1.

The Shift Bits function passes power flow to the right, unless the number of bits specified

to shift is zero or is greater than the array size.

Output Q is the shifted copy of the input string. If you want the input string to be shifted,
the output parameter Q must use the same memory location as the input parameter IN.
The entire shifted string is written on each scan that power is received. Output B2 is the
last bit shifted out. Forexample, if four bits were shifted, B2 would be the fourth bit shifted
out.

Ladder Diagram (LD) Programming 95

CPU Programmer’s Reference Manual

GFK-2950M

Section 4
Dec 2024

Operands for Shift Left, Shift Right, Shift Left and Shift

Right
Parameter |Description Allowed Operands |Optional
Length (??) The number of WORDs or DWORD:s in the Constants. No
string. 1 < Length < 256.
IN The string of WORDs or DWORDs to shift All. Constants are legal |No
only when Length = 1.
N The number of places (bits) to shift the array. [All except variables in No
0 < N < Length %S— %SC memories
If N'is 0, no shift occurs, but power flow is
generated.
If N is greater than the number of bits in the
string (Length), all bits in Q are set to the value
B1, OK is set FALSE, and B2 is set to B1.
B1 The bit value to shift into the array flow No
B2 The bit value of the last bit shifted out of the |flow Yes
array.
Q The first WORD or DWORD of the shifted array|All except constants and |No
(Must be the variables in %S memory.
same data type
as IN)

Example
Figure 47
V_I00001 [SHIFTL
|} WORD |
??
WORD1 —IN E2|-
g—=N O~ HORD2
¥_100002
{ | Bl

Whenever input V_10001 is set, the bits in the input string that begins at WORD1 are
copied to the output bit string that starts at WORD2. WORD2 s left-shifted by 8 bits, as
specified by the input N. The resulting open bits at the beginning of the output string are
set to the value of V_10002.

Ladder Diagram (LD) Programming

96

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

4.3 Coils

Coils are used to control the discrete (BOOL) references assigned to them. Conditional
logic must be used to control the flow of power to a coil. Coils cause action directly. They
do not pass power flow to the right. If additional logic in the program should be executed
as a result of the coil condition, you can use an internal reference for the coil or a
continuation coil/contact combination.

A continuation coil does not use an internal reference. It must be followed by a
continuation contact at the beginning of any rung following the continuation coil.

Coils are always located at the rightmost position of a line of logic.

4.3.1 Coil Checking

The level of coil checking is setto Show as error by default. If you want a coil conflict to
resultina warning instead of this error, orif you want no warning at all, editthe Controller

option: Multiple Coil Use Warning in the programming software.

The Show as warning option enables you to use any coil reference with multiple Coils,
Set Coils, and Reset Coils, but you will be warned at validation time every time you do
so. With both the Show as warning and the no warning options, a reference can be set
ON by either a Set Coil or a normal Coil and can be set OFF by a Reset Coil orby a
normal Coil.

4.3.2 Graphical Representation of Coils

The programming software displays the COIL, NCCOIL, SETCOIL, and RESETCOIL
instructions differently depending on the retentive state of the BOOL variables assigned
to them. Examples are provided in the discussion of each type of coil. For a discussion
of retentiveness, refer to Retentiveness of Logic and Data in Section 3.

Coil (Normally Open)

Figure 48
A retentive variable is assigned to the coil A non-retentive variable is assigned to the coil

When a COIL receives power flow, it sets its associated BOOL variable ON (1). When it
receives no power flow, it sets the associated BOOL variable OFF (0). COIL can be
assigned a retentive variable or a non-retentive variable.

Valid memory areas: %l, %Q, %M, %T, %SA - %SC, and %G. Symbolic discrete
variables are permitted. Bit-in-word references on any word-oriented memory except
%A\, including symbolic non-discrete memory, are also permitted.

Continuation Coil

Figure 49

Ladder Diagram (LD) Programming 97

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

aCm

A continuation coil instructs the PLC to continue the presentrung's LD logic power flow
value (TRUE or FALSE) at the continuation contact on a following rung.

The flow state of the continuation coil is passed to the continuation contact.

Notes:

° If the flow of logic does not execute a continuation coil before it executes a
continuation contact, the state of the continuation contact is no flow (FALSE).

° The continuation coil and the continuation contact do not use parameters and do
not have associated variables.

° You can have multiple rungs with continuation contacts after a single continuation
coil.

° You can have multiple rungs with continuation coils before one rung with a

continuation contact.

Negated Coil

Figure 50

) O

p——

A retentive variable is assigned to the negated A non-retentive variable is assigned to the negated
coil coil

When it does not receive power flow, a negated coil (NCCOIL) sets a discrete reference
ON. When it does receive power flow, NCCOIL sets a discrete reference OFF. NCCOIL
can be assigned a retentive variable or a non-retentive variable.

Valid memory areas: %l, %Q, %M, %T, %SA - %SC, and %G. Symbolic discrete
variables are permitted. Bit-in-word references on any word-oriented memory except

%A, including symbolic non-discrete memory, are also permitted.

Ladder Diagram (LD) Programming 98

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

4.3.3 Set Coil, Reset Coil

Figure 51

@ -0~

Set Coil and Reset Coil with a retentive variable Set Coil and Reset Coil with a non-retentive variable
assigned assigned

The SET and RESET coils canbe used to keep (i.e. /atch) the state of a reference either
ON or OFF.

A WARNING

SET / RESET coils write an undefined result to the transition bit for the given reference. Thisresult
differs from that written by Series 90-70 CPUs and could change for future PACSystems CPU
models.

Because they write an undefined result to transition bits, do notuse SET or RESET coils with
references used on POSCON or NEGCON transition contacts.

When a SET coil receives power flow, it sets its discrete reference ON. When a SET coil
does not receive power flow, it does not change the value of its discrete reference.
Therefore, whether or not the coil itself continues to receive power flow, the reference
stays ON until the reference is reset by other logic, such as a RESET coil.

When a RESET coil receives power flow, it resets a discrete reference to OFF. When a
RESET coil does not receive power flow, it does not change the value of its discrete
reference. Therefore, its reference remains OFF until it is set ON by other logic, such as
a SET coil.

The last solved SET coil or RESET coil of a pair takes precedence.

The SET and RESET coils can be assigned a retentive variable or a non-retentive
variable.

Valid memory areas: %l, %Q, %M, %T, %SA - %SC, and %G. Symbolic discrete
variables are permitted. Bit-in-word references on any word-oriented memory except
%Al including symbolic non-discrete memory, are also permitted.

Ladder Diagram (LD) Programming 99

CPU Programmer’s Reference Manual

Example of Set Coil, Reset Coil

Section 4
Dec 2024

E1

The coil represented by E1 is turned ON when reference E2 or E6 is ON and is turned

GFK-2950M
Figure 52
E2
EG
ES
l }
E3
OFF when reference E5 or E3 is ON
434 Transition Coils

PACSystems controllers provide four transition coils: PTCOIL, NTCOIL, POSCOIL, and

NEGCOIL.

POSCOIL and NEGCOIL are updated every time they are called.
PTCOIL and NTCOIL are updated once per CPU scan.

Forexamples showing the differences in the operation of the two types of transition coils,

see Examples Comparing PTCOIL and POSCOIL.

Ladder Diagram (LD) Programming

100

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

POSCOIL and NEGCOIL

A WARNING

e These transition coil instructions should not be used in a parameterized block or user-
defined function block (UDFB) with a parameter or member. In these cases, an R_TRIG or
F_TRIG should be used instead.

o Do notoverride a transition coil by putting a force on its reference bit. If a transition coil is
overridden, the coil has no effect on the bit, and if the override is then removed, the coil
mightbe set ON forone sweep. This can cause unexpected behaviorin the Controller logic
and in field devices attached to the Controller.

o Do notwrite to the reference bit of a transition coil using any other instruction or from an
external device. Doing sowill destroythe coil's one-shot nature and the coilmay notbehave
as described.

° Do not use a transition contact with the same reference address used on a transition coil
because the value of the transition bit, which stores the power flow value into the coil, will

be affected.
Positive Transition Coil (POSCOIL)—®— Negative Transition Coil (NEGCOIL%@*
If: If:
e the transition bit is OFF, and e the transition bit is OFF, and
e the input power flow is ON, e the input power flow input is OFF,

the POSCOIL sets the reference bit of its associated the NEGCOIL sets the reference bit of its associated
variable ON until the coil is executed again. When variable ON until the coil is executed again. When the
the coil is executed again, it sets its reference bit coil is executed again, it sets its reference bit OFF.

OFF.
Note: When the Negative Transition Coil
Note: When the Positive Transition Coil sets its reference bit ON, it also sets
sets its reference bit ON, it also its transition bit to ON. The next time
sets its transition bit to ON. The the Negative Transition Coil
next time the Positive Transition executes, it finds the transition bit set
coil executes, it finds its transition to ON and sets its reference bit to
bit set to ON and sets its reference OFF.
bit to OFF.

Operands for POSCOIL and NEGCOIL

Parameter (Description Allowed Operands Optional
BOOL_V The variable associated |BOOL variable: I, Q, M, T, G, SA, SB, SC, No
with POSCOIL or symbolic discrete variables, and 1/O variable.
NEGCOIL Bit reference in BOOL variable: |, Q, M, T, G, SA,
SB, SC

Ladder Diagram (LD) Programming 101

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Example for POSCOIL and NEGCOIL

When reference E1 goes from OFF to ON, coils E2 and E3 receive power flow, turning
E2 ON. When E1 goes from ON to OFF, power flow is removed from E2 and E3, turning

coil E3 ON.

Figure 53
E1 E2
|} {(D—
E1 E3

PTCOIL and NTCOIL

Because the behaviorof PTCOILs and NTCOILs is determined only by the current power
flow into the coil and the previous power flow into the coil (i.e., the transition bit), it is not
affected by writes to its associated BOOL variable by other coils or instructions in the
logic. Therefore, many of the cautions that apply to POSCOILs and NEGCOILs do not
apply to PTCOILs and NTCOILs.

A WARNING

e PTCOIL and NTCOIL instructions should not be used in a parameterized block or user-
defined function block (UDFB) with a parameter or member. In these cases, an R_TRIG or
F_TRIG should be used instead.

e The transition bit of a given PTCOIL or NTCOIL is changed only once per CPU scan.
Therefore, using aPTCOIL or NTCOIL in a block that can be called multiple times per scan
can have adverse effects on all calls after the first one because the PTCOIL or NTCOIL
cannot detect the transition on the second and subsequent calls.

o Do notoverride a transition coil by putting a force on its reference bit. If a transition coil is
overridden, the coil has no effect on the bit, and if the override is then removed, the coil
mightbe set ON forone sweep. This can cause unexpected consequencesin the Controller
logic and in field devices attached to the Controller.

° Do not use a transition contact with the same reference address used on a transition coil
because the value of the transition bit, which stores the power flow value into the coil, will
be affected.

Ladder Diagram (LD) Programming 102

CPU Programmer’s Reference Manual Section 4

GFK-2950M Dec 2024

[-‘: Positive Transition Coil (PTCOIL) (3 Negative Transition Coil (NTCOIL)

If: If:
° the transition bit is OFF, and . the transition bit is OFF, and
. the input power flow is ON e the input power flow is OFF

the PTCOIL sets the reference bit and transition bit|the NTCOIL sets the reference bit and transition bit of

of its associated variable ON. its associated variable ON.

The transition bit depends on the value of the input power flow the last time the PTCOIL or NTCOIL was

executed.

Notes:

e Assoon as a PTCOIL or NTCOIL is setto ON or OFF, it updates its transition bit.

e Multiple instances of PTCOIL and/or NTCOIL can be associated with the same
BOOL variable, but the transition status of each instance of the PTCOIL or NTCOIL
associated with the BOOL variable is unique; that is, it is tracked independently.

° The transition bit is non-retentive; that is, it is cleared to OFF when the CPU
transitions from STOP Mode to RUN Mode. As a result, the first time a PTCOIL
executes with its input power flow set to ON its associated BOOL variable will be
set to ON.

Operands for PTCOIL and NTCOIL

Parameter [Description Allowed Operands Optional
BOOL_V The variable associated with |Variables in I, Q, M, T, SA, SB, SC, or G|No
PTCOIL or NTCOIL memories as well as symbolic discrete

variables. In addition, bit-in-word references
on any non-discrete memory (e.g., %R) or on
symbolic non-discrete variables are allowed.

Examples Comparing PTCOIL and POSCOIL

PTCOIL

In the example below, the power flow into the PTCOIL alternates between OFF and ON.
On the first sweep the power flow in is OFF, on the second sweep it is ON, and so forth.
Each time the power flow into the PTCOIL changes from OFF to ON, the value of Xsition
is turned ON. Therefore, onthe first sweep, the PTCOIL turns Xsition OFF, on the second
sweep it turns it ON, on the third sweep it turns it OFF, and so forth. Notice that the
behavior of the PTCOIL is not affected by the presence of the fourth rung, which also
writes to Xsition. PTCOIL behaves the same way when the fourth rung is removed.

Ladder Diagram (LD) Programming 103

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

POSCOIL

If aPOSCOIL is used in place of the PTCOIL in the example below (keeping the rest of
the logic identical and same alternation of power flow into the POSCOIL), the behavior
of the logic will be different. The behavior of the POSCOIL is affected by the execution
of the fourth rung, which writes to Xsition and changes both its value and its transition
bit. In this example, the POSCOIL never turns Xsition ON. If the fourth rung is removed,
POSCOIL will behave exactly as the PTCOIL behaves, turning Xsition OFF on the first

sweep, ON on the second sweep, and so forth.

Figure 54
" PFlowIn) ' ' ' ') ’ " Xsition |
| b {F—
" CopyPFI|

' Flip the value of Pflowln. If it was ON twrn it OFF. If it was OFF turn it ON.

PFlowIn PFlowln
X o
" CopyPFI) ')) ’) " PFlowIn|
1/1 O_

" Xsition |

O_

4.4 Contacts

A contactis used to monitor the state of areference address. Whether the contactpasses
power flow depends on positive power flow into the contact, the state or status of the
reference address being monitored, and the contact type.

A reference address is ON if its state is 1; it is OFF if its state is 0.

Contact Display Mnemonic |Contact Passes Power to Right...

Continuation —] s — CONTCON if the preceding continuation coil is set ON

Contact

Fault Contact EWVAR FAULT if its associated BOOL or WORD variable has a point
—Fl— fault

High Alarm Contact| WORDV HIALR if the high alarm bit associated with the analog
—Hal— (WORD) reference is ON

Low Alarm Contact| WORD¥ LOALR if the low alarm bit associated with the analog (WORD)
—Lab— reference is ON

No Fault Contact | BWVAR NOFLT if its associated BOOL or WORD variable does not
— HF— have a point fault

Normally Closed BOOLW NCCON if associated BOOL variable is OFF

Contact u

Normally Open BOOLY NOCON if associated BOOL variable is ON

Contact —

Ladder Diagram (LD) Programming 104

CPU Programmer’s Reference Manual Section 4

GFK-2950M Dec 2024
Contact Display Mnemonic |Contact Passes Power to Right...
Transition Contacts| BOOLY NEGCON (negative transition contact) if BOOL reference
— L — transitions from ON to OFF. Updated every time it is
called.
BOOL_W NTCON (negative transition contact) if BOOL reference
—N— transitions from ON to OFF. Updated once per scan.
BOOLY POSCON (positive transition contact) if BOOL reference
— T transitions from OFF to ON. Updated every time it is
called.
BOOL_V PTCON (positive transition contact) if BOOL reference
—F— transitions from OFF to ON. Updated once per scan.
4.4.1 Continuation Contact
Figure 55

—{s—=

A continuation contact continues the LD logic from the last previously-executed rung in
the block that contained a continuation coil.

The flow state of the continuation contact is the same as the preceding executed
continuation coil. A continuation contact has no associated variable.

Notes:

e Ifthe flow of logic does not execute a continuation coil before it executes a continuation
contact, the state of the continuation contact is no flow.

e The state of the continuation contact is cleared (setto no flow) each time a block begins
execution.

e The continuation coil and the continuation contact do not use parameters and do not
have associated variables.

e You can have multiple rungs with continuation contacts after a single continuation coil.

e You can have multiple rungs with continuation coils before one rung with a continuation
contact.

Ladder Diagram (LD) Programming 105

CPU Programmer’s Reference Manual

Section 4
Dec 2024

GFK-2950M
4.4.2 Fault Contact
Figure 56
BHVAR
—AF—

A Fault contact (FAULT) detects faults in discrete or analog reference addresses, or
locates faults (rack, slot, bus, module).

e To guarantee correct indication of module status, use the reference address (%], %Q,
%Al, %AQ) with the FAULT/NOFLT contacts.

e To locate afault, use the rack, slot, bus, module fault locating system variable with a
FAULT/NOFLT contact.

Note: The fault indication of a given module is cleared when the associated fault is cleared
from the fault table.

e For /O point fault reporting, you must enable point fault references in Hardware
Configuration.

FAULT passes power flow if its associated variable or location has a point fault.

Operands
Parameter |Description Allowed Operands Optional
BWVAR The variable associated|variables in %l, %Q, %Al, and %AQ memories,|No
with the FAULT contact |and predefined fault-locating references
106

Ladder Diagram (LD) Programming

CPU Programmer’s Reference Manual

Section 4
Dec 2024

GFK-2950M
4.4.3 High and Low Alarm Contacts
Figure 57
HORDYV WORDV

—HEA— —iLA—

The high alarm contact (HIALR) is used to detect a high alarm associated with an
analog reference. Use of this contact and the low alarm contact must be enabled during
CPU configuration.

A high alarm contact passes power flow if the high alarm bit associated with the analog
reference is ON.

The low alarm contact (LOALR) detects a low alarm associated with an analog
reference. Use of this contact must be enabled during CPU configuration.

A low alarm contact passes power flow if the low alarm bit associated with the analog
reference is ON.

Operands
Parameter [Description Allowed Operands Optional
WORDV The variable associated with the variables in Al and AQ memories |No
HIALR or LOALR contact
Ladder Diagram (LD) Programming 107

CPU Programmer’s Reference Manual Section 4

GFK-2950M Dec 2024
444 No Fault Contact
Figure 58
BWVAR
—|NF}—

A No Fault (NOFLT) contact detects faults in discrete or analog reference addresses, or
locates faults (rack, slot, bus, module). NOFLT passes power flow if its associated
variable or location does not have a point fault.

e To guarantee correctindication of module status, use the reference address (%], %Q,
%Al %AQ) with the FAULT/NOFLT contacts.

e To locate afault, use the rack, slot, bus, module fault locating system variables with
a FAULT/NOFLT contact.

e Forl/O pointfault reporting, you must configure your Hardware Configuration (HWC)
to enable the PLC point faults.

Note: The fault indication of a given module is cleared when the associated fault is cleared from
the fault table.

Operands
Parameter|Description Allowed Operands Optional
BWVAR The variable associated with [variables in %I, %Q, %Al, and %AQ memories, and|No

the NOFLT contact predefined fault-locating references

Ladder Diagram (LD) Programming 108

CPU Programmer’s Reference Manual Section 4

GFK-2950M Dec 2024
4.4.5 Normally Closed and Normally Open Contacts
Figure 59
BOOLV BOOLV
171 { |

A normally closed contact (NCCON) acts as a switch that passes power flow if the
BOOLYV operand is OFF (false, 0).

A normally open contact (NOCON) acts as a switch that passes power flow if the
BOOLYV operand is ON (true, 1).

Operands
Parameter | Description Allowed Operands | Optional
BOOLV BOOLV may be a predefined systemvariable | discrete variablesinl, Q, [No
or a user-defined variable. M, T, S, SA, SB, SC, and
NCCON: G memories; symbolic
If BOOLV is ON, the normally closed | discrete variables; bit-in-
contact does not pass power flow. WO'_'d refgrences on
If BOOLV is OFF, the contact passes vgnables in—any non-
discrete memory (e.g,
power flow. .
%L) or on symbolic non-
NOCON:

discrete variables.
If BOOLV is ON, the normally open

contact passes power flow.

If BOOLV is OFF, the contact does not
pass power flow.

Ladder Diagram (LD) Programming 109

CPU Programmer’s Reference Manual Section 4

GFK-2950M

Dec 2024

4.4.6 Transition Contacts

PACSystems controllers provide four transition contacts: POSCON, NEGCON, PTCON
and NTCON.

The power flow out of the POSCON and NEGCON transition contacts is determined
by the last write to the BOOL variable associated with the contact. The associated
transition bit is updated every time the function is called.

The power flow out of the PTCON and NTCON transition contacts is determined by
the value that the associated BOOL variable had the last time the contact was
executed. The associated transition bit is updated once per scan.

For an example showing the differences in the operation of the two types of transition
contacts, see Examples Comparing PTCON and POSCON.

POSCON and NEGCON

A WARNING

These transition contact instructions should not be used in a parameterized block or user-
defined function block (UDFB) with a parameter or member. In these cases, an R_TRIG or
F_TRIG should be used instead.

Do notuse POSCON or NEGCON transition contacts for references used with transition
coils (also called one-shot coils) or with SET and RESET coils.

If a SETCOIL or RESETCOIL receives positive power flow and its associated variable is not
overridden, the SETCOIL or RESETCOIL writes the expected result to the transition bit for
the associated variable (thatis, the transition bitis setif the variable’s value is set from ON
to OFF oris setfrom OFF to ON, and is cleared when its value remains the same). However,
if the SETCOIL or RESETCOIL receives positive power flow and its associated variable is
overridden, the SETCOIL or RESETCOIL causes the transition bit to be cleared.

Do not use a transition contact with the same reference address used on a transition coil
because the value of the transition bit, which stores the power flow value into the coil, will
be affected.

Ladder Diagram (LD) Programming 110

CPU Programmer’s Reference Manual Section 4

GFK-2950M Dec 2024
BOOLY BOOLY
—t— —4—
Positive Transition Contact POSCON Negative Transition Contact NEGCON

POSCON starts passing power flow and continues NEGCON starts passing power flow and continues
passing power flow to the right only when all of the passing power flow to the right only when all of the

following conditions are met: following conditions are met:
e the input power flow to POSCON is ON, e the input power flow to NEGCON is ON
e the value of the associated variable is ON, e the value of the associated variable is OFF,
and and
e the transition bit for the associated variable e the transition bit forthe associated variablk is
is ON ON

The POSCON's transition bit is set to ON when the

variable associated with the POSCON transitions The NEGCON'’s transition bit is set to ON when the

from OFF to ON. variable associated with the NEGCON transitions from
ON to OFF.

The transition bit is set to OFF when the associated variable is written to while the POSCON or NEGCON
contactis passing power flow, regardless of whetherthe value written is ON or OFF. Power flow stops when
the transition bit is set to OFF.

Depending on the logic flow, writes to the POSCON'’s or NEGCON's associated variable

can occur at different intervals within the Controller scan:

e multipletimesduringa Controllerscan, resultingin the transition bit being ONfor only
a portion of the scan.

o several Controller scans apart, resulting in the transition bit being ON for more than
one scan.

e once perscan, for example if the POSCON or NEGCON's associated variable is a
%I input bit.

The source of the write is immaterial; it can be an output coil, a function block output, the

input scan, an input interrupt, a data change from the program, or external

communications. When the variable is written, the transition bit is immediately affected.

The scan does not affect the transition bit. The only way to clear the transitionbit is to

write to the associated variable.

Overrides

Overrides do not protect transition bits. If a write is attempted to an overridden point, the
point’s transition bit is cleared. As a result, any associated POSCON or NEGCON
contacts will stop passing power flow.

Transition to RUN Mode

e Variables that are non-retentive and not overridden will have values and transitions
cleared to 0.

e Variables that are non-retentive and overridden will retain their values and transition
bits.

e Variables that are retentive will retain their values and transition bits.

Ladder Diagram (LD) Programming 111

CPU Programmer’s Reference Manual

GFK-2950M

Section 4
Dec 2024

Operands for POSCON and NEGCON

Parameter [Description

Allowed Operands Optional

BOOLV The variable associated |BOOL variable:1,Q, M, T, S, SA, SB, SC, and G,|No
with the transition contact |symbolic discrete variables, 1/O variables
Bitreference in BOOL variable: I, Q, M, T, S, SA,
SB, SC.

POSCON and NEGCON Example 1

Figure 60
E1 E2
4 { —
E3 E4
{4} { —

Coil E2 is turned ON when the value of the variable E1 transitions from OFF to ON.
stays ON until E1 is written to again, causing the POSCON to stop passing power flow.

Coil E4 is turned ON when the value of the variable E3 transitions from ON to OFF.
stays ON until E3 is written to again, causing the NEGCON to stop passing power flow.

POSCON and NEGCON Example 2

Figure 61

xi BIT SET E2

1 WORD { —

M00017 —{IN
1—BIT
X2 BIT CLR E4

1ol WORD { —

M00017 —|IN

1—EIT

Bit %M00017 is set by a BIT_SET function and then cleared by a BIT_CLR function. The

positive transition contact X1 activates the BIT_SET, and the negative transition X2
activates the BIT_CLR.

The positive transition associated with bit %M00017 will be on until %MO00017 is reset by
the BIT_CLR function. This occurs because the bitis only written when contact X1 goes
from OFF to ON. Similarly, the negative transition associated with bit %M00017 will be

ON until %MO00017 is set by the BIT_SET function.
PTCON and NTCON

A WARNING

PTCON or NTCON instructions should not be used in a parameterized block or user-defined

function block with a parameter or member. In these cases,an R_TRIG or F_TRIG should be used

instead.

Ladder Diagram (LD) Programming 112

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

The transition bit of a given PTCON or NTCON is updated only once per CPU scan. Therefore,
using aPTCON or NTCON in a block that can be called multiple times per scan may have adverse
effects on all calls after the firstone because the PTCON or NTCON cannotdetectthe transiton
on the second and subsequent calls.

BOOL_W BOOL_W
—F— —AH—
Positive Transition Contact PTCON Negative Transition Contact NTCON
PTCON passes power flow to the right only when al NTCON passes power flow to the right only when al the
the following conditions are met: following conditions are met:
e The input power flow to PTCON is ON. e The input power flow to NTCON is ON.
e The value of the BOOL variable associated e The value of the BOOL variable associated
with PTCON is ON. with NTCON is OFF.
e The transition bit associated with the e The transition bit associated with the NTCON
PTCON is OFF is ON

The transition bit depends on the value of the BOOL variable associated with this PTCON or NTCON when
it was last executed.

Notes:
° As soon as a PTCON or NTCON is set to ON or OFF, it updates its transition bit.

° Multiple instances of PTCON and/or NTCON can be associated with the same BOOL
variable, but the instance data of each instance of the PTCON or NTCON associated
with the BOOL variable is unique; that is, it is tracked independently.

° Transition data is non-retentive; that is, it is cleared to OFF when the CPU transitions
from STOP Mode to RUN Mode. As a result, the first time a PTCON executes with its
input power flow setto ON and its associated BOOL variable also set to ON, it passes
power flow to the right.

Ladder Diagram (LD) Programming 113

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Operands for PTCON and NTCON

Parameter |Description Allowed Operands Optional

BOOL_V The variable associated with BOOL variable: I, Q, M, T, S, SA, SB, SC, |No
PTCON or NTCON contact and G memories, symbolic discrete
variables, 1/0O variables.

Bit reference in non-BOOL variable: R, Al,
AQ, L, P, W, and on symbolic non-discrete
variables.

Examples Comparing PTCON and POSCON
PTCON

The logic in the following example starts execution with all variables set to 0. Before the
second sweep begins, the Xsition variable used on the PTCON instruction is set to 1. It
retains that value forsweeps 2, 3, and 4. Thenitis reset back to 0 before sweep 5 begins
and retains its 0 value for sweeps 5, 6, and 7. This pattern repeats. The PTCON
instruction in rung two passes power flow on the 2nd sweep, the 8" sweep, the 14"
sweep, and so on. These are sweeps where the Xsition variable’s value becomes a 1,
afterhaving been a0 onthe previous sweep. On all other sweeps, the PTCON instruction
does not pass power flow.

POSCON

If aPOSCON is used in place of the PTCON in the following example (keeping the rest
of the logic identical), the same alternation of the Xsition variable’s value occurs. The
POSCON instruction passes power flow on sweeps 2, 3, and 4; then again on sweeps
8, 9, and 10; and so forth. The POSCON'’s behavior is dependent on Xsition’s transition
bit. Since Xsition’s value is written once and then simply retained for three sweeps, its
transition bit retains its same value for three sweeps. Thus, the POSCON will pass or not
pass power flow for three sweeps in a row. Note that if Xsition’s value is written on each
sweep, the POSCON and the PTCON behave identically.

Ladder Diagram (LD) Programming 114

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Logic Example Using PTCON

Figure 62

HFST_SCH " HMOvE

11 INT

LI
Sett01whe...

1
—IN Q- ScamCoumt
Wsition ’ ’ ’)) ’ ’ 'PFlowOut|

[P} O_

' Onthe 2nd sweep, furn Xsition ON for 3 sweeps; onthe 3 sweep, tumit OFF for 3 sweeps, efc.

MOD NEINT
INT B
ouef
SeamCaymt —{IN1 Q INl 0 JOMEH]
3 —{IN2 0 {1z
Wsitiom ’ ’)) ’ ’ " Xsitiom

1 @

@DM‘E[

ADDINT|

1INl O ScamCoumt

ScanCownt — IN2

Ladder Diagram (LD) Programming 115

CPU Programmer’s Reference Manual

GFK-2950M

4.5

Section 4
Dec 2024

Control Functions

The control functions limit program execution and change the way the CPU executes the
application program.

Function Mnemonic |Description
Do I/0 DO_IO For one scan, immediately services a specified range of inputs or outputs
(All inputs or outputs on a module are serviced if any reference locations
on that module are included in the DO 1I/O function. Partial I/O module
updates are not performed.). Optionally, a copy of the scanned 1/O can
be placed in internal memory, rather than at the real input points.
Drum DRUM Provides predefined On/Off patterns to a set of 16 discrete outputs in the
manner of a mechanical drum sequencer.
Edge Detectors |F_TRIG Detect the changing state of a Boolean signal.
R_TRIG
For Loop FOR_LOOP For loop. Repeats the logic between the FOR_LOOP instruction and
EXIT_FOR END_FOR instruction a specified number of times or until EXIT_FOR is
END_FOR encountered.
Mask 1/0 Interrupt/ MASK_IO_INTR|Mask or unmask an interrupt from an I/O module when using I/O
variables. If not using 1/O variables, use
SVC_REQ 17: Mask/Unmask I/O Interrupt, described in Section 6.
Proportional PID_ISA Provides two PID (Proportional/Integral/Derivative) closed-loop control
Integral Derivative|PID_IND algorithms:
Control Standard ISA PID algorithm (PID_ISA)
Independent term algorithm (PID_IND)
Note: For details, refer to Section 7.
Read Switch SWITCH_POS [Reads position of the Run/Stop switch and the mode for which the switch
Position is configured.
Scan Set IO SCAN_SET_IO [Scans the IO of a specified scan set.
Service Request |SVC_REQ Requests a special PLC service.
Note: For details, referto Section 6.
Suspend 10 SUS_IO Suspends for one sweep all normal /0O updates, except those specified
by DO 1/O instructions.
Suspend or SUSP_IO_INTR[Suspend orresume an I/O interrupt whenusing /O variables. If not using
Resume 1/0 1/0 variables, use
Interrupt SVC_REQ 32: Suspend/Resume 1/O Interrupt, described in Section 6.

Ladder Diagram (LD) Programming

116

CPU Programmer’s Reference Manual
GFK-2950M

4.5.1

Do I/O0

Figure 63

DO ID

—END

— ALT

When the DO I/O (DO_IO) function receives power flow, it updates inputs or outputs for
one scan while the program is running. You can also use DO__ 1O to update selected VO

during the program in addition to the normal I/O scan.

You canuse DO_IO in conjunction with a Suspend IO (SUS_IO) function, which stops
the normal I/O scan. For details, refer to Suspend 1/O.

If input references are specified, DO_IO allows the most recent values of inputs to be
obtained for program logic. If output references are specified, DO I/O updates outputs
based onthe most current values stored in I/O memory. I/O is serviced in increments of
entire I/O modules; the PLC adjusts the references, if necessary, while DO_IO executes.
DO _IO does not scan I/O modules that are not configured.

DO_IO continues to execute until all inputs in the selected range have reported or all
outputs have been serviced on the I/O modules. Program execution then returns to the

function that follows the DO_IO.

If the range of references includes an option module (HSC, APM, etc.), all the input data
(%! and %Al) or all the output data (%Q and %AQ) for that module are scanned. The
ALT parameter is ignored while scanning option modules.

DO_IO passes power to the right whenever it receives power unless:
e Not all references of the type specified are present within the selected range.

e The CPU is not able to properly handle the temporary list of /O created by the
function.

e The range specified includes I/O modules that are associated with a Loss of //0O faul.

A WARNING

If DO_IO is used with timed or I/O interrupts, transition contacts associated with scanned inputs
may not operate as expected.

Note: The Do I/O function skips modules that do not support DO_IO scanning:

IC693BEM331 90-30 Genius Bus Controller
IC694BEM331 RX3i Genius Bus Controller
IC693BEM341 90-30 2.5 GHz FIP Bus Controller
IC693DNM200 90-30 DeviceNet Master

1C695PBM300 RX3i PROFIBUS Master

Ladder Diagram (LD) Programming 117

Section 4
Dec 2024

CPU Programmer’s Reference Manual Section 4

GFK-2950M Dec 2024
1C695PBS301 RX3i PROFIBUS Slave
IC687BEM731 90-70 Genius Bus Controller
IC697BEM731 90-70 Standard Width Genius Bus
Controller

Do 1/O for Inputs

When DO _IO receives power flow and input references are specified, the PLC scans
input pointsfromthe starting reference (ST)to the ending reference (END). If areference
is specified for ALT, a copy of the new input values is placed in memory beginning at that
reference, and the real input values are not updated. ALT must be the same size as the
reference type scanned. If a discrete reference is used for ST and END, ALT must also
be discrete.

If no reference is specified for ALT, the real input values are updated. This allows inputs
to be scanned one or more times during the program execution portion of the CPU scan.

Do 1/O for Outputs

When DO_IO receives power flow and output references are specified, the PLC writes
to the output points. If no value is specified in ALT, the range of outputs written to the
output modules is specified by the starting reference (ST) and the ending reference
(END). If outputs should be written to the output points from internal memory other than
%Q or %AQ, the beginning reference is specified for ALT and the end reference is
automatically calculated from the length of the END—ST range.

Note: RSTi-EP CPE205/CPE210/CPE215/CPE220/CPE240 controllers do not have
the ability to enable individual output modules the same way that RX3i controllers are
able to enable individual output modules while leaving others suspended.

In order for DO_|O to work for an RSTi-EP
CPE205/CPE210/CPE215/CPE220/CPE240 controller, all output modules need to be
set to a known state. This can be achieved by allowing the IO scan to run for one
sweep or by initializing the output by writing values to the reference memory associated
with the output modules. The values need to be explicitly written to the reference
memory of ALL output modules.

Operands
Parameter |Description Allowed Operands |Optional
ST The starting address of the set of input oroutput points|Il, Q, Al, AQ, I/O Variable|No

or words to be serviced. ST and END must be in the
same memory area.

° If ST and END are placed in BOOL memory, ST
must be byte-aligned. That is, its reference
address must startat (8n+1), for example, %101,
%Q09, %Q49.

° If ST and END are mapped to analog memory,
they can have the same reference address.

e IfSTis mapped to an I/O variable, the same 1/O
variable must also be assigned to the END
parameter, and the entire module is scanned.

Ladder Diagram (LD) Programming 118

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

END The address of the end bit of input or output points or|l, Q, Al, AQ, I/O Variable|No
words to be serviced. Must be in the same memory area
as ST.

e If ST and END are placed in BOOL memory,
END's reference address must be 8n, for exanple,
%108, %Q16.

° If ST and END are mapped to analog memory,
they can have the same reference address.

° If ST is mapped to an I/O variable, the same /O
variable must also be assigned to the END
parameter, and the entire module is scanned.

ALT For an input scan, ALT specifies the address to store|l, Q, M, T, G, R, Al, AQ (Yes
scanned input point/word values. For an output scan,
ALT specifies the address to get output point/word
values from, to send to the /O modules.

Note: ALT can be a WORD only if ST and
END are in analog memory.

Ladder Diagram (LD) Programming 119

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Example - Do I/O for Inputs

Figure 64

V_100000 [DoIo| V_Q00001

| } —

V_I00001 —ST

V_I00064 —END

V_M00001 —{ALT

When DO _10O receives power flow, the PLC scans references %I0001—64 and %Q0001
is turned on. A copy of the scanned inputs is placed in internal memory from %MO0001-
64. Because areferenceis specified for ALT, the real inputs are not updated. This allows
the current values of inputsto be compared with their values at the beginning of the scan.
This form of DO_IO allows input points to be scanned one or more times during the
program execution portion of the CPU scan.

Example - Do I/O for Outputs

Figure 65

V_100000 [DoIo| V_0Q00001

| —{ 1

V_AQ0001 —ST

V_AQ0004 —{END

_R00001 — ALT

Because areference is entered for ALT, the values at %AQ001—004 are not written to
output modules. When DO _1O receives power flow, the PLC writes the values from
references %R0001-0004 to the analog output modules and %Q0001 is turned on.

Ladder Diagram (LD) Programming 120

CPU Programmer’s Reference Manual

Section 4
Dec 2024

GFK-2950M
4.5.2 Edge Detectors
Figure 66
F TRIG R TRIG
ok oF deowk ok

Falling Edge Trigger

Rising Edge Trigger

These function blocks detectthe changing state of a Boolean signal and produceasingle
pulse when an edge is detected.

When transitional instructions, such as Transition Coils or Transition Contacts, are used
inside a function block, there is a problem when the same function block is called more
than once per scan. The first call executes the transition correctly, but subsequent calls
do not because they see the state as adjusted from the first call. The rising and falling
edge trigger instructions solve this problem. These instructions have their own instance
data that can be a member or an input of the function block so that the transition state
follows that of the function block instance and not the function block.

If an edge detector function block is used within a UDFB, its instance data must be a
member variable of the UDFB.

Operands
Parameter |Description Allowed Operands Optional
?77?? Instance data for function block. This is a|F_TRIG, R_TRIG No
structure variable, described below.
CLK Input to be monitored for a change in All Yes
state.
Q Edge detection output. Must be flow in LD. In other Yes
languages all types allowed except
S, SA, SB, SC and constants.

Ladder Diagram (LD) Programming

121

CPU Programmer’s Reference Manual

GFK-2950M

Instance Data Structure

Section 4

These elements cannot be published or written to.

Dec 2024

Element Name Type Description

CLK BOOL Edge detection input. Not accessible in user logic.

Q BOOL Edge detection output. Accessible in user logic. Read only.
STATE BOOL Internal value. Not accessible in user logic.

ENO BOOL Enable Output. User logic can access as read-only.

F_TRIG Operation

Figure 67

CLK J

-7

Function Block Execution

When the CLK input goes from true to false, the output Q is true for one function block
instance execution. The output Q then remains false until a new falling edge is detected.

When the Controller transitions from STOP Mode to RUN Mode, the CLK inputis false
and the instance memory is non-retentive, the output Q is true after the function block’s
first execution. After the next execution, the output is false.

The F_TRIG output Q will be true for one function block instance execution at a STOP
Mode to RUN Mode transition after the first download, whether instance memory is

retentive.

Ladder Diagram (LD) Programming

122

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

R_TRIG Operation

Figure 68

CLK _J |_

Function Block Execution

When the CLK input transitions fromfalse to true, the output Q is true for one function
block execution. The output Q then remains false until a new rising edge is detected.

When the Controller transitions from STOP Mode to RUN Mode and the CLK input is
true and the instance memory is non-retentive, the output Q is set to true after the
function block’s first execution. After the second execution, the output is false.

If the CLK input is initialized on, the R_TRIG output Q will be true for one function block
instance execution at a STOP Mode to RUN Mode transition after the first download,
whether instance memory is retentive.

Example

In the following example, when Input1 transitions from false to true, the coil, Detected, is
set ON for one function block execution. The output Q remains false until a new rising

edge is detected.

Figure 69

RTARIG

Meonitor Detected

Input1 CLK Q O

Ladder Diagram (LD) Programming 123

CPU Programmer’s Reference Manual Section 4

GFK-2950M Dec 2024
4.5.3 Drum

Figure 70

DEOM

N PR B

— 7o

—E DEC—

—{FI¥ DTO|—

—{or TFT—

—|F1T FF—

The Drum function operates like a mechanical drum sequencer, which steps through a
set of potential output bit patterns and selects one based oninputs to the function. The
selected value is copied to a group of 16 discrete output references.

When the Drum function receives power flow, it copies the contents of a selected
reference to the Q reference.

Power flow to the R (Reset) input or to the S (Step) input selects the reference to be
copied.

The function passes power to the right only if it receives power from the left and no emor
condition is detected.

The DTO (Dwell Timeout Output) bit is cleared the firsttime the drum is in a new step.
This is true:

e Whetherthedrumis introduced to a new step by changing the Active Step orby using
the S (Step) Input.

e Regardlessof the DT (Dwell Time array) value associated with the step (even if it
is 0).
e During the first sweep the Active Step is initialized.

Using Drum in Parameterized Blocks

The Drum dwell and fault timer features use an internal timer that is implemented in the
same manner as for the OFDT, ONDTR, and TMR timers. Therefore, special care must
be taken when programming Drum in parameterized blocks. Drum functions in
parameterized blocks can be programmed to track true real-time if the guidelines and
rules below are followed. If the guidelines and rules described here are not followed, the
operation of the Drum function in parameterized blocks is undefined.

Note: These rules are not enforced by the programming software. It is your responsibility to
ensure these rules are followed.

The best use of a Drum function is to invoke it with a particular reference address exactly
one time each scan. With parameterized blocks, it is important to use the appropriate

Ladder Diagram (LD) Programming 124

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

reference memory with the Drum function and to call the parameterized block an
appropriate number of times.

Finding the Source Block

The source block is either the _MAIN block or the lowest logic block of type Block that
appears above the parameterized block in the call tree. To determine the source block
for a given parameterized block, determine which block invoked that parameterized
block. If the calling block is _MAIN or of type Block, it is the source block. If the calling
block is any other type (parameterized block or function block), apply the same test to
the block that invoked this block. Continue back up the call tree until the _MAIN block or

a block of type Block is found. This is the source block for the parameterized block.
Programming Drum in Parameterized Blocks

Different guidelines and rules apply depending on whether you want to use the
parameterized block in more than one place in your program logic.

Parameterized block called from one block

If your parameterized block that contains a Drum function will be called from only one
logic block, follow these rules:

1. Call the parameterized block exactly one time per execution of its source block.

2. Choose a reference address for the Drum control block that will not be
manipulated anywhere else. The reference address may be %R, %P, %L, %W,
or symbolic.

Note: %L memory is the same %L memory available to the source block of type Block. %L
memory corresponds to %P memory when the source block is _MAIN.

Ladder Diagram (LD) Programming 125

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Parameterized block called from multiple blocks

When calling the parameterized block from multiple blocks, it is imperative to separate
the Drum reference memory used by each call to the parameterized block. Follow these

rules and guidelines:
1. Call the parameterized block exactly one time per execution of each source
block that it appears in.

2. Choose a %L reference or parameterized block formal parameter for the Drum
control block. Do not use a %R, %P, %W, or symbolic memory reference.

Notes:

° The strongly recommended choice is a %L location, which is inherited from the
parameterized block’s source block. Each source block has its own %L memory space
except the _MAIN block, which has a %P memory area instead. When the _MAIN block
calls another block, the %P mappings from the _MAIN block are accessed by the called
block as %L mappings.

° If you use a parameterized block formal parameter (word array passed-by-reference),
the actual parameter that corresponds to this formal parameter must be a %L, %R, %P,
%W, or symbolic reference. If the actual parameter is a %R, %P, %W, or symbolic
reference, a unique reference address must be used by each source block.

Recursion

If you use recursion (thatis, if you have a block call itself either directly or indirectly) and
your parameterized block contains a Drum function, you must follow two additional rules:

e Program the source block so that it invokes the parameterized block before making
any recursive calls to itself.

e Do not program the parameterized block to call itself directly.

Using Drum in UDFBs

UDFBs are user-defined logicblocks that have parameters and instance data. For details
on these and other types of blocks, refer to Section 2.

When a Drum function is present inside a UDFB, and a member variable is used for the
control block of a Drum function, the behavior of the Drum function may not match your
expectations. If multiple instances of the UDFB are called during a logic sweep, only the
first-executed instance will update the timer in the Drum function. If a different instance
is then executed, the timer value will remain unchanged.

In the case of multiple calls to a UDFB during a logic scan, only the first call will add
elapsed time to its timer functions. This behavior matches the behavior of the Drum
function timer in a normal program block.

Example

A UDFB is defined that uses a member variable fora Drum function block. Two instances
of the function block are created: Drum_A and Drum_B. During each logic scan, both
Drum_A and Drum_B are executed. However, only the member variable in Drum_A is
updated and the member variable in Drum_B always remains at 0.

Operands for Drum

Ladder Diagram (LD) Programming 126

CPU Programmer’s Reference Manual

GFK-2950M

Section 4
Dec 2024

Parameter

Description

Allowed Operands

Optional

2?27

(Control Block) The beginning address of a five-word
array that contains the Drum Sequencer's control
block. The contents of the control block are described
below.

R, P, L, W, Symbolic

No

??

(Length)Value between 1 and 128 that specifies the
number of steps.

Constant

No

Step input. Used to go one step forward in the
sequence. When the function receives power flow
and S makes an OFF to ON transition, the Drum
Sequencer moves one step. When R (Reset) is
active, the function ignores S.

flow

No

Reset input. Used to select a specific step in the
sequence. When the DRUM function and Reset both
receive power flow, DRUM copies the Preset Step
value in the Control Block to the Active Step
reference in the Control Block. Then the function
copies the value in the Preset Step reference to the Q

reference bits. When Ris active, the function ignores
S.

flow

No

PTN

(Pattern) The starting address of an array of words.

The number of words is specified by the Length (??)
operand. Each word represents one step of the Drum
Sequencer. The value of each word represents the

desired combination of outputs for a particular value
of the Active Step word in the control block. The first
element corresponds to an Active Step value of 1; the
last element corresponds to an Active Step value of
Length. The programming software does not create
an array for you. You must ensure you have enough
memory for PTN.

All except constantand
S, SA—SC numerical
data.

No

DT

(Dwell Time) If you use the DT operand, you must
also use the DTO operand and vice-versa. The DT
operand is the starting address of Length words of
memory, where Length is the number of steps. Each
DT word corresponds to one word of PTN. The value
of each word represents the dwell time for the
corresponding step of the Drum Sequencerin 0.1
second units. When the dwell time expires fora given
step the DTO bit is set.

If a Dwell Time is specified, the drum cannot
sequence into its next step until the Dwell Time has
expired. The programming software does not create
an array for you. You must ensure you allocate
enough memory for DT.

All except S, SA, SB,
SC and constant

Yes

FTT

(Fault Timeout) If you use the FTT operand, you must
also use the TFT operand, and vice-versa. The FTT
operand is the starting address of Length words of
memory, where Length is the number of steps. Each
FTT word corresponds to one word of PTN. The
value of each word represents the fault timeout for
the corresponding step of the Drum Sequencerin 0.1
second units.

When the fault timeout has expired the Fault Timeout
bit is set.

The programming software does not create an array
for you. You must ensure you allocate enough
memory for FTT.

All except S, SA, SB,
SC and constant

Yes

Ladder Diagram (LD) Programming

127

CPU Programmer’s Reference Manual

GFK-2950M

Section 4
Dec 2024

Parameter

Description

Allowed Operands

Optional

Q

A word of memory containing the element of the PTN
that corresponds to the current Active Step.

All except S and
constant

No

DRC

(Drum Coil) Bit reference that is set whenever the
function is enabled, and Active Step is not equal to
Preset Step.

All except S

Yes

DTO

(Dwell Timeout) If you use the DTO operand, you
must also use DT and vice-versa. This bit reference is
set if the dwell time for the current step has expired.

All except S and
constant

Yes

TFT

(Timeout Fault) If you use the TFT operand, you must
also use the FTT operand and vice-versa. Bit
reference that is set if the drum has been in a
particular step longer than the step’s specified Fault
Timeout.

All except S and
constant

Yes

FF

(First Follower) The starting address of (Length/8+1)
bytes of memory, where Length is the number of
steps. If MOD (Length/8+1)>0, FF has (Length/8+1)
bytes. Each bitin the bytes of FF corresponds to one
word of PTN. No more than one bit in the FF bytes is
ON at any time, and that bit corresponds to the value
of the Active Step. The first bit corresponds to an
Active Step value of one. The last used bit
corresponds to an Active Step value of Length.

All except S and
constant

Yes

Control Block for the Drum Sequencer Function

The control block for the Drum Sequencer function contains information needed to
operate the Drum Sequencer.

address
address + 1
address + 2

address + 3

Active Step

Preset Step

Step Control

Timer Control

Active Step The active step value specifies the element in the Pattern array to copy to
the output memory location. This is used as the array index into the Pattern, Dwell Time,
Fault Timeout, and First Follower arrays.

Preset Step Aword inputthatis copied tothe Active Step outputwhen the Resetis On.

Step Control A word that is used to detect Off to On transitions on both the Step input
and the Enable input. The Step Control word is reserved for use by the function and
must not be written to.

Timer Control

Ladder Diagram (LD) Programming

Two words of data that hold values needed to run the timer. These
values are reserved for use by the function and must not be written to.

128

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

4.5.4 For Loop

Figure 71

FOE ~| —{EXTFOR

— LOOF

— INDEX

17 1

— END

= INC

A FOR loop repeats rung logic a specified number of times while varying the value of the
INDEX variable in the loop.

A FOR loop begins with a FOR_LOOP instruction and ends with an END_FOR
instruction.

The logic to be repeated must be placed between the FOR and END_FOR instructions.

The optional EXIT_FOR instruction enables you to exit the loop if a condition is met
before the FOR loop ends normally.

When FOR_LOOP receives power flow, it saves the START, END, and INC (Increment)
operands and uses them to evaluate the number of times the rungs between the
FOR_LOOP and its END_FOR instructions are executed. Changing the START and
END operands while the FOR loop is executing does not affect its operation.

When an END_FOR receives power flow, the FOR loop is terminated and power flow
jumps directly to the statement following the END_FOR instruction.

There can be nothing after the FOR_LOOP instruction in the rung and the FOR_LOOP
instruction must be the last instruction to be executed in the rung. An EXIT_FOR
statement can be placed only between a FOR instruction and an END_FOR instruction.

The END_FOR statement must be the only instruction in its rung.

AFOR_LOOP canassign decreasing valuestoits index variable by setting the increment
to a negative number. For example, if the START value is 21, the END value is 1, and
the increment value is -5, the statements of the FOR loop are executed five times, and
the index variable is decremented by 5 in each pass. The values of the index variable
will be 21, 16, 11, 6, and 1.

When the START and END values are set equal, the statements of the FOR loop are
executed only once.

When START cannot be incremented or decremented to reach the END, the statements
within the FOR loop are not executed. For example, if the value of START is 10, the
value of END is 5, and the INCREMENT is 1, power flow jumps directly from the FOR

statement to the statement after the END_FOR statement.

Ladder Diagram (LD) Programming 129

CPU Programmer’s Reference Manual

GFK-2950M

Section 4
Dec 2024

Note: Ifthe FOR _LOOP instruction has power flow when it is first tested, the rungs between the
FOR and its corresponding END_FOR statement are executed the number of times
initially specified by START, END, and INCREMENT. This repeated execution occurs on
a single sweep of the PLC and may cause the watchdog timer to expire if the loop is long.

Nesting of FOR loops is allowed, but it is restricted to five FOR/END_FOR pairs. Each
FOR instruction must have a matching END_FOR statement following it.

Nesting with JUMPs and MCRs is allowed, if they are properly nested. MCRs and
ENDMCRs must be completely within or completely outside the scope of a
FOR_LOOP/END_FOR pair. JUMPs and LABEL instructions mustalso be completely
within or completely outside the scope ofa FOR_LOOP/END_FOR pair. Jumping into or
out of the scope of a FOR/END_FOR is not allowed.

Operands
Only the FOR_LOORP function requires operands.
Parameter [Description Allowed Operands Optional
INDEX The index variable. When the loop has |All except constants, flow, and No
completed, this value is undefined. variables in %S - %SC
Note: Changing the value of the

index variable within the

scope of the FOR loop is

not recommended.
START The index start value. All except variables in %S - %SC |No
END The index end value. All except variables in %S - %SC |No
INC The increment values. (Default: 1.) Constants Yes

Ladder Diagram (LD) Programming 130

CPU Programmer’s Reference Manual
GFK-2950M

Section 4

Dec 2024

For Loop Example 1

Figure 72

V_I0000 FOR
P LOOF

V_R00001 — INDEX

V_M00001 — START

V_MO00017 —| END

— INC
V_I0000Mm ADDINT

V_R00001 —|IN1 O v_R00003

V_R00002 —{IN2

The value for %M00001 (START) is 1 and the value for %MO00017 (END) is 10. The
INDEX (%R00001) increments by the value of the INC operand (which is assumed to be
1 when omitted) starting at 1 until it reaches the ending value 10. The ADD function of
the loop is executed 10 times, adding the current value of |1 (%R00001), which will vary
from 1 to 10, to the value of 12 (%R00002).

For Loop Example 2

Figure 73

_T00001 FOR
L | —— LOOF

V_E00001 — INDEX
¥_T00001 —| STAET
V_T00017 — END

10 — INC
V_100001 EC INT

v_Ro0o01 —{IN1 O—{EXITFOR

0 —INz

BB

The value for %T00001 (START) is -100 and the value for %T00017 (END) is 100. The
INDEX (%R00001) increments by tens, starting at 100 until it reaches it end value of
+100. The EQ function of the loop tries to execute 21 times, with the INDEX (%R00001)
being equal to 100, —90, -80, —70, —60, —50, —40, -30, —20, -10, 0, 10, 20, 30, 40, 50,
60, 70, 80, 90, and 100. However, when the INDEX (%R00001) is 0, the EXIT statement
is enabled, and power flow jumps directly to the statement after the END_FOR
statement.

Ladder Diagram (LD) Programming 131

CPU Programmer’s Reference Manual

GFK-2950M

4.5.5

Mask /O Interrupt

Section 4
Dec 2024

Figure 74

MASK 1D
INTR

—MASK

—1{IN1

Mask or unmask an interrupt from an I/O board when using I/O variables. If not using VO
variables, use SVC_REQ 17.

When the interrupt is masked, the CPU processes the interrupt but does not schedule
the associated logic for execution. When the interruptis unmasked, the CPU processes
the interrupt and schedules the associated logic for execution.

When the CPU transitions from STOP Mode to RUN Mode, the interrupt is unmasked

Operands
Parameter |Description Allowed Allowed Optiona
Types Operands |
MASK Selects unmask or mask operation. BOOL variable [data flow, I, Q, M, |No
Unmask=0; Mask=1 or Bit reference [T, G, S, SA, SB,
in non-discrete |SC, R, P, L, Al,
memory AQ, W, symbolic,
I/O variable
IN1 The interrupt trigger to be masked or |BOOL or WORD|(I, Q, M, T, G, R, P,|No
unmasked. variable L, Al, AQ, W, IO
e Thel/Oboard mustbe a supported variable
input module.
e The reference address specified
must correspond to a valid interrupt
trigger reference.
e The interrupt for the specified
channel must be enabled in the
configuration.
132

Ladder Diagram (LD) Programming

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Example

In the following example, the variable Mod_Intis mapped to an I/O point on a hardware
module andis configured as an I/O interruptto a programblock. When the BOOL variable
MaskOn_Off transitions from OFF to ON and A1 is set to ON, the interrupt Mod_Int is
masked (not executed) for one scan.

Figure 75
MaskOn_Off MaskOn_Of
'} @
Al MASK 10

1 INTR

MaskOn_0Off —|MASK

Mod_Int —{IN1

456 Read Switch Position

Figure 76

Read Switch Position (SWITCH_POS) allows the logic to read the current position of the
RUN/STOP switch, as well as the mode for which the switch is configured.

Ladder Diagram (LD) Programming 133

CPU Programmer’s Reference Manual

Section 4

GFK-2950M Dec 2024
Operands
Parameter |Description Allowed Operands Optional
POS Memory location at which to write current switch [All except S, SA, SB, SC |No
position value.
1 -°RUN I/O Enabled
2 - °RUN Outputs Disabled
3 - °STOP Mode
MODE Memory location to which switch configuration value [All except S, SA, SB, SC [No
is written.
0 - Switch configuration not supported
1 - Switch controls RUN/STOP mode
2 - Switch not used, oris used by the userapplication
3 - Switch controls both memory protection and
RUN/STOP mode
4 - Switch controls memory protection
4.5.7 Scan Set 10
Figure 77
SCAN SET IO
—IN
—ouT
—SET

The Scan_Set_lO function scans the I/O of a specified scan set number (Modules can
be assignedtoscan setsin hardware configuration.). You can specify whether the Inputs
and/or Outputs of the associated scan set will be scanned.

Execution of this function block does not affect the normal scanning process of the
corresponding scan set. If the corresponding scan set is configured for non-default
Number of Sweeps or Output Delay settings, they remain in effectregardless of how

many executions of the Scan Set 10 function occur in any given sweep.

The Scan Set 10 function skips those modules that do not support scanning.

Ladder Diagram (LD) Programming

134

CPU Programmer’s Reference Manual

Section 4

GFK-2950M Dec 2024
Operands for SCAN_SET_IO
Parameter Description Allowed Types Allowed Operands |Optional
IN If true, the inputs will be BOOL variable or bit |Power flow No
scanned. reference in a non-
BOOL variable
ouT If true, the outputs will be |BOOL variable or bit |Power flow No
scanned. reference in a non-
BOOL variable
SET Number of the scan set to be| UINT All except %S memory|No
scanned. Scan sets are types.
specified in the CPU
hardware configuration and
assigned to modules in the
module hardware
configuration.
ENO Energized when all BOOL variable or bit [Power flow. Yes
arguments to the function |reference in a non-
are valid and there are no |BOOL variable
errors in scanning.
Example
Figure 78

Scaninputs

ScanQutputs

1T 1N

1 T ouT

i
m
—

1=
N
m
-
.

By using the Scan Set IO function block in an interrupt block, you can create a custom
I/O scan. For example, two Scan Set 10 function blocks can be used in an interrupt block
to scan the inputs of a scan set at the beginning of the block and the outputs of the same
scan set at the end of the block.
In the example at right:

e When Scaninputs is ON, input data forall /O modules assigned to Scan Set 2 is

updated.

e When ScanOutputs is ON, output data for all I/O modules assigned to Scan Set 2 is

updated

4.5.8

Suspend |/O

Figure 79

Ladder Diagram (LD) Programming

135

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

SUs 10

The Suspend I/O (SUS_1O) function stops normal I/O scans from occurring for one CPU
sweep. During the next output scan, all outputs are held at their current states. During
the next input scan, the input references are not updated with data from inputs.
However, during the input scan portion of the sweep, the CPU verifies that Genius bus
controllers have completed their previous output updates.

Note: The PACSystems SUS_IO function suspends analog and discrete I/O, whether integrated

I/O or Genius I/O. It does not suspend Ethernet Global Data. For details, refer to
PACSystems RX7i, RX3i and RSTi-EP TCP/IP Ethernet Communications User Manual,
GFK-2224.

When SUS_IO receives power flow, all I/O servicing stops except that provided by
DO_IO functions.

If SUS_IO were placed atthe left rail ofthe ladder, withoutenabling logicto regulate its execution,
no regular /O scan would ever be performed.

SUS_IO passes power flow to the right whenever it receives power

Ladder Diagram (LD) Programming 136

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Example

Figure 80

|Start-3EProgr.arr.
V_100010 V_I0001 S0s10 | V_Mo00001
. % { }—i
V_M00001

V_M00001 [Domg | V_MOOSS1

| | { }—

W_100001 —{ST
V_I00016 —{END

—|ALT

Ell'he.' logic goes here,
V_Mo0001 DOIO | V_MO00551 V_Qo00002

| | | {

¥_0Q00001 —{ST
¥_Q00030 —END

—ALT
| End of program.

The example at right shows a SUS_IO function and a DO_|O function used to stop /O
scans, then cause certain I/O to be scanned from the program.

Inputs %100010 and %100011 form a latch circuit with the contact from %MO00001. This
keeps the SUS_IO function active on each sweep until %100011 goes on. If this input
were not scanned by DO _10 after SUS_10 went active, SUS_10 could only be disabled
by powering down the PLC.

Output %Q00002 is set when both DO_IO functions execute successfully. The rung is
constructed sothatboth DO_IO functions execute evenif one does notsetits OK output.
With normal I/O suspended, output % Q00002 is not updated until a DO_IO function with
%QO00002 in its range executes. This does not occur until the sweep after the setting of
%Q00002. Outputs that are set after a DO_IO function executes are not updated until
another DO_IO function executes, typically in the next sweep. Because of this delay,
most programs that use SUS_|0 and DO_IO place the SUS_1O function in the first rung
of the program, the DO_IO function that processes inputs in the next rung, and the
DO_IO function that processes outputs in the last rung.

The range of the DO_IO function doing outputs is % Q00001 through %Q00030. If the
module in this range were a 32-point module, the DO _1O function would actually perform
a scan of the entire module. ADQO_IO function will not break the scan in the middle of an
IO module.

4.5.9 Suspend or Resume 1/O Interrupt

Figure 81

Ladder Diagram (LD) Programming 137

Section 4

CPU Programmer’s Reference Manual
Dec 2024

GFK-2950M

SUSF 10
IMTR -

—SUSP

=—{IH1

Suspend or resume an I/O interrupt when using I/O variables. If not using I/O variables,
use SVC_REQ 32.

The function executes successfully and passes power to the right unless:

e The I/O module associated with the interrupt trigger specified in IN1 is not supported.
e The reference address specified does not correspond to a valid interrupt trigger

reference.
e The specified channel does not have its interrupt enabled in the configuration.

Operands

Description

Allowed Types Allowed Operands |Optional

BOOL variable or bit|data flow, I, Q, M, T, |No
reference in a non- |G, S, SA, SB, SC, R,
BOOL variable P, L, discrete symbolic,
1/0 variable

Parameter
SUSP

Selects a suspend or resume
operation.

1 (ON)=suspend

0 (OFF)=resume

IN1 The interrupt trigger to be

suspended or resumed.

BOOL or WORD
variable

LQMTGR,P,L,
Al, AQ, W, I/O variable

No

Example

In the following example, the variable Mod_Int is mapped to an I/O pointon a hardware
module andis configured as an I/O interruptto a program block. When the BOOL variable
SuspOn_Off is set to ON and A1 is set to ON, interrupts from Mod_Int are suspended
until SuspOn_Off is reset.

Figure 82
SuspOn_0Off SuspOn_0Off
— } @%
Al SUSP 10

INTR

SuspOn_0Of —SUSP

Mod_lInt —{IN1

Conversion Functions

The Conversion functions change a data item from one number format (data type) to
another. Many programming instructions, such as math functions, must be used with
data of one type. As a result, data conversion is often required before using those

instructions.

4.6

Function Description

Convert Angles

Ladder Diagram (LD) Programming 138

CPU Programmer’s Reference Manual Section 4

GFK-2950M Dec 2024
Function Description
DEG_TO_RAD Converts degrees to radians
RAD_TO_DEG Converts radians to degrees
Convert to BCD4 (4-digit Binary-Coded-Decimal)
UINT_TO_BCD4 Converts UINT (16-bit unsigned integer) to BCD4
INT_TO_BCD4 Converts INT (16-bit signed integer) to BCD4

Convert to BCD8 (8-digit Binary-Coded-Decimal)

DINT_TO_BCDS8 |Converts DINT (32-bit signed integer) to BCD8

Convert to INT (16-bit signed integer)

BCD4_TO_INT Converts BCD4 to INT

UINT_TO_INT Converts UINT to INT

DINT_TO_INT Converts DINT to INT

REAL_TO_INT Converts REAL to INT

Convert to UINT (16-bit unsigned integer)

BCD4_TO_UINT Converts BCD4 to UINT

INT_TO_UINT Converts INT to UINT

DINT_TO_UINT Converts DINT to UINT

REAL_TO_UINT Converts REAL to UINT

Convert to DINT (32-bit signed integer)

BCD8_TO_DINT Converts 8-digit Binary-Coded-Decimal (BCD8) to DINT
UINT_TO_DINT Converts UINT to DINT

INT_TO_DINT Converts INT to DINT

REAL_TO_DINT Converts REAL (32-bit signed real or floating-point values) to DINT
LREAL_TO_DINT Converts REAL (64-bit signed real or floating-point values) to DINT

Convert to REAL (32-bit signed real or floating-point values)

BCD4_TO_REAL Converts BCD4 to REAL
BCD8_TO_REAL Converts BCD8 to REAL
UINT_TO_REAL Converts UINT to REAL
INT_TO_REAL Converts INT to REAL
DINT_TO_REAL Converts DINT to REAL
LREAL_TO_REAL Converts LREAL to REAL

Convert to LREAL(64-bit signed real or floating-point values)

DINT_TO_LREAL Converts DINT to LREAL

REAL_TO_LREAL Converts REAL to LREAL

Truncate

TRUNC_DINT Rounds a REAL number down to a DINT (32-bit signed integer) number
TRUNC_INT Rounds a REAL number down to an INT (16-bit signed integer) number

Ladder Diagram (LD) Programming 139

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

4.6.1 Convert Angles

R&D REA Mnemonics:

m

- 5
— — DEG_TO_RAD_REAL
DEG_TO_RAD_LREAL
RAD_TO DEG_REAL
—IN G RAD_TO_DEG_LREAL

When the Degrees to Radians (DEG_TO_RAD) or the Radians to Degrees
(RAD_TO_DEG) function receives power flow, it performs the appropriate angle
conversion on the REAL or LREAL value in input IN and places the result in output Q.

DEG_TO_RAD and RAD_TO_DEG pass power flow to the right when they execute,
unless IN is NaN (Not a Number).

Operands
Parameter |Description Allowed Operands Optional
IN The value to convert. All except S, SA, SB, and SC No
Q The converted value. All except S, SA, SB, and SC No
Example
Figure 83
RAD
TO |
DEG
1500 —{IN QF ¥_R00001
A value of +1500 radians is converted to degrees. The result is placed in %R00001 and
%R00002.
4.6.2 Convert UINT or INT to BCD4
Figure 84
UINT INTTO
4 10 | _ BCD4 [
BCD4
-1y o -—IN O

When this function receives power flow, it converts the input unsigned (UINT) or signed
single-precision integer (INT) data into the equivalent 4-digit Binary-Coded-Decimal
(BCD) values, which it outputs to Q.

This function does not change the original input data. The output data can be used
directly as input for another program function.

The function passes power flow when power is received, unless the conversion would
result in a value that is outside the range 0 to 9,999.

Tip

Ladder Diagram (LD) Programming 140

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Data can be converted to BCD format to drive BCD-encoded LED displays or presets to external
devices such as high-speed counters.

Operands
Parameter |Description Allowed Operands Optional
IN The UINT or INT value to All except S, SA, SB, and SC [No
convert to BCD4.
Q The BCD4 equivalent value of |All except S, SA, SB, and SC |No
the original UINT or INT value in
IN.

Example - UINT to BDC4

Figure 85

V_I100002 [UINTTO] V_MO01432

} BCD4 ()_‘

v_100017 <IN O ¥_Qo0033

Whenever input %100002 is set and no errors exist, the UINT at input location %100017
through %100032 is converted to four BCD digits and the result is stored in memory
locations % Q00033 through %Q00048. Coil %M01432 is used to check for successful
conversion.

Example - INT to BCD4

Figure 86

V_I0002 NTTO] V01432

|} BCD4 { —

V_I0017 —IN Q—Vv_Q0033

Whenever input %I10002 is set and no errors exist, the INT values at input locations
%10017 through %10032 are converted to four BCD digits, and the result is stored in

memory locations %Q0033 through %Q0048. Coil %Q1432 is used to check for
successful conversion.

Ladder Diagram (LD) Programming 141

CPU Programmer’s Reference Manual Section 4

GFK-2950M Dec 2024
4.6.3 Convert DINT to BCD8
Figure 87
DINT
-4 TO |
BCD8
—IN o

When DINT_TO_BCDS8 receives power flow, it converts the input signed double-
precision integer (DINT) data into the equivalent 8-digit Binary-Coded-Decimal (BCD)
values, which it outputs to Q. DINT_TO_BCD8 does not change the original DINT data.

Note: The output data can be used directly as input for another program function.
The function passes power flow when power is received, unless the conversion would
result in a value that is outside the range 0 to 99,999,999.

Operands
Parameter [Description Allowed Operands Optional
IN The DINT value to convert to BCD8 All except S, SA, SB, and SC |No
Q The BCDS8 equivalent value of the original|All except S, SA, SB, and SC |No
DINT value in IN
Example
Figure 88

¥_I00002 DINTTO
} BCD3 |_

V_AI0003 —IN OF & Zaveor

Whenever input %100002 is set and no errors exist, the double-precision signed integer
(DINT) at input location %AI0003 is converted to eight BCD digits and the result is stored
in memory locations %L00001 through %L00002.

Ladder Diagram (LD) Programming 142

CPU Programmer’s Reference Manual Section 4

GFK-2950M Dec 2024
4.6.4 Convert BCD4, UINT, DINT, or REAL to INT
Figure 89
BCD4 UINT DINT REAL
|roiwr| _roIiwTr| _TOINT| _TOINT|
—|IN ar 1IN ar 1IN ar 1IN ar

BDC4, UINT, and DINT

When this function receives power flow, it converts the input data into the equivalent
single-precision signed integer (INT) value, which it outputs to Q. This function does not
change the original input data. The output data can be used directly as input for another
program function, as in the examples.

The function passes power flow when power is received, unless the data is out of range.

REAL

When REAL_TO_INT receives power flow, it rounds the input REAL data up or down to
the nearest single-precision signed integer (INT) value, which it outputs to Q.
REAL_TO_INT does not change the original REAL data.

Note: The output data can be used directly as input for another program function.

The function passes power flow when power is received, unless the data is out of range
or NaN (Not a Number).

Converting from REAL to INT may resultin Overflow. For example, REAL 7.4E15, which equals
7.4 x 1015, converts to INT OVERFLOW.

Tip
To truncate a REAL value and express the result as an INT, i.e., to remove the fractional part of
the REAL number and express the remaining integer value as an INT, use TRUNC_INT.

Ladder Diagram (LD) Programming 143

CPU Programmer’s Reference Manual

GFK-2950M

Section 4
Dec 2024
Operands
Parameter|Description Allowed Operands |Optional
IN The value to convert to INT. All except S, SA, SB, and SC|No
Q The INT equivalent value of the original value in|All except S, SA, SB, and SC|No
IN.

Example: BCD4 to INT

Figure 90
V_Inoooz BCD4 ADD INT|
} TO INT |
PARTS —|IN QF v_Ro0001 V_RO0001 —IN1 OfF TOTAL

RONMNI... —IN2

Whenever input %10002 is set, the BCD-4 value in PARTS is converted to a signed
integer (INT) and passed to the ADD_INT function, where it is added to the INT value
represented by the reference RUNNING. The sum is output by ADD_INT to the reference
TOTAL.

Example: UINT to INT

Figure 91
V_M00344 [UINTTO ADD INT
[1 INT L
1 0
V_RO0D234 —{IN u] INt O CARGO

V_R06483 —IN2

Whenever input %M00344 is set, the UINT value in %R00234 is converted to a signed
integer (INT) and passed to the ADD function, where it is added to the INT value in
%R06488. The sum is output by the ADD function to the reference CARGO.

Ladder Diagram (LD) Programming 144

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Example: DINT to INT

Figure 92
V_M00031 [DINTTO ADD INT
I INT L
1 I
V_R000SS —{IN O INl Of V_R02004
V_R0Z345 —|IN2

Whenever input %MO00031 is set, the DINT value in %R00055 is converted to a signed
integer (INT) and passed to the ADD function, where it is added to the INT at %R02345.
The sum is output by the ADD function to %R08004.

4.6.5 Convert BCD4, INT, DINT, or REAL to UINT
Figure 93
BCD4 INT TO DINT BEAL
4 10 | Jumr | | 10 | | TO |
UINT UINT UINT
- aF HIN aF AW o - af

When this function receives power flow, it converts the input data into the equivalent
single-precision unsigned integer (UINT) value, which it outputs to Q.

The conversion to UINT does not change the original data. The output data can be used
directly as input for another program function, as in the example.

The function passes power flow when power is received, unless the resulting data is
outside the range 0 to +65,535.

A WARNING

Converting from REAL to UINT may result in Overflow. For example, REAL 7.2E17, which equals
7.2 x 1017, converts to UINT OVERFLOW.

Operands
Parameter |Description Allowed Operands Optional
IN The value to convert to UINT. All except S, SA, SB, and SC [No
Q The UINT equivalent value of the All except S, SA, SB, and SC [No
original input value in IN.

Ladder Diagram (LD) Programming 145

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Example: BCD4 to UINT

Tip

One use of BCD4_TO_UINT is to convert BCD data from the I/O structure into integer data and
storeitin memory. This can provide an interface to BCD thumbwheels or external BCD electronics,
such as high-speed counters and position encoders.

Figure 94
V_100002 [BCD4TO ADD
| UINT UINT |
PAETS —|IN a INt O TOTAL
RUMNING —IN2

In the example at right, whenever input %I10002 is set, the BCD4 value in PARTS is
converted to an unsigned single-precision integer (UINT) and passed to the ADD_UINT
function, where it is added to the UINT value represented by the reference RUNNING.
The sum is output by ADD_UINT to the reference TOTAL.

Example: INT to UINT

Figure 95
V_I00002 INTTO ADD
1 UINT UINT |
U Lodasy —IN u} Im QO TOTAL
V_R08833 —|IN2

Whenever input %10002 is set, the INT value in %L00050 is converted to an unsigned
single-precision integer (UINT) and passed to the ADD_UINT function, where it is added
to the UINT value in %R08833. The sum is output by ADD_UINTto the reference TOTAL.

Ladder Diagram (LD) Programming 146

CPU Programmer’s Reference Manual
GFK-2950M

4.6.6

Section 4
Dec 2024

Example: DINT to UINT

Figure 96
V_l00002 DINTTO S0E UINT
I UINT -
LI |
¥_R00007 —|IN 0 M OF v_Qooo33
145 —IN2

Whenever input %100002 is set and no errors exist, the double precision signed integer
(DINT) atinput location %R00007 is converted to an unsigned integer (UINT) and passed
to the SUB function, where the constant value 145 is subtracted from it. The result of the
subtraction is stored in the output reference location %Q00033.

Example: REAL to UINT

Figure 97
V_I00045 REALTO ADD
} UINT UINT
i Looes —|IN] IH1 O~ TOTAL
Y_RO0045 —{INZ

Wheneverinput %100045 is set, the REAL value in %L00045 is converted to an unsigned
single-precision integer (UINT) and passed to the ADD_UINT function, where it is added
to the UINT value in %R00045. The sum is output by ADD_UINTto the reference TOTAL.

Convert BCD8, UINT, INT, REAL or LREAL to DINT

Figure 98

REAL TO DINT BCDB TO DINT UINT TO DINT REAL TO DINT LREAL TO DINT

BCD8, UINT, and INT

When this function receives power flow, it converts the data into the equivalent signed
double-precision integer (DINT) value, which its outputs to Q. The conversion to DINT
does not change the original data.

The output data can be used directly as input for another program function. The function
passes power flow when power is received, unless the data is out of range.

REAL and LREAL

When REAL_TO_DINT or LREAL_TO_DINT receives power flow, it rounds the input
data to the nearest double-precision signed integer (DINT) value, which it outputs to Q.
These functions do not change the original REAL or LREAL data.

Ladder Diagram (LD) Programming 147

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

The output data can be used directly as input for another program function. The function
passes power flow when power is received, unless the conversion would result in an
out-of-range DINT value.

A WARNING

Converting from LREAL or REAL to DINT may result in Overflow. For example, REAL 5.7E20,
which equals 5.7 x 1020, converts to DINT OVERFLOW.

Tip
To truncate a REAL value and express the result as a DINT, i.e., to remove the fractional part of
the REAL number and express the remaining integer value as a DINT, use TRUNC_DINT.

Operands
Parameter |Description Allowed Operands Optional
IN The value to convert to DINT. All except S, SA, SB, and SC |No
Q The DINT equivalent value of the original| All except S, SA, SB, and SC |No
input value in IN.

Example: UINT to DINT

Figure 99

V_MO01478 [UmmTTo| V_MO00065

I DINT ()_‘

V_R00654 —IN QF ¥ Lanass

Whenever input %MO01478 is set, the unsigned single-precision integer (UINT) value at
input location %R00654 is converted to adouble-precision signedinteger (DINT) and the
result is placed in location %L00049. The output %MO00065 is set whenever the function
executes successfully.

Ladder Diagram (LD) Programming 148

CPU Programmer’s Reference Manual
GFK-2950M

4.6.7

Example: BCD8 to DINT

Figure 100
W_100025 [BCDBTO ADD
} DINT DINT |
v Lo —|IN Q INt O TOTAL

V_R00797 —IN2

Whenever input %100025 is set, the BCD-8 value in %L00046 is converted to a signed
double-precisioninteger (DINT)and passedtothe ADD_DINT function, where itis added
to the DINT valuein %R00797. The sum s output by ADD_DINTto the reference TOTAL.

Example: INT to DINT

Figure 101
V_100002 [§TTO | V_0Q00001

——{ DINT |y

V_I00017 —IN QF ¥ Zaoaos

Whenever input %100002 is set, the signed single-precisioninteger (INT) value at input
location %I00017 is converted to a double-precision signed integer (DINT) and the resuit
is placed in location %L00001. The output %Q01001 is set whenever the function
executes successfully.

Example: REAL to DINT

Figure 102
v_l0002 REALTO| V_Q0001
|| DINT () |
V_R0017 —IN Qf—v_R00D1

Whenever input %10002 is set, the REAL value at input location %R0017 is converted to
a double precision signed integer (DINT) and the result is placed in location %R0001.
The output %Q1001 is set whenever the function executes successfully.

Convert BCD4, BCD8, UINT, INT, DINT, and LREAL
to REAL

Figure 103
BCD4 TO BCDE TO UINT TO INT TO DINT TO ORD TO LREAL
REAL | _| DINT | REAL | REAL | _| REAL | _| REAL | _|TOREAL|
IN 2 —IN o —{iN apF —IN o N aF —n al N] S

Ladder Diagram (LD) Programming 149

Section 4
Dec 2024

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

When this function receives power flow, it converts the input data into the equivalent 32-
bit floating-point (REAL) value, which its outputs to Q. The conversion to REAL does not
change the original input data.

The output data can be used directly as input for another program function.

The function passes power flow when power is received, unless the conversion would
result in a value that is out of range.

A WARNING

e Converting from BCD8 to REAL may result in the loss of significant digits.

This is because a BCD8 value is stored in a DWORD, which uses 32 bits to storea value,
whereas a REAL (32-bit IEEE floating pointnumber) uses 8 bits to store the exponentand
the sign and only 24 bits to store the mantissa.

e Converting from DINT to REAL may resultin the loss of significant digits for numbers with
more than 7 significant base-10 digits.

This is because a DINT value uses 32 bits to store a value, which is the equivalent of up to
10 significant base-10 digits, whereas a REAL (32-bit IEEE floating point number) uses 8
bits to storethe exponentand the sign and only 24 bits to store the mantissa, which is the
equivalent of 7 or 8 significant base-10 digits. When the REAL result is displayed as a
base-10 number, it may have up to 10 digits, butthese are converted fromthe rounded 24-
bit mantissa, so that the last 2 or 3 digits may be inaccurate.

Operands
Parameter [Description Allowed Operands Optional
IN The value to convert to REAL. All except S, SA, SB, and SC |No
Q The REAL equivalent value of the All except S, SA, SB, and SC |No
original input value in IN.

Example: UINT to REAL

Figure 104

UINT TO
REAL

N

=]

L0000 — = L0006

The unsigned integervaluein %L00001 is 825. The value placed in %L00016 is 825.000.
Example: INT to REAL

Figure 105

Ladder Diagram (LD) Programming 150

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

INT TO
REAL

878 —IN Q= ROOD10

The integer value of input IN is -678. The value placed in %R00010 is -678.000.
Example: LREAL to REAL

Figure 106

| LREAL TS REAL

Rasult_Lrasl

The double-precision floating point value of the square rootof 2 is rounded to the nearest
single-precision floating point value and placed in RO0300.

Ladder Diagram (LD) Programming 151

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024
4.6.8 Convert REAL to LREAL
Figure 107
REAL TO
_| LREAL [
= | b D -

When REAL_TO_LREAL receives power flow, it converts the 32-bit single precision
floating point REAL data to the equivalent 64-bit double-precision floating point data.
REAL_TO_LREAL does not change the original REAL data.

Operands
Parameter Description Allowed Operands Optional
IN The REAL value to convert to LREAL. All except S, SA, SB, and SC No
Q The LREAL equivalent value of the original | All except S, SA, SB, and SC No
REAL value.
Example

The REAL value of the square root of 2 is converted to the LREAL data type and placed
in R00200. Because the actual precision of the data in Result Real is seven decimal
places, the additional decimal places in the data in R00200 are not valid.

Figure 108

L L

Ladder Diagram (LD) Programming

152

CPU Programmer’s Reference Manual Section 4

GFK-2950M Dec 2024
46.9 Convert DINT to LREAL
Figure 109

—{IN Q

When DINT_TO_LREAL receives power flow, it converts the double-precision input data
to 64-bit double-precision floating point data.

4.6.10 Truncate

Figure 110
TRUNC TEUNC
DINT INT

—IN oF —IN oF

When power is received, the Truncate functions TRUNC_DINT and TRUNC _INT round
a floating-point (REAL) value down respective to the nearest signed double-precision
signed integer (DINT) or signed single-precision integer (INT) value. TRUNC_DINT and
TRUNC_INT output the converted value to Q. The original data is not changed.

Note: The output data can be used directly as input for another program function.

TRUNC_DINT and TRUNC_INT pass power flow when power is received, unless the
specified conversion would resultin a value that is out of range or unless IN is NaN (Not

a Number).
Operands
Parameter |Description Allowed Operands Optional
IN The REAL value whose copy is to be [All except S, SA, SB, and SC [No
converted and truncated. The original is
left intact.
Q The truncated value of the original REAL|AIll except S, SA, SB, and SC |[No
value in IN.

Ladder Diagram (LD) Programming 153

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Example
The displayed constant is truncated, and the integer result 562 is placed in %T0001.

Figure 111
V_10002 TRUNC
|| INT |
%I100002

5.62987E+02 —IN QFV_T0001

%T00001
4.7 Counters
Function Mnemonic |Description
Down Counter DNCTR Counts down from a preset value. The output is ON whenever the Current
Value is < 0.
Up Counter UPCTR Counts to a designated value. The output is ON whenever the Current
Value is > the Preset Value.
4.7.1 Data Required for Counter Function Blocks

Do notuse two consecutive words (registers) as the starting addresses of two counters. Logic
Developer PLC does notcheck or warn you if register blocks overlap. Timers will notwork if you
place the current value of a second timer on top of the preset value for the previous timer.

Each counter uses a one-dimensional, three-word array of %R, %W, %P, %L, or
symbolic memory to store the following information:

Current value (CV) Word 1

Thefirstword (CV) can be read but should notbe written to, or the function may notwork properly.

Ladder Diagram (LD) Programming 154

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Preset value (PV) Word 2When the Preset Value (PV) operand is a variable, it is
normally set to a different location than word 2 in the timer's
or counter’s three-word array.

e If you use a different address and you change word 2
directly, your change will have no effect, as PV will
overwrite word 2.

e If you use the same address for the PV operand and
word 2, you can change the Preset Value in word 2 while

the timer or counter is running, and the change will be
effective.

Control word Word 3 The control word stores the state of the Boolean inputs and
outputs of its associated timer or counter, as shown in the
following diagram:

The third word (Control) can be read but should notbe written to; otherwise, the function will not
work.

Word 3: Control Word Structure

Figure 112

[as]12T3J12T11T10] 2 s] [z1elslT=sT=2T2T110]
| T T I U I O

Res erved

Res et input

Enable input, previcus execution

Q (counter/timer status cutput)

EN (enable input

Note: Bits 0through 13 are not used for counters.

Ladder Diagram (LD) Programming 155

CPU Programmer’s Reference Manual
GFK-2950M

4.7.2

Down Counter

Figure 113

DMCTR

222?

R

PV CV

The Down Counter (DNCTR) function counts down from a preset value. The minimum
Preset Value (PV) is zero; the maximum PV is +32,767 counts. When the Current Value
(CV) reaches the minimum value, 32,768, it stays there until reset. When DNCTR is
reset, CV is set to PV. When the power flow input transitions from OFF to ON, CV is

decremented by one. The output is ON whenever CV <0

The output state of DNCTR is retentive on power failure; no automatic initialization
occurs at power-up.

A WARNING

Do notuse the Address ofthe down counter with otherinstructions. Overlapping references cause
erratic counter operation.

Note: For DNCTR to function properly, you must provide an initial reset to set the CV to the
value in PV. If DNCTR is not initially reset, CV will decrement from 0 and the output of
DNCTR will be setto ON immediately.

Section 4
Dec 2024

Operands
Parameter Description Allowed Operands Optional
Address The beginning address of a three-word WORDIR, W, P, L, symbolic No
(??27?7) array:
Word 1: Current Value (CV)
Word 2: Preset Value (PV)%
Word 3: Control word
R When R receives power flow, it resets the Power flow No
counter's CV to PV.
PV Preset Value to copy into word 2 of the All except S, SA, SB, SC No
counter's address when the counteris enabled
orreset. 0 <PV <32,767.If PVis out of range,
word 2 cannot be reset.
Ccv The current value of the counter All except S, SA, SB, SCand|No
constant
156

Ladder Diagram (LD) Programming

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Example — Down Counter
DNCTR counts 5000 new parts before energizing output %Q00005.

Figure 114
MEW_PRT [DNCrR | V_0Q00005

—] —{

MXT_BAT |V_R00100
—— ——®

5000 -|F¥ CV[~ Current_V

4.7.3 Up Counter

Figure 115

UPCTR

22?2?

-k

-PV CV[-

The Up Counter (UPCTR) function counts to the Preset Value (PV). The range is 0 to
+32,767 counts. When the Current Value (CV) of the counter reaches 32,767, it remains
there until reset. When the UPCTR resetis ON, CV resets to 0. Each time the power flow
input transitions from OFF to ON, CV increments by 1. CV can be incremented past the
Preset Value (PV). The output is ON whenever CV > PV. The output (Q) stays ON until
the R input receives power flow to reset CV to zero.

The state of UPCTR is retentive on power failure; no automatic initialization occurs at
power-up.

Do not use the Address of the up counter with other instructions. Overlapping references cause
erratic counter operation.

Ladder Diagram (LD) Programming 157

CPU Programmer’s Reference Manual

GFK-2950M

Section 4
2024

Dec
Operands
Parameter |Description Allowed Operands (Optional
Address The beginning address of a three-word WORD array:|R, W, P, L, symbolic No
(?727?) Word 1: Current Value (CV)
Word 2: Preset Value (PV)
Word 3: Control word
R When Ris ON, it resets the counter's CV to 0. Power flow No
PV Preset Value to copy into word 2 of the counters|All except S, SA, SB, |No
address when the counteris enabled orreset. 0 < PV <{and SC
32,767.If PVis out of range, it does not affect word 2.
Ccv The current value of the counter All except S, SA, SB, |No
SC and constant
Example — Up Counter

Every timeinput %10012 transitions from OFF to ON, the Up Counter counts by 1; intemal
coil %MO0001 is energized whenever 100 parts have been counted. Whenever %MO0001
is ON, the accumulated count is reset to zero.

Figure 116
V_100012 UPCIR | V_M00001
i —(
V_M00001 |V_R00010
— —R
100 PV CV— Current_V

Ladder Diagram (LD) Programming

158

CPU Programmer’s Reference Manual

GFK-2950M

Section 4
Dec 2024

Example — Up Counter and Down Counter

This example uses an up/down counter pair with a shared register for the accumulated
or current value. When the parts enter the storage area, the up-counter increments by 1,
increasing the current value of the parts in storage by a value of 1. When a part leaves
the storage area, the down counter decrements by 1, decreasing the inventory storage
value by 1. To avoid conflict with the shared register, both counters use different register
addresses, but each has a current value (CV) address that is the same as the
accumulated value for the other register.

Figure 117
V_I00003

W_I00001

] L
L L
V_I00009

V_I00003

V_RO00100
R

UFCTR V_qQoooo1

—A

s —PV CV| V_R00104

V_loogoo2

—R

5—F

V_R00104

DNCTR v_qQoooo2

{ F—

vV CVI ¥_R00100[0]

4.8 Data Move Functions

The Data Move functions provide basic data move capabilities.

Function

Mnemonics

Description

Array Size

ARRAY_SIZE

Counts the number of elements in an array.

Array Size
Dimension 1

ARRAY_SIZE_DIM1

Returns the value of the Array Dimension 1 property of a one-or|
two-dimensional array.

Array Size
Dimension 2

ARRAY_SIZE_DIM2

Returns the value of the Array Dimension 2 property of a two-
dimensional array.

Block Clear

BLK_CLR_WORD

Replaces all the contents of a block of data with zeroes. Can be
used to clear an area of WORD or analog memory.

Block Move

BLKMOV_DINT
BLKMOV_DWORD
BLKMOV_INT
BLKMOV_REAL
BLKMOV_UINT
BLKMOV_WORD

Copies a block of seven constants to a specified memory
location. The constants are input as part of the function.

Ladder Diagram (LD) Programming

159

GFK-2950M

CPU Programmer’s Reference Manual Section 4
Dec 2024
Function Mnemonics Description
Bus Read BUS_RD _BYTE Reads data from a module on the bus.

4.8.1

BUS_RD_DWORD
BUS_RD_WORD

Bus Read Modify
Write

BUS_RMW_BYTE
BUS_RMW_DWORD
BUS_RMW_WORD

Uses a read/modify/write cycle to update a data elementin a
module on the bus.

Bus Test and Set

BUS_TS_BYTE
BUS_TS_WORD

Handles semaphores on the bus.

Bus Write

BUS_WRT_BYTE
BUS_WRT_DWORD
BUS_WRT_WORD

Writes data to a module on the bus.

Communication
Request

COMMREQ

Allows the program to communicate with an intelligent module,
such as a Genius Bus Controller or a High-Speed Counter.

Data Initialization

DATA_INIT_DINT
DATA_INIT_DWORD
DATA_INIT_INT
DATA_INIT_REAL
DATA_INIT_LREAL
DATA_INIT_UINT
DATA_INIT_WORD

Copies a block of constant data to a reference range. The
mnemonic specifies the data type.

Data Initialize ASCII

DATA_INIT_ASCII

Copies a block of constant ASCII text to a reference range.

Data Initialize DLAN

DATA_INIT_DLAN

Used with a DLAN Interface module.

Data Initialize
Communications
Request

DATA_INIT_COMM

Initializes a COMMREQ function with a block of constant data.
The length should equal the size of the COMMREQ function’s
entire command block.

Move

MOVE_BOOL
MOVE_DATA
MOVE_DINT
MOVE_DWORD
MOVE_INT
MOVE_REAL
MOVE_LREAL
MOVE_UINT
MOVE_WORD

Copies data as individual bits, so the new locationdoes not have
to be the same datatype.Data canbe moved into a different data
type without prior conversion.

Move Data Explicit

MOVE_DATA_EX

Provides an input that allows for data coherency by locking
symbolic memory being written to during the copy operation.

Move from Flat

MOVE_FROM_FLAT

Copies reference memory data to a UDT variable or UDT array.
Provides the option of locking the symbolic or I/O variable
memory area being written to during the copy operation.

Move to Flat

MOVE_TO_FLAT

Copies data from symbolic or I/0 variable memory to reference
memory. Copies across mismatching data types.

Shift Register SHFR_BIT Shifts one ormore data bits,data WORDs or data DWORDs from
SHFR_DWORD a reference location into a specified area of memory. Data
SHFR_WORD already in the area is shifted out.

Size Of SIZE_OF Counts the number of bits used by a variable.

Swap SWAP_DWORD Swaps two BYTEs of data within a WORD or two WORDs within
SWAP_WORD a DWORD.

Array Size

Figure 118

Ladder Diagram (LD) Programming

160

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Counts the number of elements in the array assigned to input IN and writes the number
to output Q.

In an array of structure variables, the number of structure variables is written to Q; the
elements in the structure variables are not counted.

Tip

If the array assigned to input IN of ARRAY_SIZE is passed to a parameterized C block for
processing, also pass the value of output Q to the block. In the C block logic, use the value of
output Q to ensure all array elements are processed without exceeding the end ofthe array. Fora
two-dimensional array, this method works only if all elements are treated identically; for example,
all are initialized to the same value.

Ladder Diagram (LD) Programming 161

CPU Programmer’s Reference Manual Section 4

GFK-2950M Dec 2024
Operands
Parameter |Description Allowed Operands Optional
IN Array of any data type whose Dataflow,1, Q, M, T, S, SA, SB, SC, G,|No
elements are counted. discrete symbolic, I/O variable

If a non-array variable is assigned
to IN, the value of Qis 1.

Q Number of elements in the array [DINT or DWORD variable. No
assigned to input IN. Dataflow, |, Q,M, T, G, R, P, L, Al, AQ,
W, symbolic, I/O variable

Example

The two-dimensional array Test Array has its Array Dimension 1 property setto 4 and its
Array Dimension 2 property setto 3. ARRAY_SIZE calculates 4 x 3 and writes the value
12 to the variable Elements.

Figure 119
TestArray —1IN Q— Elements
4.8.2 Array Size Dimension Function Blocks

Array Size Dimension 1

Figure 120

ARRAY SIZE DIM2Z

Returns the value of the Array Dimension 2 property of an array and writes the value to
output Q. If a non-array variable is assigned to IN, the value of Q is 0.

In an LD or ST block that is not a parameterized block or a User Defined Function Block
(UDFB), you can use the output Q value to ensure that a loop using a variable index to
access array elements does not exceed the array’s second dimension.

Ladder Diagram (LD) Programming 162

CPU Programmer’s Reference Manual Section 4

GFK-2950M Dec 2024
Operands
Parameter |Description Allowed Operands Optional
IN Array of any data type. Data flow, I, Q, M, T, S, SA, SB, SC, |No

G, discrete symbolic, I/O variable

Q The value of the Array Dimension 1|DINT or DWORD variable. No
property of the array assigned to input|Data flow, I, Q, M, T, G, R, P, L, Al,
IN. The value is setto 0 if a non-array|AQ, W, symbolic, 1/O variable

is assigned to IN.

Note: Because the index of the
first element of an array
is zero, the index of the
last element is one less
than the value assigned
to Q.

Array Size Dimension 2

Figure 121

Returns the value of the Array Dimension 2 property of an array and writes the value to
output Q. If a non-array variable is assigned to IN, the value of Q is 0.

In an LD or ST block that is not a parameterized block or a User Defined Function Block
(UDFB), you can use the output Q value to ensure that a loop using a variable index to
access array elements does not exceed the array’s second dimension.

Ladder Diagram (LD) Programming 163

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024
Operands
Parameter |Description Allowed Operands Optional
IN Array of any data type. Data flow, I, Q, M, T, S, SA, SB, SC, |No
G, discrete symbolic, 1/0 variable
Q The value of the Array Dimension 2|DINT or DWORD variable. No

property of the array assigned to input IN.
The value is set to 0 if a non-array is
assigned to IN.

Note: Because the index of the first
element of an array is zero,
the index of the last element is
one less than the value
assigned to Q.

Data flow, I, Q, M, T, G, R, P, L, Al,
AQ, W, symbolic, I/O variable

Example - FOR_LOOP that Iterates Through Dimension 1 of an

Array

To use a FOR_LOOP to access array elements by means of a variable index, you must
ensure that the FOR_LOOP does not iterate beyond the last element of the array.

In

the following logic, MOVE_DINT initializes the variable D1_temp to O.

ARRAY_SIZE_DIM1 counts the number of elements of a one-dimensional array named
D1_Array and outputs the result to output Q. Because the index of the first element of an
array is zero, the loop must iterate (Q - 1) times. SUB_DINT performs the subtraction
and the result is converted to an INT value and assigned to variable D1_size.

Figure 122

UINT TO INT

In the following rungs, the FOR_LOOP executes when D10ON is setto On. The variable
index D1_Index increments by 1 from 0 through D1_size, the value calculated by
ARRAY_SIZE_DIM1 and SUB_DINT. In each loop, the value of D1_temp is assigned to

the element D1_Array[D1_Index] and D1_temp is increased by 1.

Ladder Diagram (LD) Programming

164

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Figure 123

o —{sTaART

MOVE DINT ADD DINT

You can use a FOR_LOORP to iterate through an array’s second dimension in a method
similar to this example. You can also use nested FOR_LOOPs to ensure that operations
on elements using two variable indexes each do not exceed their array dimension. For
additional examples, refer to the online help.

4.8.3 Block Clear

Figure 124

When the Block Clear (BLKCLR_WORD) function receives power flow, it fills the
specified block of data with zeroes, beginning at the reference specified by IN. When the
data to be cleared is from BOOL (discrete) memory (%I, %Q, %M, %G, or %T), the
transition information associated with the references is updated. BLKCLR_WORD
passes power to the right whenever it receives power.

Note: The input parameter IN is not included in coil checking.

Ladder Diagram (LD) Programming 165

CPU Programmer’s Reference Manual Section 4

GFK-2950M Dec 2024
Operands
Parameter |Description Allowed Operands Optional
Length (??) |The numberof words to clear, starting at| Constant No
the INlocation. 1 <Length <256 words.
IN The first WORD of the memory block to|All except %S and data flow. No
clearto 0.
Example

At power-up, 32 words of %Q memory (512 points) beginning at % Q0001 are filled with
zeroes. The transition information associated with these references will also be updated.

Figure 125
#FST_SCN BLE CLE
} WORD |
32
v_Qo0001 —{IN

Ladder Diagram (LD) Programming 166

CPU Programmer’s Reference Manual

GFK-2950M

484 Block Move

BLEMOV

—| DINT

—1IM a

—IN2

IN3

|

IN4

—INS

—IN&

—IN7?

~ power.

Operands

When the Block Move (BLKMOV) function receives power
| flow, it copies a block of seven constants into consecutive
locations beginning at the destination specified in output Q.
BLKMOV passes power to the right whenever it receives

Section 4
Dec 2024

Mnemonics:
BLKMOV_DINT
BLKMOV_DWORD
BLKMOV_INT
BLKMOV_REAL
BLKMOV_UINT
BLKMOV_WORD

Note: For each mnemonic, use the corresponding data type for the Q operand. For
example, BLKMOV _DINT requires Q to be a DINT variable.

destination for the moved values.
IN1 is moved to Q.

Parameter |Description Allowed Operands Optional
IN1 to IN7 |The seven constant values to|Constants. Constant type must match|No

move. function type.
Q The first memory location of the |All except %S. No

%SA, SB, SC are also prohibited on
BLKMOV REAL, BLK_MOV_INT, and

BLK_MOV_UINT.

Ladder Diagram (LD) Programming

167

CPU Programmer’s Reference Manual

GFK-2950M

4.8.5

Example

When the enabling input represented by the name #FST_SCN is ON, BLKMOV_INT
copies the seven input constants into memory locations %R0010 through %R0016.

Figure 126

#FST_SCHN BLEMOV
11 INT |

32767 —|IN1 QF V_R00010

-32768 —|IN2

1—IN2

2 —{IN4

2 —INS

1—IN6

1—IN7

BUS_ Functions

Four program functions allow the PACSystems CPU to communicate with modules in
the system.

e Bus Read (BUS_RD)

e Bus Write (BUS_WRT)

e Bus Read/Modify/Write (BUS_RMW)
e Bus Test and Set (BUS_TS)

These functions use the same parameters to specify which module on the bus will
exchange data with the CPU.

Note: Additional information related to addressing modules is required to use the BUS_
functions. For open VME modules in an RX7i system, refer to the PACSystems RX7i
User’s Guide to Integration of VME Modules, GFK-2235. For other modules, refer
to the product documentation provided by the manufacturer.

Rack, Slot, Subslot, Region, and Offset Parameters

The rack and slot parameters referto a module in the hardware configuration. The region
parameter refers toamemory region configured for that module. The sub -slot is ordinarily
setto 0. The offsetis a 0-based number that the function adds to the module’s base
address (which is part of the memory region configuration) to compute the address to be

read or written.

Ladder Diagram (LD) Programming 168

Section 4
Dec 2024

CPU Programmer’s Reference Manual Section 4

GFK-2950M Dec 2024
BUS Read
BUS RD The BUS_RD function reads data from the bus. Mnemonics:
BYTE This function should be executed before thedataisneededin BUS_RD_DINT

the program. If the amount of data to be read is greaterthan BUS RD DWORD
32767 BYTES, WORDS, or DWORDS, use mulibe pgus RD WORD
instructions to read the data.

When BUS_RD receives power flow, it accesses the module

at the specified rack (R), slot (S), subslot (SS), address region

=R T = (RGN) and offset (OFF). BUS_RD copies the specified

number (Length) of data units (DWORDS, WORDs or BYTEs)

from the module to the CPU, beginning at output reference

Q).

The function passes power to the right when its operation is

o ar- successful. The status of the operation is reported in the

status location (ST).

77

Note:

s e Foreach BUS_RD function type, use the
corresponding data type for the Q operand. For
example, BUS_RD_BYTE requires Q to be a
BYTE variable.

e An interrupt block can preempt the execution of
—RGN a BUS_RD function. On the bus, only 256 bytes
are read coherently (i.e., read without being
preempted by an interrupt).

—{oFF

Operands for BUS READ

Parameter |Description Allowed Operands Optional

Length (??) |The numberof BYTEs, DWORDs, or| Constant No
WORDs. 1 to 32,767. onstan

R Rac.:k number. UINT constant or All except %S—%SC No
variable.

S Slot number. UINT constant or All except %S—%SC No
variable.

SS Subslot numbe!'(defaults to 0). UINT All except %S—%SC Yes
constant or variable.

RGN Region (defaults to 1). WORD All except %S—%SC Yes
constant or variable.

OFF The offset in bytes. DOWORD All except %S—%SC No
constant or variable.

ST The status of the operation. WORD]AIl except variables located in %S— [Yes
variable. %SC, and constants

Q Reference for data read from the [All except variables located in %S— |No
module. DWORD variable. %SC, and constants

BUS_RD Status in the ST Output

The BUS_RD function returns one of the following values to the ST output:

Ladder Diagram (LD) Programming 169

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024
Value Description
0 Operation successful.
1 Bus error
2 Module does not exist at rack/slot location.
3 Module at rack/slot location is an invalid type.
4 Start address outside the configured range.
5 End address outside the configured address range.
6 Absolute address even but interface configured as odd byte only
8 Region not enabled
10 Function parameter invalid.
Ladder Diagram (LD) Programming 170

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

BUS Read Modify Write

BLIS Rkl The BUS_RMW function updates one byte, word, or Other mnemonic:
BYTE double word of data on the bus. This function locks the BUS RMW WORD

— — bus while performing the read-modify-write operation. - -

When the BUS_RMW function receives power flow

through its enable input, the function reads a dword,

word or byte of data from the module at the specified

rack (R), slot (S), subslot (SS) and optional address

region (RGN) and offset (OFF). The original value is

stored in parameter (OV).

The function combines the data with the data mask

(MSK). The operation performed (AND / OR) is selected

WK with the OP parameter. The mask value is dword data.

When operating on a word of data, only the lower 16 bits

are used. When operating on a byte of data, only the

lower 8 bits of the mask data are used. The resultis then

written back to the same address from which it was read.

=R
The BUS_RMW function passes powerto the right when
its operation is successful, and returns a status value to
the ST output.

-]

.

—RGM

—FF

Ladder Diagram (LD) Programming 171

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Operands for BUS_RMW

For BUS_RMW_WORD, the absolute bus address must be a multiple of 2. For
BUS_RMW_DWORD, it must be a multiple of 4.

The absolute bus address is equal to the base address plus the offset value.

Parameter |Description Allowed Operands Optional
OoP Type of operation: No
0 = AND Constant
1=0R
MSK The dat k. DIWORD tant N
g ata mas constant or All except %S—%SC o
variable.
R Rack number. UINT constant or variable. [All except %S—%SC No
S Slot number. UINT constant or variable. |All except %S—%SC No
SS Subslot number (optional, defaults to 0). o o Yes
UINT constant or variable. All except %S—%SC
RGN Region (defaults to 1). WORD constant or|All except %S—%SC Yes
variable.
OFF The offset in bytes. DIWORD constant or |All except %S—%SC No
variable.
ST The status of the operation. WORD All except variables located in |Yes
variable. %S—%SC, and constants
ov Original value. DWORD variable. All except variables located in|Yes
%S—%SC, and constants

BUS_RMW Status in the ST Output
The BUS_RMW function returns one of the following values to the ST output:

Value Description

0 Operation successful.

1 Bus error

2 Module does not exist at rack/slot location.

3 Module at rack/slot location is an invalid type.

4 Start address outside the configured range.

5 End address outside the configured address range.

6 Absolute address even but interface configured as odd byte only

7 For WORD type, absolute bus address is not a multiple of 2. For DWORD type, absolute
bus address is not a multiple of 4.

8 Region not enabled

9 Function type too large for configured access type.

10 Function parameter invalid.

Ladder Diagram (LD) Programming 172

CPU Programmer’s Reference Manual

GFK-2950M

BUS Test and Set

BUSTS
BYTE

—RGN

—oFF

The BUS_TS function uses semaphores to contol
access to specific memory in a module located on
the bus.

The BUS_TS function exchanges a Boolean TRUE
(1) for the value currently at the semaphore
location. If that value was already a 1, then the
BUSTST function does not acquire the semaphore.
If the existing value was 0, the semaphore is set and
the BUS_TS function has the semaphore and the
use of the memory area it controls. The semaphore
can be cleared, and ownership relinquished by
using the BUSWRT function to write a 0 to the
semaphore location. This function locks the bus
while performing the operation.

When the BUS_TS function receives power flow
through its enable input, the function exchanges a
Boolean TRUE (1)with the address specified by the
RACK, SLOT, SUBSLOT, RGN, and OFF
parameters. The function sets the Q outputon if the
semaphore was available (0) and was acquired. It
passes power flow to the right whenever power is
received, and no errors occur during execution.

Operands for BUS Test and Set

BUS TS can be p

rogrammed as BUS TS BYTE or

Section 4

Other mnemonic:
BUS_TS_WORD

Dec 2024

BUS_TS_WORD. For

BUS_TS_WORD, the absolute address of the module must be a multiple of 2. The
absolute address is equal to the base address plus the offset value.

Parameter |Description Allowed Operands Optional

R Rack number. UINT constant or variable. [All except %S—%SC No

S Slot number. UINT constant or variable. All except %S—%SC No

SS Subslot number (defaults to 0). UINT All except %S—%SC Yes
constant or variable.

RGN Region (defaults to 1). WORD constant or [All except %S—%SC Yes
variable.

OFF The offset in bytes. DWORD constant or | All except %S—%SC No
variable.

ST The status of the bus test and set operation.|All except variables Yes
WORD variable. located in %S—%SC, and

constant

Q Output set on if the semaphore was Power flow Yes
available (0). Otherwise, Q is set off.

BUS Write

Ladder Diagram (LD) Programming

173

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

EUS WRT When the BUS_WRT function receives power flow through its Mnemonics:

BYTE enable input, it writes the data located at reference (IN) o the BUS WRT DINT
- - module at the specified rack (R), slot (S), subslot (SS) and gys WRT DWORD
optional address region (RGN) and offset (OFF). BUSWRT BUS WRT WORD
':-: writes the specified length (LEN) of data units (DWORDS, - -
WORDs or BYTES).
- T The BUS_WRT function passes power to the right when its
operation is successful. The status of the operation is reported
in the status location (ST).

—r Note:

e Foreach BUS_WRT function type, use the
corresponding data type for the IN operand. For
example, BUS WRT_BYTE requires IN to be a
BYTE variable.

e An interrupt block can preempt the execution of a

BUS_WRT function. On the bus, only 256 bytes
s are written coherently (i.e., written without being
preempted by an interrupt).

Operands for Bus Write

Parameter Description Allowed Optional

Length (?7?) Length. The numberof BYTEs, DWORDs, Constant No
or WORDs. 1 to 32,767.

IN Reference for data to be written to the All except variables located in |[No
module. DWORD variable. %S—%SC, and constant

R Rack number. UINT constant or variable. [All except %S—%SC No

S Slot number. UINT constant or variable. |All except %S—%SC No

SS Subslot number (defaults to 0) UINT Yes

All t %S—%SC
constant or variable. except % &

RGN Region. (defaults to 1) WORD constant or{All except %S—%SC Yes
variable.

OFF The offset in bytes. DWORD constant or |All except %S—%SC No
variable.

ST The status of the operation. WORD All except variables located in|Yes
variable. %S—%SC, and constant

Ladder Diagram (LD) Programming 174

CPU Programmer’s Reference Manual Section 4

GFK-2950M Dec 2024
4.8.6 Communication Request (COMMREQ)
Figure 127
COMM
REQ
—IN T
—SYSID
—TASK

The Communication Request (COMMREQ) function communicates with an intelligent
module, such as a Genius Communications Module or High-Speed Counter.
Notes:

° The information presented in this section shows only the basic format of the
COMMREQ function. Many types of COMMREQs have been defined. You will need
additional information to program the COMMREQ for each type of device.
Programming requirements for each module that uses the COMMREQ function are
described in the specialty module's user documentation.

° If you are using the COMMREQ to conduct serial communications, refer to the Serial
I/0, SNP and RTU Protocols section in PACSystems RX7i, RX3i and RSTi-EP CPU
Reference Manual, GFK-2222.

° If you are using the COMMREQ to interface with an intelligent module (such as
Genius Communications Gateway), refer to that product’s user manual for
operational details.

° A COMMREQ instruction inside an interrupt block being executed may cause the
block to be preempted when a new, incoming interrupt has the same priority.

When COMMREQ receives power flow, it sends the command block of data specified by
the IN operand to the communications TASK in the intelligent or specialty module, at the
rack/slot location specified by the SYSID operand. The command block contents are sent
to the receiving device and the program execution resumes immediately. (Because
PACSystems does not support WAIT mode COMMREQs, the timeout value is ignored.)
The COMMREQ passes power flow unless the following fault conditions exist. The
Function Faulted (FT) output may be set ON if:

e Control block is invalid

e Destination is invalid (target module is not present or is faulted)

e Target module cannot receive mail because its queue is full

The Function Faulted output may have these states:

Enable Error? Function Faulted Output
active no OFF

active yes ON

not active no execution OFF

Command Block

The command block provides information to the intelligent module on the command to
be performed. The command block starts at the reference specified by the operand IN.
This address may be in any word-oriented area of memory (%R, %P, %L, %W, %A,
%AQ, or symbolic non-discrete variables). The length of the command block depends
on the amount of data sent to the device.

Ladder Diagram (LD) Programming 175

CPU Programmer’s Reference Manual

GFK-2950M

Section 4
Dec 2024

The Command Block contains the data to be communicated to the other device, plus
information related to the execution of the COMMREQ. Information required for the
command block can be placed in the designated memory area using a programming

function such as MOVE, BLKMOV, or DATA_INIT_COMM.
Command Block Structure

Address + Offset Description
Address Data Block Length (in |[The number of data words starting with the data at
words) address+6 to the end of the command block, inclusive. The
data block length ranges from 1 to 128 words. Each

COMMREQ command has its own data block length. When

entering the data block length, you must ensure that the

command block fits within the register limits
Address + 1 Wait/No Wait Flag Must be set to 0 (No Wait)
Address + 2 Status Pointer Memory |[Specifies the memory type for the location where the
Type COMMREQ status word (CSR) returned by the device wil be
written when the COMMREQ completes.
Address + 3 Status Pointer Offset The word at address + 3 contains the offset for the status
word within the selected memory type.

Note: The status pointer offset is a zero-based|
value. For example, %R00001is at offset
zero in the register table.

Address + 4 Idle Timeout Value This parameter is ignored in No Wait mode.
Address + 5 Maximum This parameter is ignored in No Wait mode.
Communication Time
Address + 6 Data Block The data block contains the command's parameters. The
to Address + 133 data block begins with a command number in address + 6,
which identifies the type of communications function to be
performed. Refer to the specific device manual for
COMMREQ command formats.

Ladder Diagram (LD) Programming

176

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Status Pointer Memory Type

Status pointer memory type contains a numeric code that specifies the user reference
memory type for the status word. The table below shows the code for each reference

type:

For this memory type Enter this decimal value

%l Discrete input table (BIT mode) 70

%Q Discrete output table (BIT mode) 72

%l Discrete input table (BYTE mode) 16

%Q Discrete output table (BYTE mode) 18

%R Register memory 8

%W Word memory 196

%Al Analog input table 10

%AQ Analog output table 12

Notes:

° The value entered determines the mode. For example, if you enter the %l bit mode is
70, then the offset will be viewed as that bit. On the other hand, if the %l value is 16,
then the offset will be viewed as that byte.

° The high byte at address + 2 should contain zero.

Operands for COMMREQ

Parameter |Description Allowed Operands Optional
IN The reference of the first WORD of the|Variables in %R, %P, %L, %Al,|No
command block. %AQ, %W, and symbolic non-

discrete variables

SYSID The rack number (most significant byte) and|All except flow and variables in|No
slot number (least significant byte) of the|%S - %SC
target device (intelligent module).

Note: For systems that do not have
expansion racks, SYSID must
be zero for the main rack.

TASK The task ID of the process on the target|Constants; variables in %R, No
device %P, %L, %Al, %AQ, %W, and
symbolic non-discrete variables

Ladder Diagram (LD) Programming 177

CPU Programmer’s Reference Manual

GFK-2950M

Section 4
Dec 2024

Parameter

Description

Allowed Operands

Optional

FT

Function Faulted output. FT is energized if
an error is detected processing the
COMMREQ:

This is a WAIT mode COMMREQ and
the CPU does not support it

The specified target address (SYSID
operand) is not present.

The specified task (TASK operand) is
not valid for the device.

The data length is 0.

The devices status pointer address

(part of the command block) does not
exist. This may be due to an incorrect|
memory type selection, or an address|
within that memory type that is out of

range.

Yes

COMMREQ Status Word

Figure 128

Minor Error Code (high byte)
Success and Major Error Code (low byte)

CRS Word

(hexadecimal)

High Low

01

The CRS word consists of two-byte values, a major code and a minor code.

Refer to the specific device manual for CRS major and minor codes used by COMMREQ
commands at that device.

COMMREQ Example 1

Figure 129

V_M00020

V_R00016 —

102 —

SYSID

1—

TASK

COMM REQ

¥_000010

IN FI— —

When enabling input %MO0020 is ON, a command block starting at %R0016 is sent to
communicationstask 1inthe devicelocated atrack 1, slot2 of the PLC. Ifan erroroccurs
processing the COMMREQ, %Q0100 is set.

COMMREQ Example 2

The MOVE function can be used to enter the command block contents for the
COMMREQ described in example 1.

Ladder Diagram (LD) Programming

178

CPU Programmer’s Reference Manual Section 4

GFK-2950M Dec 2024
Figure 130
MOVE UINT MOVE LINT MOVE LINT
#FST_SCN
1— | —
1 1 1
100 =N Q= RO0D{G o =N Q= ROOOHT g =N Q- RO001E
MOVE UINT
1
512 —|N Q= RO0D19
COMM REQ
MO0020
22— -
Qo100
RO0016 —IN FT Q—
{0z —{S¥siD
§ —TASK

Input IN of the COMMREQ specifies %R00016 as the beginning reference for the
command block. Successive references contain the following:

%R00016 Data Block Length

%R00017 Wait/No Wait Flag

%R00018 Status Pointer Memory Type

%R00019 Status Pointer Offset

%R00020 Idle Timeout Value (Because this parameteris ignored in NO WAIT mode,
no value is input).

%R00021 Maximum Communication Time Value (Because this parameter is ignored
in NO WAIT mode, no value is input).

%R00022 to end of data Data Block

Ladder Diagram (LD) Programming 179

CPU Programmer’s Reference Manual

GFK-2950M

4.8.7

Section 4
Dec 2024

MOVE functions supply the following command block data for the COMMREQ.

e The first MOVE function places the length of the data being communicated in

%R00016.

e The second MOVE function places the constant 0 in %R00017. This specifies NO
WAIT mode.

e The third MOVE function places the constant 8 in %R00018. This specifies the
register table as the location for the status pointer.

o The fourthMOVEfunctionplacesthe constant 512inreference %R00019. Therefore,

the status pointer is located at %R00513.
The programming logic displayed in example 2 can be simplified by replacing the six
MOVE functions with one DATA_INIT_COMM function.

Figure 131
#FST_SCN DATA INIT aooooz |
1} COMM TR
v N
134
O Mo0001
M00020 COMM REQ Qoo100
1} 7Y
e A
Qooo10
ROOO1E —{IN T O
12 —|SYSID
1 —TASK
Data Initialization
DATA The Data Initialization (DATA_INIT) function copies a block ~ Mnemonics:
_| IMIT | of constant data to a reference range. DATA_INIT_DWORD
DI“’T When the DATA_INIT instruction is first programmed, the DATA_INIT_DWORD
constants are initialized to zeroes. To specify the constant paTA |NIT INT
or data to copy, double-click the DATA_INIT instruction in the DATA_INIT_UINT

LD editor.

Note: The mnemonics DATA INIT_ASCII (refer to

Data Initialize ASCII) and DATA _INIT_COMM (refer
to Data Initialize Communications Request)
operate differently from the other six
functions.

DATA_INIT_REAL
DATA_INIT_LREAL
DATA_INIT_WORD

When DATA_INIT receives power flow, it copies the constant data to output Q.
DATA_INIT's constant data length (LEN) specifies how much constant data of the

function type is copied to consecutive reference addresses starting at output Q.

DATA_INIT passes power to the right whenever it receives power.

Notes:
° The output parameter is not included in coil checking.
° If you replace one DATA_INIT instruction (except DATA INIT_ASCIl or

DATA_INIT_COMM) with

Ladder Diagram (LD) Programming

another (except

DATA_INIT_ASCII or

180

CPU Programmer’s Reference Manual

GFK-2950M

Section 4
Dec 2024

DATA_INIT_COMM), Logic Developer - PLC attempts to keep the same data. For
example, configuring a DATA _INIT_INT with eight rows and then replacing the
instruction with a DATA_INIT_DINT would keep the data for the eight rows. Some
precision may be lost when replacing a DATA_INIT_ instruction, and a warning
message will be displayed when this case is detected.

Operands
Note: For each mnemonic, use the corresponding data type for the Q operand. For example,
DATA_INIT_DINT requires Q to be a DINT variable.

Parameter |Description Allowed Operands Optional
Length The quantity (default 1) of constant|Constants No

data copied to consecutive reference

addresses starting at output Q.
Q The beginning address of the area to| All, except %S. SA, SB, and SC are[No

which the data is copied. not allowed for REAL, LREAL, INT,

and UINT versions.
Example
Figure 132
#FST_SCN DATA
|| INTTINT |
100 0
Qr ¥_R0000S

On the first scan (as restricted by the #ST_SCN system variable), 100 words of initial
data are copied to %R00005 through %R00104.

Ladder Diagram (LD) Programming

181

CPU Programmer’s Reference Manual Section 4

GFK-2950M Dec 2024
4.8.8 Data Initialize ASCII
Figure 133
DATA
- INIT L
ASCII
1
u_

The Data Initialize ASCII (DATA_INIT_ASCII) function copies a block of constant ASCI
text to a reference range.

When DATA_INIT_ASCIl s first programmed, the constants are initialized to zeroes. To
specify the constant data to copy, double-click the DATA_INIT_ASCIl instruction in the
LD editor.

When DATA_INIT_ASCII receives power flow, it copies the constant data to output Q.
DATA_INIT_ASCII's constant data length (LEN) specifies how many bytes of constant
text are copied to consecutive reference addresses starting at output Q. LEN must be an
even number. DATA_INIT_ASCII passes power to the right whenever it receives power.

Note: The output parameter is not included in coil checking.

Operands
Parameter Description Allowed Operands [Optional
Length The number (default 1) of bytes of constant text|Constants No

copied to consecutive reference addresses starting
at output Q. LEN must be an even number.

Q The beginning address of the area where the data|All except %S. No
is copied.

Example

Figure 134

HFST_SCN DATA | V_0Q00002

I INIT ()—l

ASCII
100

O ¥_R00050

Onthefirst scan (as restricted by the #FST_SCN system variable) the decimal equivalent
of 100 bytes of ASCII text is copied to %R00050 through %R00149. %Q00002 receives
power.

4.8.9 Data Initialize Communications Request

Figure 135

DATA
INIT
COMM
7

QF

Ladder Diagram (LD) Programming 182

CPU Programmer’s Reference Manual
GFK-2950M

4.8.10

The Data Initialize Communications Request (DATA_INIT_COMM) function initializes a
COMMREQ function with a block of constant data. The IN parameter of the COMMREQ
must correspond with output Q of this DATA_INIT_COMM function.

When DATA_INIT_COMM is first programmed, the constants are initialized to zeroes.
To specify the constant data to copy, double-click the DATA_INIT_COMM instruction in

the LD editor.

When DATA_INIT_COMM receives power flow, it copies the constant data to output Q.
DATA_INIT_COMM'’s constant data length operand specifies how many words of
constant data to copy to consecutive reference addresses starting at output Q. The
length should be equal to the size of the COMMREQ function’s entire command block.
DATA_INIT_COMM passes power to the right whenever it receives power.

Note: The output parameter is not included in coil checking.

Operands

Parameter Description Allowed Operands Optional
Length The number of WORDs (default 7) of constant |Constant No

data copied to consecutive reference addresses|
starting at output Q. Must equal the size of the
COMMREAQ function’s entire command block,
including the header (words 0-5).

Q The beginning address of the area where the |R, W, P, L, Al, AQ, and |No
data is copied. symbolic non-discrete
variables
Example
Figure 136

H#FST_SCN DATA | V_000002

} INIT ()—l

COMM
100

QF v_P00001

On the first scan (as restricted by the #FST_SCN system variable), a command block
consisting of 100 words of data, including the 6 header words, is copied to % P00001
through %P00100. %Q00002 receives power.

Data Initialize DLAN

The Data Initialize DLAN (DATA_INIT_DLAN) function is used with a DLAN Interface
module, whichis alimited availability, specialty system. If you have a DLAN system, refer
to the DLAN/DLAN+ Interface Module User’'s Manual, GFK-0729, for details.

Operands
Parameter Description Allowed Operands Optional
Q The beginning address of the area|Flow, R, W, P, L, Al, AQ, and symbolic |No

where the data is copied. non-discrete variables

Ladder Diagram (LD) Programming 183

Section 4
Dec 2024

CPU Programmer’s Reference Manual

GFK-2950M

4.8.11

Move

MOVE
BOOL

?7?

IN Qr

When the MOVE function receives power flow, it copies data as
individual bits from one location in PLC memory to another.
Because the data is copied in bit format, the new location does
not need to be the same data type as the original.

The MOVE function copies data from input operand IN to output
operand Q as bits. If data is moved from one location in BOOL
(discrete) memory to another, forexample, from %I memory to %T
memory, the transition information associated with the BOOL
memory elements is updated to indicate whether the MOVE
operation caused any BOOL memory elements to change state.
Data at the input operand does not change unless there is an
overlap in the source and destination.

Section 4
Dec 2024

Mnemonics:
MOVE_BOOL
MOVE_DINT
MOVE_DWORD
MOVE_INT
MOVE_REAL
MOVE_UINT
MOVE_WORD

Note:

If an array of BOOL-type data specified in the Q operand does not include all the bits in

a byte, the transition bits associated with that byte (which are not in the array) are cleared
when the Move function receives power flow. The input IN can be either a variable
providing a reference for the data to be moved or a constant. If a constant is specified,
then the constant value is placed in the location specified by the output reference. For
example, if a constant value of 4 is specified for IN, then 4 is placed in the memory location
specified by Q. Ifthe length is greater than 1 and a constant is specified, then the constant
is placed in the memory location specified by Q and the locations following, up to the
length specified. Do not allow overlapping of IN and Q operands.

The result of the MOVE depends on the data type selected for the function, as shown
below. For example, if the constant value 9 is specified for IN and the length is 4, then 9
is placed in the bit memory location specified by Q and the three locations following:

Figure 137
MOWVE BOOL MOVE WORD
Enable - move |— QK Enable — j-: — 0K
BOOL VORD
5— 3 [~Output §—4 Ql-Output
MSE LS8 g
A |; :
= 4y = = q
F1gEn = WFdS

The MOVE function passes power to the right whenever it receives power.

Ladder Diagram (LD) Programming

184

CPU Programmer’s Reference Manual

GFK-2950M

Ladder Diagram (LD) Programming

Section 4
Dec 2024
MOVE Operands
Parameter Description Allowed Optional
Operands
Length (??) The length of IN; the number of bits, words, or double| Constant No
words to copy.
IfIN is a constantand Qis BOOL, then 1 < Length <
16; otherwise, 1 < Length < 256.
1 < Length < 32,767
IN The location of the first data item to copy. All. %S, %SA, %SB,|No
For MOVE_BOOL, any discrete reference may be |%SC allowed only
used. It does not need to be byte-aligned. However,[for WORD, DWORD,
16 bits beginning with the reference address BOOL types.
specified are displayed online.
If IN is a constant, it is treated as an array of bits.
The value of the least significant bit is copied into the
memory location specified by Q. If Length is greater
than one, the bits are copied in order from the least
significant to the most significant into successive
memory locations, up to the length specified.
Q The location of the first destination data item. All except %S. Also, [No
For MOVE_BOOL, any discrete reference may be |no %SA, SB, SC
used. It does not need to be byte-aligned. However,|except for WORD,
16 bits beginning with the reference address DWORD, BOOL
specified are displayed online. types.

MOVE_BOOL Example

Figure 138
V_100003 MOVE
} BOOL |_
3
V_M00001 —{IN OF ¥_M00100

When %100003 is set, the three bits %M00001, %MO00002, and %M00003 are moved to
%MO00100, %M00101, and %M00102, respectively. Coil %Q00001 is turned on.

185

CPU Programmer’s Refere
GFK-2950M

nce Manual

MOVE_WORD Example

Section 4
Dec 2024

Figure 139

v_Qooo14
—

V_M00001 —

MOVE
HWORD | _

— V_M00033

V_MO00001 and V_MO00033 are both WORD arrays of length 3, for a total of 48 bits in
each array. Since PLCs do not recognize arrays, Length mustbe set at 3, for the total
number of WORDs to be moved. When enabling inputV_Q0014 is ON, MOVE_WORD
moves 48 bits from the memory location %MO00001 to memory location %M00033. Even

though the destination overlaps the source for 16 bits, the move is done correctly.

4.8.12

KOVE
DATA

Move Data

The MOVE_DATA function copies the variable assigned to the
input, IN to the variable assigned to the output, Q. If the constant

0is assigned to IN, the variable assigned to Q is initialized to its

default value.

MOVE_DATA Operands

Mnemonic:
MOVE_DATA

Parameter

Description

Allowed Operands

Optional

Length (??)

The length of IN; the number of
elements to copy.

1 < Length < 32,767

Constant

No

The location of the data item to copy.
IfINis 0, Q is setto its default value.

Enumerated variable, structure
variable, or array of these types; the
constant 0.

For details, refer to Data Types and
Structures in the PACMotion Multi-

Axis Motion Controller User's Manual,
GFK-2448.

No

The location of the data copied from
IN.

Q must be the same data type as IN,
unless IN is the constant 0.

Enumerated variable, structure
variable, or array of these types.

No

Ladder Diagram (LD) Programming

186

CPU Programmer’s Reference Manual

GFK-2950M

4.8.13

Move Data Explicit

Section 4
Dec 2024

Figure 140

MOVE_DATA_EX provides optional data coherency by locking the symbolic memory
being written to during the copy operation. This allows data to be copied coherently when
accessed by multiple logic threads (i.e. interrupt blocks). Note that copying large amounts

of data with coherency enabled can increase interrupt latency.

MOVE_DATA_EX Operands
Parameter Description Allowed Operands Optional
Length (?7?) The length of IN; the number of elements to copy.|Constant No
1 < Length < 32,767
DC Data coherency. Data flow. Yes
If True memory being written to is locked, enabling
coherent copying of data from one Controller
memory area to another.
If False (default), data is copied normally from one
Controller memory area to another without data
coherency.
e The input DC should be used only when
using interrupt blocks and is required only
when the same memory is used in more than
one interrupt block, or in the main program
and an interrupt block.
e If DCis True, an interrupt block cannot
preempt the copy operation.
e IfDC is False ornot present, then interrupts|
can preempt the copy.
e Using DC can impact interrupt latency if the
amount of data copied is large.
IN The location of the data item to copy. Enumerated variable or |No
IfIN is O (LD only), length is assigned the constant|structure variable, or
1 and the variable or structure assigned to Q is setfarray of these types; the
to its default value. constant 0.
Q Variable or array to which IN is copied. Enumerated variable or |No
Q must be the same data type as IN, unless IN is[structure variable, or
the constant 0. array of these types.
Example
Figure 141
187

Ladder Diagram (LD) Programming

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Q00014

Q
m m

0

DC_select

(5]

] L -
1 ¥ e

(3]
5
3
C

Enum_Arrsy —IN

Enum_Array and Enum_Array Out are arrays of enumerated variables, with three
elements each. To copy all elements in Enum_Array, input Length should be 3. When
the enabling input Q00014 is on, MOVE_DATA_EX copies three elements from memory
location Enum_Array to memory location Enum_Array_Out.

4.8.14 Move From Flat

Figure 142

MOVE_FROM_FLAT copies reference memory datato a User-defined Data Type (UDT)
variable or UDT array.

MOVE_FROM_FLAT provides optional data coherency by locking the data being written
to during the copy operation. This allows data to be copied coherently when accessed
by multiple logic threads (i.e. interrupt blocks). Note that copying large amounts of data
with coherency enabled can increase interrupt latency.

Operation

Copying arrays and array elements

The constant value assigned to input LEN (Length) determines the number of UDT array
elements to be filled by copying data from reference memory to output Q.

Example:

If constant value 6 is assigned to input LEN (Length), there should be a UDT array of at
least six elements assigned to output Q. During logic execution, n bytes of data are
copied from reference memory to the first six UDT array elements, where n is the length
of the UDT array element (in bytes) times six.

Copying to specified array elements

For output Q, a single element of a UDT array can be specified, for example,
myUDT_array[4] (5th element of myUDT _array). In this case, the input LEN (Length)
operand applies to the array elements starting from and including myUDT _array[4].

Example:

myUDT _array is a UDT array of ten elements, of which each elementis a UDT variable,

and myUDT array[4] is assigned to output Q. This restricts the value of input LEN
Ladder Diagram (LD) Programming 188

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

(Length) to six or less because there are six remaining UDT array elements that can be
filled in myUDT _array.

Notes:
° Length determines how many UDT variable elements to overwrite in Q.
° If an array head is assigned to input IN, the Length determines how many UDT array

elements assigned to Q are filled by copying data from reference memory.

MOVE_FROM_FLAT Operands

Parameter |Description Allowed Operands |Optional
Length (??) |Determines the number of UDT array elements to be[Constant No

filled by copying data from reference memory to output

Q.

1 < Length < 32,767

DC Data coherency. Data flow. Yes
If True, memory being written to is locked, enabling
coherent copying of data from one Controller memory
area to another.

If False (default), data is copied normally from one
Controllermemory area to another; that is without data
coherency.

e The input DC should be used only when using
interrupt blocks and is required only when the
same memory is used in more than one interupt
block, or in the main program and an interrupt
block.

° If DC is True, an interrupt block cannot preempt
the copy operation.

e IfDC is False or not present, then interrupts can
preempt the copy.

e Using DC can impact interrupt latency if the
amount of data copied is large.

IN Reference memory data being copied to UDT variable|All except %S, symbolic,|No
elements in output Q as determined by the Length. |or I/O variable.

Q UDT variable or UDT array to which IN is copied. Discrete or non-discrete |No
symbolic, discrete or
non-discrete /O variable.

Example

A WORD variable mapped to %R1 is assigned to input IN and a value of 1 is assigned
to Length. A UDT variable or UDT array is assigned to output Q.

When MOVE_FROM FLAT executes, n bytes of data are copied, starting at %R1 to a
UDT variable or UDT array, where nis the UDT array element length (in bytes). f a UDT
array is assigned to output Q, n bytes of data are copied to the first UDT array element.

4.8.15 Move to Flat

Figure 143

Ladder Diagram (LD) Programming 189

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

MOVE TC FLAT

—{IH

MOVE_TO_FLAT instruction copies data from symbolic or I/O variable memory to
reference memory. MOVE_TO_FLAT copies across mismatched data types for an
operation such as a Modbus transfer.

MOVE_TO_FLAT provides optional data coherency by locking the reference memory
being written to during the copy operation. This allows data to be copied coherently when
accessed by multiple logic threads (i.e. interrupt blocks). Note that copying large amounts
of data with coherency enabled can increase interrupt latency.

Notes:

° The Data Coherency (DC) input should be used only when using interrupt blocks
and is required only when the same memory is used in more than one interrupt
block, or in the main program and an interrupt block.

° If DC is True, an interrupt block cannot preempt the copy operation.

° If DC is False or not present, then interrupts can preempt the copy.

° Using DC can impact interrupt latency if the amount of data copied is large.

Ladder Diagram (LD) Programming 190

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Copying Arrays and Array Elements

The Length determines the number of UDT array elements to be copied to the reference
memory of the variable assigned to output Q.

Example: If the value 6 is assigned to Length, there should be a UDT array of at least
six elements assigned to input IN. When logic executes, n bytes of data are copied from
the UDT array elements to the reference memory of the variable assigned to output Q,
where n is the length of the UDT array element (in bytes) times six.

MOVE_TO_FLAT Operands

Parameter

Description Allowed Operands Optional

Length (??)

The length of IN; the number of elements to copy. Constant No
1 < Length < 32,767

DC

Data coherency. Data flow. Yes
If True, the memory being written to is locked. This enables a
coherent copy of a UDT to reference memory.

If False (default), data is copied normally from one Controller
memory area to another; that is without data coherency.

e DC should be used only when using interrupt blocks and is
required only when the same memory is used in more than
one interrupt block, or in the main program and an interrupt
block.

e If DCis True, an interrupt block cannot preempt the copy
operation.

° If DC is False ornot present, interrupts can preempt the copy.

e Using DC can impact interrupt latency if the amount of data
copied is large.

UDT variable or UDT array. The data copied to the reference Discrete or non-discrete symbolic, [No
memory mapped to the variable assigned to Q. discrete or non-discrete /0O
If INis 0, length is assigned the constant 1 and the variable or [variable.

structure assigned to Q is set to its default value.

Variable orarray to which IN is copied. The amount of data copied is|All memory areas except %S, No
determined by the constant value assigned to input LEN (Length).|discrete symbolic, discrete 1/0
variable.

e Indirect referencing is
available for all register
references (%R, %P, %L,
%W, %Al, and %AQ).

e BYTE arrays must be packed;
that is, they must be in

discrete memory.

Example

A UDT variable or UDT array is assigned to input IN.

The constant value 8 is assigned to input LEN (Length).

A DWORD variable mapped to %R1 is assigned to output Q.

If the constant value 8 is assigned to LEN (length), there should be a UDT array of at
least eight elements assigned to IN. When MOVE_TO_FLAT executes, n bytes of data
are copied fromthe UDT variable orarray to %R memory, starting at %R1 in the example,

where n is the length of a UDT array element (in bytes) times eight.

Ladder Diagram (LD) Programming 191

CPU Programmer’s Reference Manual Section 4

GFK-2950M Dec 2024
4.8.16 Shift Register
SHFR When the Shift Register (SHFR_BIT, SHFR_DWORD, or Mnemonics:
BIT L SHFR_WORD) function receives power and the R operand SHFR_BIT
7 does not, SHFR shifts one or more data BITs, data DIWORDs, gHFR DWORD
=R ar -

or data WORDs from a reference location into a specified area SHFR_WORD
of memory. A contiguous section of memory serves as a shift

1 register. Forexample, one word might be shifted into an area of
memory with a specified length of five words. As a result of this
e shift, anotherword of data would be shifted outof the end of the
memory area.
—sT
A WARNING

The use of overlapping input and output reference address ranges in multiword functions is not
recommended, as it may produce unexpected results.

The reset input (R) takes precedence over the function enable input. When the reset is
active, all references beginning at the shift register (ST) up to the length specified, are
filled with zeroes.

If the function receives power flow and R is not active, each BIT, DWORD, or WORD of
the shift register is moved to the next highest reference. The elements shifted out of ST
are shifted into Q. The highest reference of IN is shifted into the vacated element starting
at ST.

Note: The contents of the shift register are accessible throughout the program because they
are overlaid on absolute locations in logic addressable memory.

The function passes power to the right whenever it receives power flow and the R
operand does not.

Ladder Diagram (LD) Programming 192

CPU Programmer’s Reference Manual

GFK-2950M

Operands for Shift Register

Section 4
Dec 2024

Parameter

Description

Allowed
Operands

Optional

Length (??)

The number of data items in the shift register,
ST.

1 < Length < 256

No

Reset. When R is ON, the shift register located
at ST is filled with zeroes.

Power flow

No

The number of data items to shift into ST.

Constants

No

The value to shift into the first data item of ST.
SHFR_BIT: For %l, %Q, %M and %T memory,
any BOOL reference may be used; it does not
need to be byte-aligned. However, 1 bit,
beginning with the reference address specified,
is displayed online.

All

No

ST

The first data item of the shift register.

All except data flow,

Note: For %I, %Q, %M and %T
memory, any BOOL reference
may be used; it does not need to
be byte-aligned. However, 16
bits, beginning with the reference
address specified, are displayed
online.

constants, S

No

The data shifted out of ST. The same number of
data items will be shifted into Q as were shifted
out of ST.

SHFR_BIT: For %I, %Q, %M and %T memory,
any BOOL reference may be used; it does not
need to be byte-aligned. However, 1 bit,
beginning with the reference address specified,
is displayed online.

All except S

No

Ladder Diagram (LD) Programming

193

CPU Programmer’s Reference Manual
GFK-2950M

4.8.17

Example

Section 4
Dec 2024

Figure 144

NXT_CYC

Q00033 —If

ROQ001 —=

i)

= MO000s5

SHFR_WORD operates on register memory locations %R0001 through %R0100. When
the reset reference CLEAR is active, the Shift Register words are set to zero.

When the NXT_CYC reference is active and CLEAR is not, the two words at the starting
address V_QO00033 are shifted into the Shift Register at %R0001. The words shifted out
of the Shift Register from %R0100 are stored in output %MO0005. Note that, for this

example, the length specified and the amount of data to be shifted (N) are not the same.

Size Of

m

Counts the number of bits used by the variable Mnemonics:
assigned to input IN and writes the number of bts ~ SIZE_OF
to output Q.

Operands
Parameter |Description Allowed Operands Optional
IN The variable whose size in [Variable of any data type except BYTE No

bits is calculated. arrays in non-discrete memory and double-

segment structures.

Q The number of bits used by [DINT or DWORD variable. No

the variable assigned to input| ST also supports INT and WORD variables.

IN.

194

Ladder Diagram (LD) Programming

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Example

Figure 145

o
4
m
Q

n

2

=annnA
WU

Var —IN

The single-segment structure named Var assigned to input IN contains eight BOOL
elements (8 x 1 = 8 bits) and twelve WORD elements (12 x 16 = 192 bits). SIZE_OF
outputs the value 8 + 192 = 200 to the variable R00001 assigned to output Q.

4.8.18 Swap

SHAP The SWAP function is used to swap two bytes within a word = Other mnemonic:
—|DWORD [(SWAP WORD) or two words within a double word (SWAP SWAP WORD
DWORD). The SWAP can be performed over a wide range of B

memory by specifying a length greater than 1. If thatis done,

—IN OF the datain each word ordouble word within the specified length

is swapped.

77

When the SWAP function receives power flow, it swaps the data in reference IN and
places the swapped data into output reference Q. The function passes power to the right

whenever it receives power.

PACSystems CPUs use the Intel conventionfor storing word datain bytes. They store
the least significant byte of a word in address n and the most significant byte in address
n+1. Many VME modules follow the Motorola convention of storing the most significant
byte in address n and the least significant byte in address n+1.

The PACSystems CPU assigns byte address 1 to the same storage location regardless
of the byte convention used by the other device. However, because of the difference in
byte significance, word and multiword data, for example, 16-bit integers (INT, UINT), 32-
bit integers (DINT) or floating point (REAL) numbers, must be adjusted when being
transferred to or from Motorola-convention modules. In these cases, the two bytes in
each word must be swapped, either before or after the transfer. In addition, for multiword
data items, the words must be swapped end-for-end on a word basis. For example, a
64-bit real number transferred to the PACSystems CPU from a Motorola-convention
module must be byte-swapped and word-reversed, either before or after reading, as
shown below:

Ladder Diagram (LD) Programming 195

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024
Figure 146
| 81 | B2 || B [B4 || B8 |[BE ||B7 |B2 |

N

-

Character (ASCII)strings or BCD data require no adjustment since the Intel and Motorola
conventions for storage of character strings are identical.

Operands for Swap

The two parameters, IN and Q, must both be the same type, WORD or DWORD.

Parameter |Description Allowed Operands Optional
Length (??) |The number of WORDs or DWORDs to|Constant No
operate on.
1 < Length < 256
IN Reference for data to be swapped. All No
(must be the same type as Q)
Q Reference for swapped data. (must be |All except S No
the same type as IN)

Example for Swap

Figure 147

SHAP
WORD |

V_I00033 —|IN QF ¥ Iawas

Two bytes located in bits %100033 through %100048 are swapped

in %L00007.

Ladder Diagram (LD) Programming

. The result is stored

196

CPU Programmer’s Reference Manual

GFK-2950M

4.9

Section 4
Dec 2024

Data Table Functions

Function

Mnemonic

Description

Array Move

ARRAY_MOVE_BOOL
ARRAY_MOVE_BYTE
ARRAY_MOVE_DINT
ARRAY_MOVE_INT
ARRAY_MOVE_WORD

Copies a specified number of data elements from a source
memory block to a destination memory block.

Note: The memory blocks do not need to be
defined as arrays. You must supply a starting
address and the number of contiguous
registers to use for the move.

Array Range

ARRAY_RANGE_DINT
ARRAY_RANGE_DWORD
ARRAY_RANGE_INT
ARRAY_RANGE_UINT
ARRAY_RANGE_WORD

Determines if a value is between the range specified in two
tables

FIFO Read

FIFO_RD_DINT
FIFO_RD_DWORD
FIFO_RD_INT
FIFO_RD_UINT
FIFO_RD_WORD

Removes the entry at the bottom ofthe First In First Out (FIFO)
table, and decrements the pointer by one

FIFO Write

FIFO_WRT_DINT
FIFO_WRT_DWORD
FIFO_WRT_INT
FIFO_WRT_UINT
FIFO_WRT_WORD

Increments the table pointer and writes data to the bottom of
the FIFO table

LIFO Read

LIFO_RD_DINT
LIFO_RD_DWORD
LIFO_RD_INT
LIFO_RD_UINT
LIFO_RD_WORD

Removes the entry at the pointerlocation in the LIFO (Last In
First Out) table, and decrements the pointer by one

LIFO Write

LIFO_WRT_DINT
LIFO_WRT_DWORD
LIFO_WRT_INT
LIFO_WRT_UINT
LIFO_WRT_WORD

Increments the LIFO table's pointer and writes data tothe table

Search

SEARCH_EQ_BYTE
SEARCH_EQ_DINT
SEARCH_EQ_DWORD
SEARCH_EQ_INT
SEARCH_EQ_UINT
SEARCH_EQ_WORD

Searches for all array values equal to a specified value

SEARCH_GE_BYTE
SEARCH_GE_DINT
SEARCH_GE_DWORD
SEARCH_GE_INT
SEARCH_GE_UINT
SEARCH_GE_WORD

Searches for all array values greater than or equal to a
specified value

SEARCH_GT_BYTE
SEARCH_GT_DINT
SEARCH_GT_DWORD
SEARCH_GT_INT
SEARCH_GT_UINT
SEARCH_GT_WORD

Searches for all array values greater than a specified value

Ladder Diagram (LD) Programming

197

CPU Programmer’s Reference Manual

GFK-2950M

Section 4
Dec 2024

Function

Mnemonic

Description

SEARCH_LE_BYTE
SEARCH_LE_DINT
SEARCH_LE_DWORD
SEARCH_LE_INT
SEARCH_LE_UINT
SEARCH_LE_WORD

Searches forall array values less than orequal to a specified
value

SEARCH_LT BYTE
SEARCH_LT_DINT
SEARCH_LT_DWORD
SEARCH_LT_INT
SEARCH_LT_UINT
SEARCH_LT_WORD

Searches for all array values less than a specified value

SEARCH_NE_BYTE
SEARCH_NE_DINT
SEARCH_NE_DWORD
SEARCH_NE_INT
SEARCH_NE_UINT
SEARCH_NE_WORD

Searches for all array values not equal to a specified value

Sort

SORT_INT
SORT_UINT
SORT_WORD

Sorts a memory block in ascending order

Table Read

TBL_RD_DINT
TBL_RD_DWORD
TBL_RD_INT
TBL_RD_UINT
TBL_RD_WORD

Copies a value from a specified table location to an output
reference

Table Write

TBL_WRT_DINT
TBL_WRT_DWORD
TBL_WRT_INT
TBL_WRT_UINT
TBL_WRT_WORD

Copies a value from an input reference to a specified table
location

Ladder Diagram (LD) Programming

198

CPU Programmer’s Reference Manual Section 4

GFK-2950M Dec 2024
4.9.1 Array Move
ARRAY When the Array Move function receives power flow, t Mnemonics:
= ggg{: B copies a specified number of elements from a source ARRAY_MOVE_BOOL
?? memory block to a destination memory block. Staring ARRAY MOVE BYTE
I i at the indexed location (SR+SNX-1) of the input ARRAY_MOVE_DINT
memory block, it coplles N eIemeths to the output ARRAY MOVE_DWORD
snx memory block, starting at the indexed location
(DS+DNX-1) of the output memory block. ARRAY_MOVE_INT
Jowx ARRAY_MOVE_UINT
ARRAY_MOVE_WORD
—N

Note: For ARRAY MOVE BOOL, when 16-bit registers are selected for the operands of the
source memory block and/or destination memory block starting address, the least
significant bit of the specified 16-bit register is the first bit of the memory block. The value
displayed contains 16 bits, regardless of the length of the memory block.

The indices in an Array Move instruction are 1-based. In using an Array Move, no
element outside either the source or destination memory blocks (as specified by their
starting address and length) may be referenced.

The function passes power flow unless one of the following conditions occurs:

e |t receives no power flow.
e (N + SNX - 1) is greater than Length.
e (N + DNX -1)is greater than Length.

Note: For each mnemonic, use the corresponding data type for the SR and DS operands. For
example, ARRAY MOVE BYTE requires SR and DS to be BYTE variables.

Operands for Array Move

Parameter Description Allowed Operands Optional

Length (?7?) The length of each memory block (source |Constant No
and destination); the number of elements
in each memory block. 1< Length <

32,767.
SR The starting address of the source memory|All except constants. %S - |No
(must be the same |block. %SC allowed only for
data type as DS) BYTE, WORD, DWORD

Note: For an Array Move with the |ypes.
data type BOOL, any
reference may be used; it
does not need to be byte-

aligned. Sixteen bits,
beginning with the
reference address
specified, are displayed
online.
SNX The index of the source memory block |All except variables in %S -|No
%SC.
DNX The index of the destination memory block|All except variables in %S -|No
%SC.
N Count indicator All except variables in %S -|No
%SC

Ladder Diagram (LD) Programming 199

CPU Programmer’s Reference Manual Section 4

GFK-2950M Dec 2024
Parameter Description Allowed Operands Optional
DS The starting address of the destinaton|All, except S and constants.|No
(must be the same [memory block. %SA - %SC allowed only
data type as SR) forBYTE, WORD, DWORD

Note: For an Array Move with the types
data type BOOL, any
reference may be used; it
does not need to be byte-
aligned. Sixteen bits,
beginning with the

reference address
specified, are displayed
online.

Array Move Example 1

Figure 148

W_I00001 [ARRAY

1 MOVE |
WORD

16
V_R00001 —{SE DS|~ V_R00100

V_R00100 —{SNX

5 —| DN

5N

To define the input memory block %R0001 - %R0016 and the output memory block
%R0100 - %R0115, SRiis set as %R0001, DS is set as %R0100, and Length is set to
16.

To copy the five registers %R0003 - %R0007 to the registers %R0104 - %R0108, N is
set to 5, SNX=%R0100 is setto 3 (to designate the third register, %R0003, of the block
starting at %R0001), and DNXis set to 5 (to designate the fifth register, %R0104, of the

block starting at %R0100).

Ladder Diagram (LD) Programming 200

CPU Programmer’s Reference Manual

GFK-2950M

Array Move Example 2

Figure 149

V_I00001

ARRAY
|} MOVE |

BOOL
16

V_M00009 —Sk DS ¥_Q00022

3 —{SNX

5 —DNX

7—N

Using bit memory blocks, the input block starts at SR=%MO0009, the output block starts
at %Q0022, and the length of both blocks is 16 one-bit registers (Length=16).
To copy the seven registers %M0011 - %M0017 to % Q0026 - %Q0032, N is set to 7,

SNX is set to 3 (to designate the third register, %MO0011, of the block starting at
%MO0009), and DNX is set to 5 (to designate the fifth register, %Q0026, of the block

starting at %Q0022).
Array Move Example 3

Figure 150
V_I00001 ARRAY
1} MOVE |[_
BOOL

20
V_R00001 —|SK DS— W_R00100

3 —{SNX

5 —DNX

16 —N

Sixteen (=N) bits that are not byte-aligned are moved from the two 16-bit registers that
start at %R00001 (SR) to the two 16-bit registers that begin at %R00100 (DS). For the
purposes of this Boolean move, Length is set to 20, because the other 12 bits in either
memory block are not considered.

By setting SNXto 3, Nto 16, and DNXto 5, the third (SNX) least significant bit of % R0001
through the second least significant bit of %R0002 (for a total of 16 bits=N) are written
into the fifth (DNX) least significant bit of %R0100 through the fourth least significant bit

of %R0101 (for the same total of 16 bits).

Ladder Diagram (LD) Programming 201

Section 4
Dec 2024

CPU Programmer’s Reference Manual Section 4

GFK-2950M Dec 2024
4.9.2 Array Range
ARBAY The ARRAY_RANGE function compares a single input Mnemonics:
_|RANGE | value against two arrays of delimiters that specify an ARRAY_RANGE_DINT
D!)fr upper and lower bound to determine if the input value ARRAY_RANGE_DWORD
e falls within the range specified by the delimiters. The ARRAY RANGE_INT
—LL OF outputis an amray of bits that is set ON (1) when the

ARRAY_RANGE_UINT
ARRAY_RANGE_WORD

input value is greaterthan or equal to the lower limit and
less than or equal to the upper limit. The output is set

1= OFF (0) when the input is outside this range or when the
range is invalid, as when the lower limit exceeds the
—IN upper limit.

The ARRAY_RANGE function compares a single input value against two arrays of
delimiters that specify an upper and lower bound to determine if the input value falls
within the range specified by the delimiters. The output is an array of bits thatis set ON
(1) when the input value is greater than or equal to the lower limit and less than or equal
to the upper limit. The outputis set OFF (0) when the input is outside this range or when

the range is invalid, as when the lower limit exceeds the upper limit.

When ARRAY_RANGE receives power, it compares the value in input parameter IN
against each range specified by the array element values of LL and UL. Output Q sets a
bit ON (1) for each corresponding array element where the value of IN is greater than or
equal to the value of LL and is less than or equal to the value of UL. Output Q sets a bit
OFF (0) for each corresponding array element where the value of IN is not within this
range or when the range is invalid, as when the value of LL exceeds the value of UL. If

the operation is successful, ARRAY_RANGE passes power flow to the right.
Operands for Array Range

Notes:

° For each mnemonic, use the corresponding data type for the LL, UL, and Q
operands. For example, ARRAY_RANGE_DINT requires LL, UL, and Q to be DINT
variables.

o Q is not aligned. It is displayed in bit format. It displays either a 1 (ON) or a 0 (OFF)
for the first array element. For BOOL references, it represents the reference
displayed. For other references, it represents the low order bit of the reference
displayed.

Parameter |Description Allowed Operands Optional

Length (??) [The number of elements in each array. Constant No

LL The lower limit of the range All except constants and %S {No

%SC for INT, DINT.
UL The upper limit of the range All except constants and %S {No
%SC for INT, DINT.

IN The value to compare against each range|All except constants and %S 4{No

specified by LL and UL %SC for INT, DINT.

Q Energized when the value in IN is within the[All except S No

range specified by LL and UL, inclusive.

Array Range Example 1

Figure 151

Ladder Diagram (LD) Programming 202

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

V_100001 [ARERAY| V_Q00001

i | BANSE— }—
3
V_R00001 —LL Q= V_R00020

¥_R00100 —{UL

40 —IN

The lower limit (LL) values of %R00001 through %R00008 are 1, 20, 30, 100, 25, 50, 10,
and 200. The upper limit (UL) values of %R00100 through %R00108 are 40, 50, 150, 2,
45, 90, 250, and 47. The resulting Q values will be placed in the first 8 bits of %R00200.
The bit values low order to high are: 1, 1,1, 0, 1, 0, 1, and 0. The bit value displayed will
be set ON (1) for the low order bit of %R00200. The ok output will be set ON (1).

Ladder Diagram (LD) Programming 203

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Array Range Example 2

Figure 152

V_100001 [ARRAY| V_MO00001

1 | EANGE ()_(

INT
3

¥_T00001 —LL O ¥_0Q00001

¥_T00049 —{UL

65 —IN

The lower limit (LL) array contains %T00001 through %T00016, %T00017 through
%T00032, and %T00033 through %T00048. The lower limit values are 100, 65, and 1.
The upper limit (UL) values are 29, 165, and 2. The resulting Q values of 0, 1, and 0 will
be placed in %Q00001 through %Q00003. The bit value displayed will be 0 (OFF),
representing the value of %Q00001. The power output will be set ON (1).

4.9.3 FIFO Read
FIFO The First-In-First-Out (FIFO) Read (FIFO_RD) functon Mnemonics:
— [:II,T - moves data out of tables. Values are always moved out of the FIFO_RD_DINT

29 bottom of the table. If the pointerreaches thelastlocationand FO_RD_DWORD
. the table becomes full, EIFO_RD must be used tq remove the FIFO_RD_INT
entry at the pointerlocation and decrement the pointer by one. FIFO RD UINT
FIFO_RD s used in conjunction with the FIFO_WRT function, - =
FIFO_RD_WORD

—FTE 0O} which increments the pointer and writes entries into the table.

|

1. FIFO_RD copies the top location (entry 0) of the table to output parameter Q.
Additional program logic must then be used to place the data in the input
reference.

2. The remaining items in the table are copied to a lower numbered position in the
table.

3. FIFO_RD decrements the pointer by one.
4. Steps 1, 2, and 3 are repeated each time FIFO_RD is executed, until the table
is empty (PTR = 0).
The pointer does not wrap around when the table is full.
When FIFO_RD receives power flow, the data at the first location of the table is copied
to output Q. Next, each item in the table is moved down to the next lower location. This
begins with item 2 in the table, which is moved into position 1. Finally, the p ointer is

decremented. If this causes the pointer locationto become 0, the output EM is set ON,
i.e., EM indicates whether the table is empty.

FIFO_RD passes power to the right if the pointer is greater than zero and less than the
value specified for LEN.

Note: A FIFO table is a queue. A LIFO table is a stack.

Operands for FIFO Read

Ladder Diagram (LD) Programming 204

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Note: For each mnemonic, use the corresponding data type for the TB and Q operands. For
example, FIFO_RD_DINT requires TB and Q to be DINT variables.

Parameter Description Allowed Operands Optional

Length (??) 1 < Length < 32,767. Constants No

TB (must be the same [The elements in the FIFO All except constants No

type as Q) table

PTR Pointer. Index of the last All except constants, data flow, and [No
element of the FIFO table. |variables in %S -%SC

EM Energized when the last Flow No
element of the table is read

Q (must be the same [The element read from the [All except constants, S; SA, SB, SC |No

type as TB) FIFO table allowed only for WORD, DWORD

Example for FIFO Read

Figure 153
PACE_IT FIFD
{ | el
WORD
100 EMPTY

PRODUCT —TE EM|— }—

STE_PTR —|FTRE 0O CART

PRODUCT is a FIFO table with 100 word-sized elements. When the enabling input
PACK_ITis ON, the PRODUCT data item in the table location pointed to by STK_PTR
is copiedtothe reference location specified in CART. This table location pointed to would
be the bottom, or oldest data item in the table. The number in STK_PTR is then
decremented. A copy of the oldestdataiteminthe PRODUCTtable is leftbehind in each
table location as the current data is copied out during successive PACK_IT triggers.
Output node EM passes power when the PTR = 0, firing the coil EMPTY. No further data
from the PRODUCT table can be read without first copying data in using the FIFO_WRT
function.

Ladder Diagram (LD) Programming 205

CPU Programmer’s Reference Manual Section 4

GFK-2950M Dec 2024
4.9.4 FIFO Write
FIFO The First-In-First-Out (FIFO) Write (FIFO_WRT) functon Mnemonics:
=1 1;'1‘;!1 moves data into tables. The function increments the tabe FIFO_WRT_DINT
77 pointerby one and adds anentry at the new pointerlocaton e WRT DWORD
Jdte RL- in a FIFO table. Values are always moved in at the bottom FIFO_WRT_INT
of the table. If the pointerreaches the last location and the u .
ptR table becomes full, FIFO_WRT can add no further values. FIFO_WRT_UINT

The FIFO_RD function must then be used to remove the FIFO_WRT_WORD
entry at the pointer location and decrement the pointer by
one.

1. FIFO_WRT increments the pointer by one.

2. FIFO_WRT copies data from input parameter IN to the position in the table
indicated by the pointer. (It writes over any value currently at that location.)
Additional program logic must then be used to place the data in the input
reference.

3. Steps 1and 2 are repeated each time FIFO_WRT is executed, until the table is
full (PTR=0).
The pointer does not wrap around when the table is full.

When FIFO_WRT receives power flow, the pointer is incremented by 1. Then, input data
is written into the table at the pointerlocation. If the pointerwas already at the last location
in the table, no datais written and FIFO_WRT does not pass power to the right. The
pointer always indicates the last item entered the table. If the table becomes full, it is not
possible to add more entries to it.

FIFO_WRT passes power to the right after a successful execution (PTR < LEN).
Operands for FIFO Write

Note: For each mnemonic, use the corresponding data type for the TB and IN operands. For
example, FIFO_WRT _DINT requires TB and IN to be DINT variables.

Parameter |Description Allowed Operands Optional
Length (??) 1 < Length < 32,767. Constants No

TB (must be the[The elements in the FIFO table |All except constants, data flow, and S. No

same data type SA - SC allowed only for WORD, DWORD

as IN) types

PTR Pointer. Index of the last element|All except constants, data flow, S - SC. No

of the FIFO table.
IN (must be the | The element to write to the FIFO |All. S — SC allowed only for WORD, DWORD|No

same data type|table types.
as TB)
FL Energized when IN is written to the|Power flow No

last element of the table

Example for FIFO Write

Figure 154

Ladder Diagram (LD) Programming 206

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

UNPACE FIFD
1| acled
WORD

100 FULL

PRODUCT —{TB FL|—{ }—i

STE_PTR —{FIR

P_CODE —|IN

PRODUCT is a FIFO table with 100 word-sized elements. When the enabling input
UNPACK is ON, a data item from P_CODE is copied to the table location pointed to by
the value in STK_PTR. Output node FL passes power when PTR = LEN, firing the FULL
coil. No further data from P_CODE can be added to the table without first copying data
out, using the FIFO_RD function.

4.9.5 LIFO Read
LIFO The Last-In-First-Out (LIFO) Read (LIFO_RD) function moves = Mnemonics:
- D?E‘r = data outof tables. Values are always moved out of the top ofthe | |IFO_RD_DINT
22 table. If the pointer reaches the last location and the table LIFO RD DWORD
4t EM}F becomes full, LIFO_RD must be used to remove the entry at the LIFO_RD_INT
pointer. Iocatio.n an.d decr.ement the pointer by one. I._IFO_RIID is LIFo:RD:UINT
Jerr ol used in conjunction with the LIFO_WRT function, which

LIFO_RD_WORD

increments the pointer and writes entries into the table.
1. LIFO_RD copies data indicated by the pointer to output parameter Q. Additional
program logic must then be used to place the data in the input reference.
2. LIFO_RD decrements the pointer by one.
3. Steps 1 and 2 are repeated each time the instruction is executed, until the table is
empty (PTR = LEN).
The pointer does not wrap around when the table is full.
When LIFO_RD receives power flow, the data at the pointer location is copied to output
Q, then the pointer is decremented. If this causes the pointer location to become 0, the
output EMis set ON, i.e., EM indicates whether the table is empty. If the table is empty
when LIFO_RD receives power flow, no read occurs. The pointer always indicates the
last item entered into the table.

LIFO_RD passes power to the right if the pointer was in range for an element to be read.

Note: A LIFO table is a stack. A FIFO table is a queue.

Operands for LIFO Read

Note: For each mnemonic, use the corresponding data type for the TB and Q operands. For
example, LIFO_RD_DINT requires TB and Q to be DINT variables.

Parameter Description Allowed Operands Optional
Length (?7?) 1 < Length < 32,767. Constant No
TB (must be the The elements in the table All except constants No
same type as Q)
PTR Pointer. Index ofthe nextelement to| All except constants, S - SC, and|No
read. data flow
EM Energized when the last element of| Power flow No

the table is read

Ladder Diagram (LD) Programming 207

CPU Programmer’s Reference Manual Section 4

GFK-2950M Dec 2024
Q (must be the The element read from the table |All exceptconstantsand S.SA, SB,|No
same type as TB) SC allowed only for WORD,
DWORD.

Example for LIFO Read

Figure 155
PACK_IT LIFO
|| -
WORD
100 EMPTY

PRODUCT —TE EM|—— }—i

STE_PTR —|FTE O CART

PRODUCT is a LIFO table with 100 word-sized elements. When the enabling input
PACK_ITis ON, the dataitem at thetop of the table is copied into the reference indicated
by the nickname CART. The reference identified by STK_PTR contains the table pointer.
Output coil EMPTY indicates when the table is empty.

4.9.6 LIFO Write
LIFO The Last-In-First-Out (LIFO) Write (LIFO_WRT) functon = Mnemonics:
| WET [increments the table pointerby one and then addsanenty L|IFO_WRT_DINT
DINT at the new pointer location in a table. Values are always | |ro WRT DWORD

?? ; ;
moved in at the top of the table. If the pointer reaches the LIFO_WRT_INT

—TE FL|- last location and the table becomes full, LIFO_WRT cannot
add furthervalues. LIFO_RD must then be used to remove LIFO_WRT_UINT
PTR the entry at the pointer location and decrement the pointer LIFO_WRT_WORD
by one.
—IN

1. LIFO_WRT increments the table pointer by one.

2. LIFO_WRT copies data from input parameter IN to the position in the table
indicated by the pointer. (It writes over any value currently at that location.)
Additional program logic must then be used to place the data in the input
reference.

3. Steps 1and 2 are repeated each time LIFO_WRT is executed, until the table is
full (PTR=LEN).
The pointer does not wrap around when the table is full.
When LIFO_WRT receives power flow, the pointer increments by 1; then the new data
is written at the pointer location. If the pointer was already at the last location in the table,
no data is written and LIFO_WRT does not pass power to the right. The pointer always

indicates the last item entered into the table. If the table is full, it is not possible to add
more entries to it.

LIFO_WRT passes power to the right after a successful execution (PTR < LEN).

Note A LIFO table is a stack. A FIFO table is a queue.

Operands for LIFO Write

Ladder Diagram (LD) Programming 208

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Note For each mnemonic, use the corresponding data type for the TB and IN operands.
For example, LIFO_WRT _DINT requires TB and Q to be DINT variables.

Parameter Description Allowed Operands Optional

Length (?7?) 1 < Length < 32,767. Constants No

TB (must be the The elements in the table |All except constants, S, data flow. SA -|No

same type as IN) SC allowed only for WORD, DWORD.

PTR Pointer. Index of the next |All except constants, S - SC, and data |[No
element to write. flow

IN (must be the The element to write to the [All. S — SC allowed only for WORD, No

same type as TB) |[table DWORD

FL Energized when IN is written [All No
to the last element of the
table

Example for LIFO Write

Figure 156
STORE LIFO
1| WET
WORD
100 FOLL

PRODUCT —{TB FL|—{ }—i
STE_PTR —{FIR

MEW_ITM —{IN

PRODUCT is a LIFO table with 100 word-sized elements. When the enabling input
STORE is ON, a data itemfrom NEW_ITEM is copied to the table location pointed to by
the value in STK_PTR. Output FL passes power when PTR = LEN, firing the FULL coil.
No furtherdatafromNEW_ITEM can be added to the table withoutfirstcopying data out,
using the LIFO_RD function.

4.9.7 Search

Figure 157

SEARCH

INX ONX[-

—IN

When the Search function receives power, it searches the specified memory block for a
value that satisfies the search criteria. For example, SEARCH_GE_DWORD searches
for a DWORD that is greater than or equal to the specified value (the IN operand).

Search can evaluate six different relationships for six data types, for a total of thirty-six
mnemonics.
Ladder Diagram (LD) Programming 209

CPU Programmer’s Reference Manual

GFK-2950M

Search Relationships:

SEARCH_EQ_
SEARCH_GE_
SEARCH_GT_
SEARCH_LE_
SEARCH_LT_
SEARCH_NE_

Data types:

BYTE, DINT, DWORD, INT, UINT, WORD

Searching begins at AR+INX, where AR is the starting address and INX is the index
value into the memory block. The search continues either until a register that satisfies
the search criteria is found or until the end of the memory block is reached.

searches for a value of the specified data type greater than IN.

searches for a value of the specified data type less than IN.

Section 4
Dec 2024

searches for a value of the specified data type equal to the IN operand.

searches for a value of the specified data type greater than or equal to IN.

searches for a value of the specified data type less than or equal to IN.

searches for a value of the specified data type that is not equal to IN.

e If aregisteris found, the Found Indication (FD) is set ON and the Output Index (ONX)
is set to the relative position of this register within the block.

e If no registeris found before the end of the block is reached, the Found Indication
(FD) is set OFF and the Output Index (ONX) is set to zero.

The input index (INX) is zero-based, that is, 0 the means first reference, whereas the
output index (ONX) is one-based, that is, 1 means the first reference.

The valid values for INX are 0 to (Length - 1). The valid values for ONX are 1 to Length.

INX should be set to zero to begin searching at the memory block's first register. This
value increments by one at the time of execution. If the value of input INX is out-of-range,
(< 0 or > Length-1), INX is set to the default value of zero.

SEARCH passes power flow to the right when it performs without error. If INX is out of
range, SEARCH does not pass power flow to the right.

Operands for the Search Function

Note: For each mnemonic, use the corresponding data type for the AR and IN operands.
For example, SEARCH_EQ BYTE requires AR and IN to be BYTE variables.

Parameter Description Allowed Operands (Optional
Length (?7?) The number of registers starting at AR |Constants No
that make up the memory block to search.
1 < Length < 32,767 8-bit or 16-bit
registers.
AR (must be the same The starting address of the memory block|All except constants [No
type as IN) to search; the address of the first register
in the memory block.
INX The zero-based index into the memory |All except constants [No
block at which to begin the search. Zero
points to the first reference.
Valid range: 0 < INX < (Length-1).
If INX is out of range, it is set to the
default value of 0.
Ladder Diagram (LD) Programming 210

CPU Programmer’s Reference Manual Section 4

GFK-2950M Dec 2024
Parameter Description Allowed Operands (Optional
IN (must be the same type|The value that the search is based on. For|All No
as AR) example:

SEARCH_GT_DINT searches for a DINT
value that is greater than IN.
SEARCH_NE_UINT searches for a UINT
value that is not equal to IN.
SEARCH_GE_WORD searches for a
WORD value thatis greaterthan or equal
to IN.

ONX The one-based position within the dataflow, I, Q, M, T, G,[No
memory block of the search target. A R, P, L, Al, AQ
value of 1 point to the first reference.

Valid range: 1 < ONX < Length

FD Found indicator. This power flow indicator|Power flow No
is energized when a register that satisfies
the search criteria is found and the
function was successful.

Example for the Search Function

Figure 158
V_I00001 SEARCH
|} EQ INT
16 V_Mo00001

v_a10001 AR FD——{ }—1

V_A00001 —{INX ONXI— %_AQ0001

0 —IN

To search the memory block %AI00001 - %AI00016, AR is set as %AI00001 and Length
is set as 16. The values of the 16 registers are 100, 20, 0, 5, 90, 200, 0, 79, 102, 80, 24,
34,987, 8, 0, and 500. Initially, the search index into AR, %AQ0001, is 5. When power
flow input is ON, each scan searches the memory block looking for a match to the IN
value of 0. The first scan starts searching at %AIl00006 and finds a match at %AI00007,
so FD turns ON and %AQ00001 becomes 7. The second scan starts searching at
%AI00008 and finds a match at %AI00015, so FD remains ON and %AQ0001 becomes
15. The next scan starts at %AI00016. Since the end of the memory block is reached
without a match, FD is set OFF and %AQ0001 is set to zero. The next scan starts
searching at the beginning of the memory block.

Ladder Diagram (LD) Programming 211

CPU Programmer’s Reference Manual Section 4

GFK-2950M Dec 2024
4.9.8 Sort
SORT When it receives power flow, the SORT function sorts the elements Mnemonics:
| INT | of the memory block 'IN' in ascending order. The output memory SORT_INT
block Q contains integers that give the index that the sorted goRT UINT
77 elements had in the original memory block or list. Q is the same size SORT_WORD
N al as IN. It also has a specification (LEN) of the number of elements to -
be sorted.

SORT operates on memory blocks of no more than 64 elements. When EN is ON, all the
elements of IN are sorted into ascending order, based on their data type. The array Q is
also created, giving the original position that each sorted element held in the unsorted
array. OK is always set ON.

Notes The SORT function is executed each scan it is enabled. Do not use the SORT
function in a timed or triggered input program block.

Operands

Note: For each mnemonic, use the corresponding data type for the IN and Q operands.
For example, SORT_INT requires IN and Q to be INT variables.

Parameter [Description Allowed Operands |Optional

Length (?7?) The number (1—64) of elements that make up|Constants No
the memory block to sort.

IN The memory block that contains the elements|All except data flow, S, No
to sort. After the sort, IN contains the constants. SA — SC valid
elements in the sorted order. only for WORD type

Q (must be the [An array of indexes that gives the position of|All except S - SC and No

same type as IN) [the sorted elements in the original memory |constants
block

Example

Figure 159

V_0Qooo14 LIFO
1} WET
v UINT
5 SORT | V_0Q00025
PLIST —TE FL UINT o ——{ }—
S
¥ Laaedt —|FTR PLIST —|IN O PPOSH
V_100017 —IN

New part numbers (%l00017 - %100032) are pushed onto a parts array PLIST every time
%Q00014 is ON. When the array is filled, it is sorted and the output % Q00025 is tumed
on. The array PPOSN then contains the original position that the now-sorted elements

held before the sort was done on PLIST.

If PLIST were an array of five elements and contained the values 25, 67, 12, 35, 14
before the sort, then after the sort it would contain the values 12, 14, 25, 35, 67. PPOSN
would contain the values 3, 5, 1, 4, 2.

Ladder Diagram (LD) Programming 212

CPU Programmer’s Reference Manual

GFK-2950M
4.9.9 Table Read
TBL RD
_| piwr |
??
4B EM} with a wrap-around.)
-FTE Qf

When TBL_RD receives power flow:

The Table Read (TBL_RD) function sequentially reads values in
a table. When the pointer reaches the end of the table, it wraps
around to the beginning of the table. (TBL_RD is like FIFO_RD

1. TBL_RD increments the pointer by one.

Section 4
Dec 2024

Mnemonics:
TBL_RD_DINT
TBL_RD_DWORD
TBL_RD_INT
TBL_RD_UINT
TBL_RD_WORD

2. TBL_RD copies data indicated by the pointer to output parameter Q. Additional
program logic must then be used to capture the data from the output reference.

3. Steps 1 and 2 are repeated each time the instructionis executed, until the end
of the table is reached (PTR=the length specified in Length). When the end of
the table is reached, the pointer wraps around to the beginning of the table.

When TBL_RD receives power flow, the pointer (PTR) increments by one. If this new
pointer location is the last item in the table, the output EM is set ON. The next time
TBL_RD executes, PTR is automatically set back to 1. After PTR is incremented, the

content at the new pointer location is copied to output Q.

TBL_RD always passes power to the right when it receives power.

Note: The TBL_RD and TBL_WRT functions can operate on the same or different tables.
By specifying a different reference for the pointer, these functions can access the
same data table at different locations or at different rates.

Operands

Note: For each mnemonic, use the corresponding data type for the TB and Q operands.
For example, TBL._RD DINT requires TB and Q to be DINT variables.

Parameter Description Allowed Operands Optional

Length 1 < Length < 32,767 Constants No

TB (must be the The elements in the table |All except constants No

same type as Q)

PTR Pointer. Index of the next [All except data flow, S - SC, No

element. constants

EM Energized when the last |Power flow No

element of the table is read

Q (must be the same|The element read from the|All except constants, S. SA, SB, |No

type as TB) table SC allowed only for WORD,

DWORD

Table Read Example

Figure 160

Ladder Diagram (LD) Programming

213

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

V_M00346 TBL ED
1 INT

2 v_M01001

WIDGETS —(TE EM——{ —

v Looaet —FTR O ITEM_cT

WIDGETS is a table with 20 integer elements. When the enabling input %M00346 is ON,
the pointer increments and the contents of the next element of the table are copied into
ITEM_CT. %L00001 functions as the pointer into the data table. %M01001 is used to

signal when all items of the data table have been accessed.

4.9.10 Table Write

The Table Write (TBL_WRT) function sequentially updates values Mnemonics:
in a table that neverbecomes full. When the pointer (PTR)reaches TBL_WRT_DINT
the end of the table, it automatically retums to the beginning ofte 1 WRT DWORD

table. TBL_WRT_INT
TBL_WRT_UINT
TBL_WRT_ WORD

1. TBL_WRT increments the pointer by one.

2. TBL_WRT copies data from input parameter IN to the position in the table
indicated by the pointer. (It writes over any value currently at that location.)
Additional program logic must then be used to place the data in the input
reference.

3. Steps 1and 2 are repeated each time the instructionis executed, until the table
is full (PTR=LEN). When the table is full, the pointer wraps around to the
beginning of the table.

Note: The TBL_WRT and TBL_RD functions can operate on the same or different tables.
By specifying a different reference for the pointer, these functions can access the
same data table at different locations or at different rates.

When TBL_WRT receives power flow, the pointer (PTR) increments by 1. If this new
pointer location is the last item in the table, the output FL is set to ON. The next time
TBL_WRT executes, PTR is automatically set back to 1. After incrementing PTR,
TBL_WRT writes the content of the input reference to the current pointer location,
overwriting data already stored there.

TBL_WRT always passes power to the right when it receives power.

Note: TBL WRT is like FIFO_WRT with a wrap-around.

Operands

Note: For each mnemonic, use the corresponding data type for the TB and IN operands.
For example, TBL_WRT_DINT requires TB and IN to be DINT variables.

Parameter Description Allowed Operands Optional

Length 1 < Length < 32,767. Constants No

Ladder Diagram (LD) Programming 214

CPU Programmer’s Reference Manual

GFK-2950M

Section 4

Dec 2024
Parameter Description Allowed Operands Optional
TB (must be the same [The elements in the table All except S, constants, data flow.|No
data type as IN) SA — SC allowed only for WORD,
DWORD

PTR Pointer. Index of the next All except constants, data flow, %S|No

element. - %SC
IN (must be the same [The elementto write to the table|All. %S - %SC allowed only for No
data type as TB) WORD, DWORD
FL Energized when IN is written to |Power flow No

the last element of the table

Table Write Example

Figure 161
v_100012 [TBL
|} WA -
INT
20 | v_Mot001
WIDGETS TE FL—— }—i
¥ Zogogr —FTR
V_P00077 —{IN

WIDGETS is a table with 20 integer elements. When the enabling input %I00012 is ON,
the pointer increments and the contents of %P00077 are written into the table at the
pointer location. %L00001 functions as the pointer into the data table.

Ladder Diagram (LD) Programming

215

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

410 Math Functions

Your program may need to include logic to convert data to a different data type before
using a Math or Numerical function. The description of each function includes information
about appropriate data types. Refer to the Conversion Functions section to understand
how to convert one data type to a different data type.

Function Mnemonics Description

Absolute Value |ABS_DINT, ABS_INT, Finds the absolute value of a double- precision integer
ABS_REAL, ABS_LREAL |(DINT), signed single-precision integer (INT), or floating-
point (REAL or LREAL)value. The mnemonic specifies the
value's data type.

Add ADD_DINT, ADD_INT, Addition. Adds two numbers.
ADD_REAL, ADD_LREAL,
ADD_UINT
Divide* DIV_DINT, DIV_INT, Division. Divides one number by another and outputs the

DIV_MIXED, DIV_REAL, |quotient.
DIV_LREAL,DIV_UINT INote: Take care to avoid

Overflow conditions when performing divisions.

Modulus MOD_DINT, MOD_INT, Modulo Division. Divides one number by another and
MOD_UINT outputs the remainder.
Multiply* MUL_DINT, MUL_INT, Multiplication. Multiplies two numbers.

MUL_MIXED, MUL_REAL, INote: Take care to avoid
MUL_LREAL, MUL_UINT

Overflow conditions when performing
multiplications.
Scale SCALE Scales an input parameter and places the result in an
output location.
Subtract SUB_DINT, SUB_INT, Subtraction. Subtracts one number from another.
SUB_REAL, SUB_LREAL,
SUB_UINT

4To avoid

Overflows when multiplying or dividing 16-bit numbers, use the Conversion Functions to convert the numbers to a 32-bit data type.
Ladder Diagram (LD) Programming 216

CPU Programmer’s Reference Manual

GFK-2950M

4.10.1

4.10.2

Overflow
When an operation results in overflow, there is no power flow.

Sect
Dec

ion 4
2024

If an operationon signed operands (INT, DINT, REAL) results in overflow, the output
reference is set to its largest possible value for the data type. For signed numbers, the
signis set to show the direction of the overflow. If signed or double precision integers
are used, the sign of the result for DIV and MUL functions depends on the signs of I1

and 2.
Maximum MAXINT16 Maximum signed 16-bit 7FFF hex 32,767
Values MAXUINT16 | Maximum unsigned 16-bit FFFF hex 65,535
MAXINT32 Maximum signed 32-bit 7FFFFFFF hex | 2,147,483,647
Minimum MININT16 Minimum signed 16-bit 8000 hex -32,768
Values MININT32 Minimum signed 32-bit 80000000 hex | —2,147,483,648

If an operation on unsigned operands (UINT) results in overflow or underflow, the output
value wraps around. For example, the ADD_UINT operation, 65535+16, yields a resuit

of 15.

Absolute Value

ABS When the function receives power flow, it places the Mnemonics:
_| DINT | absolute value of input IN into output Q. ABS_DINT
ABS_INT
ABS_REAL
N ar ABS_LREAL

The function outputs power flow, unless one of the following conditions occurs:

e ForINT type, IN is —32,768.

e For DINT type, IN is —2,147,483,648.

e For REAL or LREAL type, IN is NaN (Not a Number).

Operands
Parameter Description Allowed Operands Optional
IN (must be same type as Q) The value to process. All except S, SA, SB, SC No
Q (must be same type as IN) The absolute value of IN. |All except S, SA, SB, SC and |No
constant
217

Ladder Diagram (LD) Programming

CPU Programmer’s Reference Manual

GFK-2950M

4.10.3

Section 4

Dec 2024
Example
The absolute value of —2,976, which is 2,976, is placed in %R00010:
Figure 162
ABSINT
2976 —{IN Q- ¥_R00010
ADD When the ADD functionreceives power flow, it adds the two operands Mnemonics:
-| DINT | IN1 and IN2 of the same data type and stores the sum in the output ADD_DINT
variable assigned to Q, also of the same data type. ADD_INT
I ADD_REAL
Q ADD_LREAL
ADD_UINT
—{IN2

The power flow output is energized when ADD is performed, unless an invalid
operation or occurs. (For more information, refer to the section on Overflow

Mnemonic (Operation Displays as

ADD_INT Q(16-bit) = IN1(16-bit) + IN2(16-bit) base 10 number with sign, up to 5 digits long

ADD_DINT Q(32-bit) = IN1(32-bit) + IN2(32-bit) base 10 number with sign, up to 10 digits long

ADD_REAL Q(32-bit) = IN1(32-bit) + IN2(32-bit) base 10 number, sign and decimals, up to 8 digis
long (excluding the decimals)

ADD_LREAL |Q(64-bit) = IN1(64-bit) + IN2(64-bit) base 10 number, sign and decimals, up to 17
digits long (excluding the decimals)

ADD_UINT Q(16-bit) = IN1(16-bit) + IN2(16-bit) base 10 number, unsigned, up to 5 digits long

Operands of the ADD Function

Ladder Diagram (LD) Programming

Operand |Description Allowed Operands Optional
IN1 The value to the left of the plus sign (+) in]All except S, SA, SB, SC No
the equation IN1+IN2=Q.
IN2 The value to the right of the plus sign (+) in|All except S, SA, SB, SC No
the equation IN1+IN2=Q.
Q The result of IN1+IN2. If an ADD of signed|All except S, SA, SB, SC and|No
operands results in constant.
Overflow, Q is set to the largest possible
value and there is no power flow.
If an ADD_UINT operation results in
Overflow, Q wraps around.
218

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Example1 for ADD

Figure 163

| Y_100000 [ADD ¥_000001

i} 1 { =

v_R00002 —{IN1 O ¥_R00002

1—IN2

The first example is a failed attempt to create a counter circuit that would count the
number of times switch %100001 closes. The running total is stored in register % R00002.
The intent of this designis thatwhen %10001 closes, the ADD instruction should add one
to the value in %R00002 and place the new value right back into %R0002. The problem
with this design is that the ADD instruction executes once every PLC scan while %10001
is closed. For example, if %10001 stays closed for five scans, the output increments five

times, even though %I100001 only closed once during that period.
Example2 for ADD

Figure 164
V_I0000 V_Mo00001
| | {1}—
V_M00001 [ADD v_Qo0001
| TNt {

V_Rooooz —IN1 QF v_R00002

1INz

To correct the above problem, the enable input to the ADD instruction should come from
a transition (one-shot) coil, as shown below. In the improved circuit, the %I10001 input
switch controls a transition coil, %MO0001, whose contact turns on the enable input of the
ADD function for only one scan each time contact %100001 closes. For the %MO00001
contact to close again, contact %10001 has to open and close again.

Note: IfIN1 and/or IN2 is NaN (Not a Number), ADD_REAL passes no power flow.

Ladder Diagram (LD) Programming 219

CPU Programmer’s Reference Manual Section 4

GFK-2950M Dec 2024
4.10.4 Divide
l;:III“_rr When the DIV function receives power flow, it divides the operand INl Mnemonics:

by the operand IN2 of the same data type as IN1 and stores the D|V_DINT
quotient in the output variable assigned to Q, also of the same data DIV_INT

- ar type as IN1 and IN2. DIV_MIXED
The power flow output is energized when DIV is DIV_REAL
s performed, unless an invalid operation or DIV_LREAL
Overflow occurs. (For more information, refer to the DIV_UINT
section on
Overflow.)
Notes:
. DIV rounds down; it does not round to the closest integer. For example,
24 DIV 5= 4.
. DIV_MIXED uses mixed data types.
. Be careful to avoid overflows.

The following REAL and LREAL operations are invalid for DIV:

e Any number divided by 0. This operation yields a result of 65535.
e o divided by =

e |1 and/or 12 is NaN (Not a Number)

Mnemonic |Operation Displays as

DIV_UINT Q(16-bit) = IN1(16-bit) / IN2(16-bit) base 10 number, unsigned, up to 5 digits long

DIV_INT Q(16-bit) = IN1(16-bit) / IN2(16-bit) base 10 number with sign, up to 5 digits long

DIV_DINT Q(32-bit) = IN1(32-bit) / IN2(32-bit) base 10 number with sign, up to 10 digits long

DIV_MIXED Q(16-bit) = IN1(32-bit) / IN2(16-bit) base 10 number with sign, up to 5 digits long

DIV_REAL Q(32-bit) = IN1(32-bit) / IN2(32-bit) base 10 number, sign and decimals, up to 8 digits|
long (excluding the decimals)

DIV_LREAL Q(64-bit) = IN1(64-bit) / IN2(64-bit) base 10 number, sign and decimals, up to 17
digits long (excluding the decimals)

Ladder Diagram (LD) Programming 220

CPU Programmer’s Reference Manual

GFK-2950M

Ladder Diagram (LD) Programming

Section 4

Dec 2024

Operands for the DIV Function
Parameter |Description Allowed Operands |Optional
IN1 Dividend: the value to be divided; shown to the|All except S, SA, SB, SC |No

left of DIV in the equation IN1 DIV IN2=Q.
IN2 Divisor: the value to divide into IN1; shown to |All except S, SA, SB, SC |No

the right of DIV in the equation IN1 DIV IN2=Q.
Q The quotient of IN1/IN2. If a DIV operation on|All except S, SA, SB, SC [No

signed operands results in and constant

Overflow, Q is set to the largest possible value

and there is no power flow.

If a DIV_UINT operation results in

Overflow, Q wraps around.
DIV_MIXED Operands
Parameter |Description Allowed Operands|Optional
IN1 Dividend: the value to be divided; shown to the|All exceptS, SA, SB, SC|No

left of DIV in the equation IN1 DIV IN2=Q.
IN2 Divisor: the value to divide into IN1; shown to the|All exceptS, SA, SB, SC|No

right of DIV in the equation IN1 DIV IN2=Q.
Q The quotient of IN1/IN2. If an All except S, SA, SB, SC|No

Overflow occurs, the result is the largest value

with the proper sign and no power flow.

and constant

DIV_MIXED Example

DIV_DINTcanbeused inconjunctionwitha MUL_DINT functionto scalea+10 volt input
to £25,000 engineering units. Refer to Example — Scaling Analog Input Values.

221

CPU Programmer’s Reference Manual Section 4

GFK-2950M Dec 2024
4.10.5 Modulus
MOD When the Modulo Division (MOD) function receives power flow, it Mnemonics:
—| DINT [divides input IN1 by input IN2 and outputs the remainder of the MOD_DINT
division to Q. MOD_lNT
—IN1 Qf MOD_UINT
—IN2

All three operands mustbe of the same data type. The sign of the result is always the
same as the sign of input parameter IN1. Output Q is calculated using the formula:

Q = IN1-((IN1 DIV IN2) x IN2)

where DIV produces an integer number.

The power flow output is always ON when the function receives power flow, unless there
is an attempt to divide by zero. In that case, the power flow output is set to OFF.

Operands for Modulus Function

Parameter |Description Allowed Operands |Optional

IN1 Dividend: the value to be divided to obtain the|All except S, SA, SB, SC No
remainder; shown to the left of MOD in the
equation IN1 MOD IN2=Q.

IN2 Divisor: the value to divide into IN1; shown to]All except S, SA, SB, SC No
the right of MOD in the equation IN1 MOD
IN2=Q.
Q The remainder of IN1/IN2. All except S, SA, SB, SCand|No
constant

4.10.6 Multiply

E When the MUL function receives power flow, it multiplies the two ~ Mnemonics:
7] B operands IN1 and IN2 of the same data type and stores the resultin ~ MUL_DINT
the output variable assigned to Q, also of the same data type. MUL_INT
wes The power flow outputis energized when the function MUL_MIXED
Jmz is performed, unless an invalid operation or MUL_REAL
Overflow occurs. (For more information, refer to the MUL_LREAL
section on MUL_UINT
Overflow)

Note: MUL_MIXED uses mixed data types. Be careful to avoid overflows.

The following REAL and LREAL operations are invalid for MUL:

e 0Oxe
e [1and/orl2is NaN (Not a Number).

Mnemonic |Operation Displays as

MUL_INT Q(16-bit) = IN1(16-bit) x IN2(16-bit) base 10 number with sign, up to 5 digits long
MUL_DINT Q(32-bit) = IN1(32-bit) x IN2(32-bit) base 10 number with sign, up to 10 digits long

MUL_REAL Q(32-bit) = IN1(32-bit) x IN2(32-bit) base 10 number, sign and decimals, up to 8
digits long (excluding the decimals)

MUL_LREAL |Q(64-bit) = IN1(64-bit) x IN2(64-bit) base 10 number, sign and decimals, up to 17
digits long (excluding the decimals)

Ladder Diagram (LD) Programming 222

CPU Programmer’s Reference Manual Section 4

GFK-2950M Dec 2024
MUL_UINT Q(16-bit) = IN1(16-bit) x IN2(16-bit) base 10 number, unsigned, up to 5 digits long
MUL_MIXED |Q(32-bit) = IN1(16-bit) x IN2(16-bit) base 10 number with sign, up to 10 digits long
Operands for Multiply
Parameter |Description Allowed Operands |Optional
IN1 The first value to multiply; the value to the left|All except S, SA, SB, SC No

of the multiply sign (x) in the equation IN1 x
IN2=Q.
IN2 The second value to multiply; the value to the|All except S, SA, SB, SC No
right of the multiply sign (x) in the equation IN1
x IN2=Q.
Q The result of IN1 x IN2. If a MUL operation on|All except S, SA, SB, SC and|No
signed operands results in constant
Overflow, Q is set to the largest possible value
and there is no power flow.
If a MUL_UINT operation results in
Overflow, Q wraps around.

Example — Scaling Analog Input Values

A common application is to scale analog input values with a MUL operation followed by
a DIV and possibly an ADD operation. A 0 to +10 volt analog input will place values of
0 to £32,000 in its corresponding %Al input register. Multiplying this input register using
an MUL_INT function will result in an Overflow since an INT type instruction has an
input and output range of 32,767 to —32,768. Using the %Al value as in input to a

MUL_DINT also does notwork as the 32-bit IN1 will combine 2 analog inputs at the
same time. To solve this problem, you can move the analog input to the low word of a
double register, then test the sign and set the second register to 0 if the sign tests
positive or —1 if negative. Then use the double register just created with a MUL_DINT
which gives a 32-bit result, and which can be used with a following DIV_DINT function.

For example, the following logic could be used to scale a +10 volt input %Al1 to +25000
engineering units in %R5.

Ladder Diagram (LD) Programming 223

CPU Programmer’s Reference Manual

GFK-2950M

Figure 165
#ALW ON [MOVE MOVE
|} INT INT - {.—1
1 1
AI0001 —{IN QF R000O1 o—IN QO R0o0002
LT INT
].1L
17
MOVE
ROOOOI —IN1 Q INT L
1
0 —{IN2 -1 —{IN QF ROO0OOZ
#ALW_ON MOL DIV
|} DINT DINT |
RO00O1 —{IN1 Qf- R00003 R0O0002 —{IN1 Q- R0000S
25000 —{IN2 32000 —{IN2

Analternate, but less accurate, way of programming this circuitusing INT values involves
placing the DIV_DINT instruction first, followed by the MUL_DINT instruction. The value
of IN2 for the DIV instruction would be 32, and the value of IN2 for the MUL would be 25.
This maintains the scaling proportion of the above circuit and keeps the values within the
working range of the INT type instructions. However, the DIV instruction inherently
discards any remainder value, so when the DIV output is multiplied by the MUL
instruction, the error introduced by a discarded remainder is multiplied. The percent of
error is non-linear over the full range of input values and is greater at lower input values.

By contrast, in the example above, the results are more accurate because the DV
operation is performed last, so the discarded remainder is not multiplied. If even greater
precision is required, substitute REAL type mathinstructions in this example so that the
remainder is not discarded.

Ladder Diagram (LD) Programming 224

Section 4
Dec 2024

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024
4.10.7 Scale
[SCALE DINT | When the SCALE functionreceives powerflow, it scales the Mnemonics:
] _ inputoperand IN and places the resultin the output variable ~ SCALE_DINT
i oml assigned to output operand OUT. The power flow outputis gcaLE INT
energized when SCALE is performed without Overflow. SCALE_DINT
o _
SCALE_UINT
— OHI
—joo
—IN
Operands
Parameter |Description Allowed Operands | Optional
IHI (Inputs High) Maximum input value (module-| All except S, SA, SB, SC | No
related). The upper limit of the unscaled data.
IHI'is used with ILO, OHI and OLO to calculate
the scaling factorapplied to the input value IN.
ILO (Inputs Low) Minimum input value (module-| All except S, SA, SB, SC | No
related). The lower limit of the unscaled data.
Must be the same data type as IHI.
OHI (Outputs High) Maximum output value. The | All except S, SA, SB, SC | No
upper limit of the scaled data. Must be the
same data type as IHI. When the INinputis at
the IHI value, the OUT value is the same as the
OHl value.
oLO (Outputs Low) Minimum output value. The [All except S, SA, SB, SC | No
lower limit of the scaled data. Mustbe the same
data type as IHI. When the IN input is at the
ILO value, the OUT value is the same as the
OLO value.
IN (INput value) The value to be scaled. Must be | All except S, SA, SB, SC | No
the same data type as IHI.
ouT (OUTput value) The scaled equivalent of the | All except S, SA, SB, SC | No
input value. Must be the same datatypeas IHI.
Ladder Diagram (LD) Programming 225

CPU Programmer’s Reference Manual

GFK-2950M

4.10.8

Example

Figure 166

V_I00dl [SCALE
— —— INT L

V_Ro0g —{1El OUT— W AQ00r

y_Foiz] —{ILO

v_Roizz —{OBI

W_Bo0i) 0L

V_ALDOIT 1N

In the example at right, the registers %R0120 through %R0123 are used to store the
high and low scaling values. The input value to be scaled is analog input %Al0017. The
scaled output data is used to control analog output %AQ0017. The scaling is perfformed
whenever %0001 is ON.

Subtract

SOB When the SUB function receives power flow, it subtracts the operand Mnemonics:
DINT IN2 from the operand IN1 of the same data type as IN2 and stores the SUB_DINT
resultin the output variable assigned to Q, also of the same data type. SUB_INT

-m af SUB_REAL
SUB_LREAL
e SUB_UINT

The power flow output is energized when SUB is performed, unless an invalid
operation or Overflow occurs. (For more information, refer to the section on Overflow.

If a SUB_UINT operation results in a negative number, Q wraps around, yielding a resuit
that is the highest possible value (65535) minus the absolute value of the difference -1.

The following REAL and LREAL operations are invalid for SUB:
o (Eo)-(x=)

e |1 and/or 12 is NaN (Not a Number)

Mnemonic [Operation Displays as

SUB_INT Q(16-bit) = IN1(16-bit) — IN2(16-bit) base 10 number with sign, up to 5 digits long
SUB_DINT Q(32-bit) = IN1(32-bit) — IN2(32-bit) base 10 number with sign, up to 10 digits long
SUB_REAL [Q(32-bit) = IN1(32-bit) — IN2(32-bit) base 10 number, sign and decimals, up to 8 digits

long (excluding the decimals)

base 10 number, sign and decimals, up to 17
digits long (excluding the decimals)

SUB_LREAL |Q(64-bit) = IN1(64-bit) — IN2(64-bit)

SUB_UINT Q(16-bit) = IN1(16-bit) — IN2(16-bit) base 10 number, unsigned, up to 5 digits long
Operands for Subtract
Parameter |Description Allowed Operands |Optional
IN1 The value to subtract from; the value to the left of the |All except S, SA, SB, |No

minus sign (-) in the equation IN1-IN2=Q. SC
IN2 The value to subtract from IN1; the value to the right of |All except S, SA, SB, |No

the minus sign (-) in the equation IN1-IN2=Q. SC

Ladder Diagram (LD) Programming 226

Section 4
Dec 2024

CPU Programmer’s Reference Manual

GFK-2950M

4.11

4.11.1

Parameter

Description

Allowed Operands |Optional

Q The result of IN1-IN2. If a SUB operation on signed
operands results in underflow, Q is set to the smallest [SC and constant
possible value and there is no power flow.

If a SUB_UINT operation results in

Overflow, Q wraps around. For example,

The SUB_UINT operation 600 — 601 = —1 sets Q to
65535
The SUB_UINT operation 600 — 602 = -2 sets Q to
65534

All except S, SA, SB, |No

Program Flow Functions

The program flow functions limit program execution or change the way the CPU executes

the application program.

Function Mnemonic |Description

Argument ARG_PRES [Determines whetheran input oroutput parametervalue was present when

Present the function block instance of the parameter was invoked. For example, a
parameter can be optional (pass by value).

Call CALL Causes program execution to go to a specified block.

Comment COMMENT Places a text explanation in the program.

End Masterf ENDMCRN Nested End Master Control Relay. Indicates that the subsequent logic is to

Control Relay be executed with normal power flow.

End of Logic |END Provides an unconditional end of logic. The program executes from the first
rung to the last rung orthe END instruction, whicheveris encountered first.

Jump JUMPN Nested jump. Causes program execution to jump to a specified location
indicated by a LABELN. JUMPN/LABELN pairs can be nested within one
another. Multiple JUMPNs can share the same LABELN.

Label LABELN Nested label. Specifies the target location of a JUMPN instruction.

Master Control
Relay

MCRN

Nested Master Control Relay. Causes all rungs between the MCR and its
subsequent ENDMCRN to be executed without power flow. Up to
MCRN/ENDMCRN pairs can be nested within one another. All the MCRNs
share the same ENDMCRN.

Wires

H_WIRE Horizontally connects elements of a line of LD logic, to complete the power
flow.
V_WIRE Vertically connects elements of a line of LD logic, to complete the power

flow.

Argument Present

Figure 167

ARG

FRES

The ARG_PRES function determines whether an input parameter value was present
when the function block instance of the parameter was invoked. This may be necessary
if the parameter is optional.

This function must be called from a function block instance or a parameterized block.

Ladder Diagram (LD) Programming

227

Section 4
Dec 2024

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

The standard output parameter ENO is false only when EN is false.

Operands for ARG_PRES

Parameter |Description Allowed Operands Optional

IN Parameter name. Must be a parameter of| All except flow and constants. [No
the function block that contains the
ARG_PRES instruction. Cannot be an anay|
element or structure element. An alias to a
parameter should resolve only to the
parameter name.

Q True if the parameteris present, otherwise|Must be flow in LD. In other|No
false. languages all types allowed
except S, SA, SB, SC and
constants.

Ladder Diagram (LD) Programming 228

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Example for ARG_PRES

The following sample rung calls the user defined function block, ReadTemp, which has
two parameters, TempVal and Temp1.

Figure 168

1
m
X
[]
—
m
n

CheckTemp

TankTemp —— | TEMPVAL TEMP1— TempQul

The function block Read Temp contains the following logic, which uses an ARG_PRES
function to determine whether a value for TempValis present. If TempVal does not have
avalue, Temp_Presis OFF andIdleis ON. If avalue existsfor TempVal, the ARG_PRES
function sets Temp_Pres ON. When Temp_Pres and Switch are both ON, Start is set

ON.
Figure 169
Temp_Pres
a (M
a Q p
Temp_Pres Idle
7 S
Temp_Pres Switch Start
11 1| I
11 1T \

Ladder Diagram (LD) Programming 229

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

4.11.2 Call

PRI CALL
Tt _|souARED|
{CALL}
—m al-
—mz oz
Non-parameterized Parameterized. May call a parameterized external block or a parameterized
block. May have up to 7 input and 8 output parameters.

When the CALL function receives power flow, it causes the logic execution to go
immediately to the designated program block, external C block (parameterized or not),
or parameterized block and execute it. After the block’s execution is complete, control
returns to the point in the logic immediately following the CALL instruction.

Notes:

° A CALL function can be used in any program block, including the _MAIN block, or
a parameterized block. It cannot be used in an external block.

o You cannot call a _MAIN block.

° The called block must exist in the target before making the call.

° There is no limit to the number of calls that can be made from or to a given block.

° You can set up recursive subroutines by having a block call itself. When stack size
is configured to be the default (64K), the PLC guarantees a minimum of eight nested
calls before an Application Stack Overflow fault is logged.

° Each block has a predefined parameter, YO, which the CPU sets to 1 upon each

invocation of the block. YO can be controlled by logic within the block and provides
the output status of the block. When the YO parameter of a Program Block,
parameterized block, or external C block returns ON, the CALL passes power to the
right; when it returns OFF, the CALL does not pass power to the right.

Ladder Diagram (LD) Programming 230

CPU Programmer’s Reference Manual
GFK-2950M

Section 4
Dec 2024

Operands for Call

Parameter

Description

Block Name (???7?)

Block name; the name of the block to transfer to.
You cannot CALL the _MAIN block.
A program block or a parameterized block can call itself.

(Parameterized calls only)

Input parameters (0 —7)
Output parameters (1 — 8)

Notes for External (C) blocks:

e You must define the TYPE, LENGTH, and NAME for each
external C block parameter.

e Thevalid data type, value range, and memory area for each
parameter are stated in the external block's written
documentation.

eData flow is permitted for any parameter. For additional
information, see the section on External Blocks

° in Section 2.

Notes for Parameterized Blocks:

e Youmust define the TYPE, LENGTH, and NAME for each
parameter. Valid operands on the CALL instruction include
variables, flow, and indirect references. Input operands can
also be constants.

e Ifa formal parameter is an array of BOOL type and has a
length evenly divisible by 16, then a variable or array residing
in word-oriented memory can be passed on to the
parameterized block as an operand. For example, if a
parameterized block has a formal parameter Y1 of data type
BIT and length 48, you can pass a WORD array of length 3 to
Y1.

e The BOOL parameter YO0 is automatically defined for all
parameterized blocks and can be used in the parameterized
block's logic. When the parameterized block stops executing
and YO is ON, the CALL passes power flow to the right. If YO is
OFF, the CALL passes no power flow.

e A parameterized block is not required to have the same
number of inputs and outputs.

e For additional information, refer to Using Parameters with a
Parameterized Block

e in Section 2.

Ladder Diagram (LD) Programming

231

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Example 1 for Call

Figure 170

CaLL
Enable C 123 TO00O1

— — (O

Datai — N1 OUi - Datad

patz —INZ2 QU2 patas5

Data3 —IN3 QU3 Dataé

In the example at right, if Enable is set, the C block named C_123 is executed. C_123
operates on the input data located at reference addresses Data1, Data2, and Data 3,
and produces values located at reference addresses Data4, Data5, and Data6. Logic
within C_123 controls the power flow output.

Example 2 for Call

Figure 171

CALL AVG 4
100004

— -

RO000Y —% E [— R0000S

RO0002 —&

R00003 —|C

R00004 —0

Parameterized blocks are useful for building libraries of user-defined functions. For
example, if you have an equation such as:

E=(A+B+C+D)/4, a parameterized block named AVG_4 could be called as shown in the
example to the right.

Ladder Diagram (LD) Programming 232

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

In this example, the average of the values in R0O0001, R00002, RO0003, and R00004
would be placed in R0O0005.

The logic within the parameterized block would be defined as shown below.

Logic for AVG_4 Parameterized Block

Figure 172

ADD UINT DD UINT DIVUINT

B —{IN2 —iiN2 —{IN2

ADD UINT

Ladder Diagram (LD) Programming 233

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

4.11.3 Comment

Figure 173

0000

The Comment function is used to enter a text explanation in the program. When you
insert a Comment instruction into the LD logic, it displays????. After you key in a

comment, the first few words are displayed.

Figure 174

| IThis: is a comment. Comments have no effect on program execution.

You can set the Comment mode option to Brief or Full.

Note:
e Editing a comment makes the Programmer lose equality.

e Comment text is downloaded to the controller and retrieved upon Logic Upload.

4.11.4 JumpN

@ - Description Always associated with... | Mnemonic

Nested form of Jump a LABELN instruction JUMPN

JUMPN instruction.

A JUMPN instruction causes a portion of the programlogic to be bypassed. Program
execution continues at the LABELN specified in the same block. Power flow jumps

directly from the JUMPN to the rung with the named LABELN.

Whenthe Jump is active, any functions between the jump and the label are not executed.
All coils between JUMPN and its associated LABELN are left at their previous states.
This includes coils associated with timers, counters, latches, and relays.

Any JUMPN can be either a forward or a backward jump, i.e., its LABELN can be either
in a further or previous rung. The LABELN must be in the same block.

Note: To avoid creating an endless loop with forward and backward JUMPN instructions,
a backward JUMPN should contain a way to make it conditional.

Ladder Diagram (LD) Programming 234

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

A JUMPN and its associated LABELN can be placed anywhere in a program, if the
JUMPN / LABELN range:

e does not overlap the range of a MCRN / ENDMCRN pair.
e does not overlap the range of a FOR_LOOP / END_FOR pair.
Nothing can be connected to the right side of a JUMPN instruction.

Operands
Parameter |Description Optional
Label (???7) Label name; the name assigned to the destination LABEL(N). No

4.11.5 Master Control Relay/End Master Control Relay

Figure 175

?P?

MCRM

[ERg) 2272

Description Always associated with... | Mnemonics

Nested form of the Master an ENDMCRN instruction MCRN
Control Relay

Nested End Master Control an MCRN instruction ENDMCRN
Relay

MCRN

An MCRN instruction marks the beginning of a section of logic that will be executed with
no power flow. The end of an MCRN section must be marked with an ENDMCRN having
the same name as the MCRN. ENDMCRNs must follow their corresponding MCRNSs in
the logic.

All rungs between an active MCRN and its corresponding ENDMCRN are executed with
negative power flow from the power rail. The ENDMCRN function associated with the
MCRN causes normal program execution to resume, with positive power flow coming
from the power rail.

With a Master Control Relay, functions within the scope of the Master Control Relay are
executed without power flow, and coils are turned off.

Block calls within the scope of an active Master Control Relay will not execute. However,
any timers in the block will continue to accumulate time.

A rung may not contain anything after an MCRN.

Unlike JUMP instructions, MCRNs can only move forward. An ENDMCRN instruction
must appear after its corresponding MCRN instruction in a program.

The following controls are imposed by an MCRN:

e Timers do notincrement ordecrement. TMR types are reset. Foran OND TR function,
the accumulator holds its value.

Ladder Diagram (LD) Programming 235

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

¢ Normal outputs are off; negated outputs are on.

Note: When an MCRN is energized, the logic it controls is scanned and contact status is
displayed, but no outputs are energized. If you are not aware that an MCRN is
controlling the logic being observed, this might appear to be a faulty condition.

An MCRN and its associated ENDMCRN can be placed anywhere in a program, if the
MCRN / ENDMCRN range:

e Is completely nested within another MCRN/ENDMCRN range, up to a maximum 255
levels of nesting, oris completely outside of the range of another MCRN/ENDMCRN
range.

e |s completely nestedwithinaFOR_LOOP/END_FORrangeoris completely outside
of the range of a FOR_LOOP / END_FOR.

EndMCRN

The End Master Control Relay instruction marks the end of a section of logic begun with
a Master Control Relay instruction. When the MCRN associated with the ENDMCRN is
active, the ENDMCRN causes program execution to resume with normal power flow.
When the MCRN associated with the ENDMCRN is not active, the ENDMCRN has no
effect.

ENDMCRN must be tied to the power rail; there can be no logic before it in the rung;
execution cannot be conditional.

ENDMCRN has a name that identifies it and associates it with the corresponding
MCRN(s). The ENDMCRN function has no outputs; there can be nothing after an
ENDMCR instruction in a rung.

Operands for MCRN/ENDMCRN

The Master Control Relay function has a single operand, a name that identifies the
MCRN. This name is used again with an ENDMCRN instruction. The MCRN has no

output.

Parameter |Description Optional
Name The name associated with the MCRN that starts the section of logic. No

(??22?)

Example of MCRN/ENDMCRN

Figure 176

Ladder Diagram (LD) Programming 236

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

V_10002 First_MCRN

— ——WCRN]

W_10004 Sec_MCRN

— F———HCRN]

V_lono1 V_Q00o1

| | { —

v_I0003 V_00003
| } {s}—

[sec_mern
Mg First_merN

The example at right an MCRN named Sec_MCRN nested inside the MCRN named
First_ MCRN. Whenever the VV_I0002 contact allows power flow into the MCRN function,
program execution will continue without power flow to the coils until the associated
ENDMCRN is reached. If the V_10001 and V_10003 contacts are ON, the V_Q0001 coil

is turned OFF and the SET coil V_QO0003 maintains its current state.

4.11.6 Wires

Figure 177

Horizontal and vertical wires (H_WIRE and V_WIRE) are used to connect elements of a
line of LD logic between functions. Their purpose is to complete the flow of logic (power)
from left to right in a line of logic.

A horizontal wire transmits the BOOLEAN ON/OFF state of the element onits immediate
left to the element on its immediate right.

A vertical wire may intersect with one or more horizontal wires on each side. The state
of the vertical wire is the inclusive OR of the ON states of the horizontal wires on its left
side. The state of the vertical wire is copied to all the attached horizontal wires on itsright
side.

Note: Wires can be used for data flow, but you cannot route data flow leftwards. Nor can
two separate data flow lines come into the left side of the same vertical wire.

412 Relational Functions

Relational functions compare two values of the same data type or determine whether a
number lies within a specified range. The original values are unaffected.

Ladder Diagram (LD) Programming 237

CPU Programmer’s Reference Manual

GFK-2950M

4.12.1

Section 4
Dec 2024

Function

Mnemonic

Description

Compare

CMP_DINT
CMP_INT
CMP_REAL
CMP_LREAL
CMP_UINT

Compares two numbers, IN1 and IN2, of the data type specified by
the mnemonic.

e IfIN1 <IN2, the LT output is turned ON.

. If IN1 = IN2, the EQ output is turned ON.

. If IN1 > IN2, the GT output is turned ON.

Equal

EQ_DATA
EQ_DINT
EQ_INT
EQ_REAL
EQ_LREAL
EQ_UINT

Tests two numbers for equality

Greater or
Equal

GE_DINT
GE_INT
GE_REAL
GE_LREAL
GE_UINT

Tests whether one number is greater than or equal to another

Greater Than

GT_DINT
GT_INT
GT_REAL
GT_LREAL
GT_UINT

Tests whether one number is greater than another

Less or Equal

LE_DINT
LE_INT
LE_REAL
LE_LREAL
LE_UINT

Tests whether one number is less than or equal to another

Less Than

LT_DINT
LT_INT

LT REAL
LT _LREAL
LT_UINT

Tests whether one number is less than another

Not Equal

NE_DINT
NE_INT
NE_REAL
NE_LREAL
NE_UINT

Tests two numbers for inequality

Range

RANGE_DINT
RANGE_DWORD
RANGE_INT
RANGE_UINT
RANGE_WORD

Tests whetherone numberis within the range defined by two other
supplied numbers

Compare

CMP
DINT |

It LT

1

INZ EQF

Gl

When the Compare (CMP) function receives power Mnemonics:

flow, it compares the value IN1 to the value IN2.

CMP_DINT

e If IN1 < IN2, CMP energizes the LT CMP_INT

(Less Than) output.
e If IN1T = IN2, CMP energizes the EQ

CMP_REAL
CMP_LREAL
CMP_UINT

(Equal) output.

e If INT > IN2, CMP energizes the GT
(Greater Than) output.

IN1 and IN2 must be the same data type.
Ladder Diagram (LD) Programming

238

CPU Programmer’s Reference Manual

GFK-2950M

Section 4
Dec 2024

CMP compares data of the following types: DINT, INT, REAL, LREAL, and UINT.

Tip

To compare values of different data types, first use conversion functions to make the types the

same.

When it receives power flow, CMP always passes power flow to the right, unless IN1
and/or IN2 is NaN (Not a Number).

Operands

Parameter |Description Allowed Operands Optional
IN1 The first value to compare. All except S, SA, SB, SC No

IN2 The second value to compare. All except S, SA, SB, SC No

LT Output LT is energized when 1 < 12. Power flow No

EQ Output EQ is energized when 11 = 12. Power flow No

GT Output GT is energized when 11 > 12. Power flow No

Ladder Diagram (LD) Programming

239

CPU Programmer’s Reference Manual

GFK-2950M

4.12.2

Ladder Diagram (LD) Programming

Section 4

Dec 2024
Example
Figure 178
W T000d CMFP
[} UINT
V_MO0001
SHIPS —IN1 LT——{ }—1
V_M00002
BOATS —{INz EQ—— +—i
V_MO00003
GT—

When %100001 is ON, the integer variable SHIPS is compared with the variable BOATS.
Internal coils %MO0001, %M0002, and %MO0003 are set to the results of the compare.

Equal, Not Equal, Greater or Equal, Greater Than,
Less or Equal, Less Than

EQ
_| DINT |

—{1Ix1 ar

—IN2

¥E
—| DINT

—{IN1

—IN2

GE

arF —{IK1 a

—IN2

DINT |

GT
DINT

1M

IN2

Other data types:

LE

Int

IN2

LT DINT
| DINT [- | _INT
_REAL
oF —m af _LREAL
_UINT
-z

When the relational function receives power flow, it compares input IN1 to input IN2.
These operands mustbe the same datatype. If inputs IN1 and IN2 are equal, the function
passes power to the right, unless IN1 and/or IN2 is NaN (Not a Number). The following

relational functions can be used to compare two numbers:

Function Definition Relational Statement
EQ Equal IN1=IN2
NE Not Equal IN1#IN2
GE Greater Than or Equal IN12IN2
GT Greater Than IN1>IN2
LE Less Than or Equal IN1<IN2
LT Less Than IN1<IN2

Note: If an overflow occurs with a _UINT operation, the result wraps around — refer to Section
4.10.1, Overflow.

CPU Programmer’s Reference Manual

GFK-2950M

Section 4
Dec 2024

If the _DINT or _INT operations are fed the largest possible value with any sign, they
cannot determine if it is an overflow value. The power flow output of the previous
operation would need to be checked. If an overflow occurred on a previous DINT, or INT
operation, the result was the largest possible value with the proper sign and no power

flow.

Tip

To compare values of different data types, first use conversion functions to make the types the
same. The relational functions require data to be one of the following types: DINT, INT, REAL,

LREAL, or UINT.

Operands
Parameter Description Allowed Operands Optional
IN1 The first value to be compared; the|All except S, SA, SB, SC |No
value on the left side of the relational
statement.
IN2 The second value to be compared; the [All except S, SA, SB, SC |No
value on the right side of the relational
statement. IN2 must be the same data
type as IN1.
Q The power flow. If the relational|Power flow Yes
statementis true, Q is energized, unless
IN1 or IN2 is NaN.
Ladder Diagram (LD) Programming 241

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024
EQ DATA The EQ_DATA function compares two input variables, IN1 and Mnemonic:
— I~ IN2 of the same data type. IfIN1 and IN2 are equal, output Qs EQ_DATA
energized. If they are not equal, Q is cleared.
—IH1 Q—
i
Operands
Parameter |Description Allowed Operands Optional
IN1 The first value to be compared; the |PACMotion ENUM variable or structure |No
value on the left side of the relational|variable.
statement. For details, refer to Data Types and
Structures in the PACMotion Multi-Axis
Motion Controller User's Manual,
GFK-2448.
IN2 The second value to be compared; [PACMotion ENUM variable or structure |No
the value on the right side of the [variable.
relational statement. IN2 must be the
same data type as IN1.
Q If IN1 or IN2 is true, Q is energized. |Power flow No
Ladder Diagram (LD) Programming 242

CPU Programmer’s Reference Manual Section 4

GFK-2950M Dec 2024
4.12.4 Range
RANGE When the Rangefunction is enabled, it compares the value ofinput Mnemonics:
DINT

— - IN against the range delimited by operands L1 and L2. EitherL1 or RANGE_DINT

L2 can be the high or low limit. WhenL1<INsL2orL2<IN<L1, RANGE DWORD
L1 al output parameter Q is set ON (1). Otherwise, Q is set OFF (0). RANGE:INT

If the operation is successful, it passes power flow to the right.

RANGE_UINT
—L2 RANGE_WORD
—IN
Operands
Parameter |Description Allowed Operands |Optional
IN The value to compare against the range delimited| All except S, SA, SB, SC |No
by L1 and L2. Must be the same data type as L1
and L2.
L1 The start point of the range. May be the upperlimit| All except S, SA, SB, SC |No
orthe lower limit. Must be the same data type as IN
and L2.
L2 The end point of the range. May be the lower or|All except S, SA, SB, SC |No
upperlimit. Must be the same data type as IN and
L1.
Q IfL1<IN<L2orL2 <IN <L1, Q is energized;|Power flow No
otherwise, Q is off.
Example
Figure 179
_100001 EANGE | V_MO00001
1} INT () 1
V_Moo0002

0 —{L1 a— »—

100 —|L2

V_R00003 —IN

When RANGE_INT receives power flow from the normally open contact %I10001, it
determines whetherthe value in %R00003 is within the range 0 to 100 inclusively. Output
coil %MO00002 is ON only if 0 < %AI0050 < 100.

Ladder Diagram (LD) Programming 243

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

413 Timers

This section describes the PACSystems timed contacts and timer function blocks that
are implemented in the LD language.

4.13.1 Timed Contacts

The PACSystems has four timed contacts that can be used to provide regular pulses of
power flow to other program functions. Timed contacts cycle on and off, in square-wave
form, every 0.01 second, 0.1 second, 1.0 second, and 1 minute. Timed contacts can be
read by an external communications device to monitor the state of the CPU and the

communications link. Timed contacts are also often used to blink pilot lights and LEDs.
The timed contacts are referenced as T_10MS (0.01 second), T_100MS (0.1 second),

T_SEC (1.0 second), and T_MIN (1 minute). These contacts represent specific locations
in %S memory:

#T_10MS 0.01 second timed contact | %S0003
#T_100MS | 0.1 second timed contact | %S0004
#T_SEC 1.0 second timed contact | %S0005
#T_MIN 1.0-minute timed contact | %S0006

These contacts provide a pulse having an equal on and off time duration. The following
timing diagram illustrates the on/off time duration of these contacts.

Figure 180

KOO0 f‘#"‘l
A
o2y

SEC SEC

ACAUTION

Do not use timed contacts for applications requiring accurate measurement of elapsed time.
Timers, time-based subroutines, and PID blocks are preferred for these types of applications.

The CPU updates the timed contact references based on a free-running timer that has no
relationship to the start of the CPU sweep. If the sweep time remains in phase with the timed
contactclock, the contactwillalways appear to be in the same state. For example, if the CPU isin
constant sweep mode with a sweep time setting of 100ms, the T_10MS and T_100MS bits will
never toggle.

Ladder Diagram (LD) Programming 244

CPU Programmer’s Reference Manual

GFK-2950M

4.13.2

Timer Function Blocks

Section 4
Dec 2024

Function Block

On Delay
Stopwatch Timer|

Built-In Timer
Function Blocks
below.

Function Mnemonic Description
Type
The Current Value (CV) of the timer resets to
OFDT_HUNDS zero when power flow input is on. CV
Off Delay Timer OFDT_SEC increments while power flow is off.‘When
o OFDT_TENTHS CV=PV (Preset Value), power flowis no longer
Built-in OFDT_THOUS passed to the right until power flow input is on
(instance data is again.
WORD array)
See ONDTR_HUNDS Retentive on delay timer. Increments while it

ONDTR_SEC
ONDTR_TENTHS
ONDTR_THOUS

receives power flow and holds its value when
power flow stops.

TMR_HUNDS . . L
TMR_SEC Simple on delay timer. Increments while it
On Delay Timer TMR_TENTHS receiveﬂs power flow and resets to zero when
TMR_THOUS power flow stops.
When the input IN transitions from ON to OFF,
Timer Off Delay TOF the timer starts timing until a specified period of
Standard time has elapsed, then sets the output Q to
(instance data is a OFF.
structure variable) When the input IN transitions from OFF to ON,
Timer On Delay [See TON the timer starts timing until a specified period
Standard Timer has elapsed, then sets the output Q to ON.
Function Blocks. When the input IN transitions from OFF to ON,
Timer Pulse TP the timer sets the output Q to ON for a

specified time interval.

Built-In Timer Function Blocks

Note:

Special care must be taken when programming timers in program blocks that are

not called every sweep, and in parameterized blocks and UDFBs. For details, refer

to:

e Using OFDT, ONDTR and TMR in Program Blocks not Called Every Sweep,

e Timers that are Skipped by the Jump Instruction,

e Using OFDT, ONDTR and TMR in Parameterized Blocks, and

e Using OFDT, ONDTR and TMR in UDFBs.

Ladder Diagram (LD) Programming

245

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Data Required for Built-in Timer Function Blocks

The data associated with these functions is retentive through power cycles. Each timer
uses a three-word array of %R, %W, %P, %L or symbolic memory to store the following

information:
Block Word
Current value (CV) Word 1
Preset value (PV) Word 2
Control word Word 3

Do not use two consecutive words (registers) as the starting addresses of two timers. Logic
Developer - PLC does notcheck orwarn youif register blocks overlap. Timers will notwork if you
place the current value of a second timer on top of the preset value for the previous timer.

Word 1: Current value (CV)

Thefirstword (CV) can be read but should not be written to, or the function may notwork properly.

Word 2: Preset value (PV)

When the Preset Value (PV)operandisavariable, itis normally setto a different location
than word 2 in the timer's or counter’s three-word array.

e If you use adifferentaddress and you change word 2 directly, your change will have
no effect, as PV will overwrite word 2.

If you use the same address for the PV operand and word 2, you can change the
Preset Value in word 2 while the timer or counter is running, and the change will be
effective.

Ladder Diagram (LD) Programming 246

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Word 3: Control word

The control word stores the state of the Boolean inputs and outputs of its associated
timer or counter, as shown in the following diagram:

Figure 181
I15I14|13I12|1|1I1n|9|a| [7]lelslaflaflal1]o]
| e I R R N R
Reset input
Enable input, previous execution
0 (countertimer status output)
EM (enable input
& WARNING
The third word (Control) can be read but should notbe written to; otherwise, the function will not
work.

Note: Bits 0through 13 are used for timer accuracy.

Using OFDT, ONDTR and TMR in Program Blocks not Called Every
Sweep

Care should be taken when timers (ONDTR, TMR, and OFDTR) are used in program
blocks that are not called every sweep. The timers accumulate time across calls to the
sub-block unless they are reset. This means that they function like timers operating in a
program with a much slower sweep than the timers in the main program block. For
program blocks that are inactive for large periods of time, the timers should be

programmed in such a manner as to account for this catch up feature.

Timers that are Skipped by the Jump Instruction

You should not program a Jump around an instance of OFTD, ONDTR or TMR. Timers
that are skipped will not catch up and will therefore not accumulate time in the same
manner as if they were executed every sweep.

Note: Timer function blocks do not accumulate time if used in a block that is executed as
a result of an interrupt.

Using OFDT, ONDTR and TMR in Parameterized Blocks

Special care must be taken when programming timers in PACSystems parameterized
blocks. Timers in parameterized blocks can be programmed to track true real-time if the
guidelines and rules below are followed. If the guidelines and rules described here are
not followed, the operation of the timer functions in parameterized blocks is undefined.

Note: These rules are not enforced by the programming software. It is your responsibility
to ensure these rules are followed.

The best use of a timer function is to invoke it with a reference address exactly one time
each scan. With parameterized blocks, it is important to use the appropriate reference
memory with the timer function and to call the parameterized block an appropriate

number of times.
Ladder Diagram (LD) Programming 247

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Finding the Source Block

The source block is either the _MAIN block or the lowest logic block of type Block that
appears above the parameterized block in the call tree. To determine the source block
for a given parameterized block, determine which block invoked that parameterized
block. If the calling block is _MAIN or of type Block, it is the source block. If the calling
blockis any other type (parameterized block or function block), apply the same test to
the block that invoked this block. Continue back up the call tree until the _MAIN block or

a block of type Block is found. This is the source block for the parameterized block.
Programming OFDT, ONDTR and TMR in Parameterized Blocks

Different guidelines and rules apply depending on whether you want to use the
parameterized block in more than one place in your program logic.

Parameterized block called from one block

If your parameterized block that contains a timer will be called from only one logic block,
follow these rules:

1. Call the parameterized block exactly one time per execution of its source block.

2. Choose a reference address for the timer that will not be manipulated
anywhere else. The reference address may be %R, %P, %L, %W, or symbolic.

Note: %L memory is the same %L memory available to the source block of type Block.
%L memory corresponds to %P memory when the source block is _MAIN.

Ladder Diagram (LD) Programming 248

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Parameterized block called from multiple blocks
When calling the parameterized block from multiple blocks, it is imperative to separate
the timer reference memory used by each call to the parameterized block. Follow these
rules and guidelines:
1. Call the parameterized block exactly one time per execution of each source
block in which it appears.

2. Choose a %L reference or parameterized block formal parameter for the timer
reference memory. Do notuse a %R, %P, %W, or symbolic memory reference.

Note:

o The strongly recommended choice is a %L location, which is inherited from the
parameterized block’s source block. Each source block has its own %L memory
space except the _MAIN block, which has a %P memory area instead. When the
_MAIN block calls another block, the %P mappings from the _MAIN block are
accessed by the called block as %L mappings.

° If you use a parameterized block formal parameter (word array passed-by-
reference), the actual parameter that corresponds to this formal parameter must be
a %L, %R, %P, %W, or symbolic reference. If the actual parameter is a %R, %P,
%W, or symbolic reference, a unique reference address must be used by each
source block.

Recursion

If you use recursion (thatis, if you have a block call itself either directly or indirectly) and
your parameterized block contains an OFDT, ONDTR, or TMR, you must follow two
additional rules:

e Program the source block so that it invokes the parameterized block before making
any recursive calls to itself.

e Do not program the parameterized block to call itself directly.
Using OFDT, ONDTR and TMR in UDFBs

UDFBs are user-defined logicblocks that have parameters and instance data. For details
on these and other types of blocks, refer to Section 2.

When a timer function is present inside a UDFB, and a member variable is used for the
control block of a timer, the behavior of the timer may not match your expectations. If
multiple instances of the UDFB are called during a logic sweep, only the first-executed
instance will update its timer. If a different instance is then executed, its timer value wil

remain unchanged.

In the case of multiple calls to a UDFB during a logic scan, only the first call will add
elapsed time to its timer functions. This behavior matches the behavior of timersin a
normal program block.

Example

A UDFB is defined that uses a member variable for a timer function block. Two instances
of the function block are created: timer_A and timer_B. During each logic scan, both
timer_A and timer_B are executed. However, only the member variable in timer_A is
updated and the member variable in timer_B always remains at 0.

Off Delay Timer
Ladder Diagram (LD) Programming 249

CPU Programmer’s Reference Manual Section 4

GFK-2950M Dec 2024
OFDT The Off-Delay Timer (OFDT) increments while power flow is Mnemonics:
SEC off, and the timer's Current Value (CV) resets to zero when QFDT SEC
2997 power flow is on. OFDT passes power until the specified OFDT TENTHS
v cwl interval PV (Preset Value) has elapsed. OFDT:HUNDS
OFDT_THOUS

Time may be counted in the following increments:

e Seconds

e Tenths (0.1) of a second

¢ Hundredths (0.01) of a second

e Thousandths (0.001) of a second

The range for PV is 0 to +32,767-time units. If PV is out of range, it has no effect on the
timer's word 2. The state of this timer is retentive on power failure; no automatic
initialization occurs at power-up.

When OFDT receives power flow, CV is set to zero and the timer passes power to the
right. The output remains on as long as OFDT receives power flow.

Each time the OFDT is invoked with its power flow input turned OFF, CV is updated to
reflect the elapsed time since the timer was reset. OFDT continues passing power to the
right until CV equals or exceeds PV. When this happens, OFDT stops passing power
flow to the right and stops accumulating time. If PV is 0 or negative, the timer stops
passing power flow to the right the firsttime that it is invoked with its power flow input
OFF.

When the function receives power flow again, CV resets to zero.

Ladder Diagram (LD) Programming 250

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Notes:

° The best way to use an OFDT function is to invoke it with a particular reference
address exactly one time each scan. Do not invoke an OFDT with the same
reference address more than once per scan (inappropriate accumulation of time
would result). When an OFDT appears in a program block, it accumulates time once
per scan. Subsequent calls to that program block within the same scan will have no
effect on its OFDTs.

o Do not program an OFDT function with the same reference address in two different
blocks. You should not program a JUMP around a timer function. Also, if you use
recursion (where a block calls itself either directly or indirectly), program the program
block so that it invokes the timer before it makes any recursive calls to itself.

° For information on using timers inside parameterized blocks, refer to Using OFDT,
ONDTR and TMR in Parameterized Blocks.

° An OFDT expires (turns OFF power flow to the right) the first scan that it does not
receive power flow if the previous scan time was greater than PV.

° When OFDT is used in a program block that is not called every scan, the timer
accumulates time between calls to the program block unless it is reset. This means
that OFDT functions like a timer operating in a program with a much slower scan
than the timer in the main program block. For program blocks that are inactive for a
long time, OFDT should be programmed to allow for this catch-up feature. For
example, if a timer in a program block is reset and the program block is not called
(is inactive) for four minutes, when the program block is called, four minutes of time
will already have accumulated. If the enable input is OFF, these four minutes are
applied to the timer (that is, CV is set to 4 minutes).

Timing diagram

Figure 182
omme | | [[
5 I L

a. ENABLE and Q both go high; timer is reset (CV = 0).
ENABLE goes low; timer starts accumulating time.
CV reaches PV; Q goes low and timer stops accumulating time.
ENABLE goes high; timer is reset (CV = 0).
ENABLE goes low; timer starts accumulating time.

ENABLE goes high; timeris reset (CV = 0) before CV had a chance to reach
PV. (The diagram is not to scale.)

-~ 0o oo T

g. ENABLE goes low; timer begins accumulating time.

h. CV reaches PV; Q goes low and timer stops accumulating time.

Ladder Diagram (LD) Programming 251

CPU Programmer’s Reference Manual

GFK-2950M

Operands for OFDT

Do notuse the Address, Address+1, or Address+2 addresses with other instructions. Overlapping

references cause erratic timer operation.

Section 4
Dec 2024

Parameter |Description Allowed Operands (Optional
Address The beginning address of a three-word WORD |R, W, P, L, symbolic No
(??27?7) array:
Word 1: Current value (CV)
Word 2: Preset value (PV)
Word 3: Control word
PV The Preset Value used when the timeris enabled|All except S, SA, SB, SC |Optional
orreset. 0 <PV <+32,767.If PV is out of range,
it has no effect on Word 2.
cVv The current value of the timer. All except S, SA, SB, SC, |Optional
constant

Example for OFDT

Figure 183

V_I00001
—

20 —

41

OFDT
TENTHS

V_R00013

cv

v_qQoooo

— /1

— CurrentV

The output actionis reversed by the use of anegated output coil. Inthis circuit, the OFDT
timer turns off negated output coil % Q0001 whenever contact %10001 is closed. After
%10001 opens, %Q0001 stays off for 2 seconds then turns on.

Ladder Diagram (LD) Programming

252

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

On Delay Stopwatch Timer

ONDIR The retentive On-Delay Stopwatch Timer (ONDTR) Mnemonics:
+ SEC increments while it receives power flow and holds ONDTR_SEC
77 its value when power flow stops. ONDTR_TENTHS

4r ONDTR_HUNDS
Time may be counted in the following increments: ONDTR_THOUS

PV CV

e Seconds

e Tenths (0.1) of a second
e Hundredths (0.01) of a second

e Thousandths (0.001) of a second

The range is 0 to +32,767-time units. The state of this timer is retentive on power failure;
no automatic initialization occurs at power-up.

When OND TRfirst receives power flow, it starts accumulating time (Current Value (CV)).
When the CV equals or exceeds Preset Value (PV), output Q is energized, regardless of

the state of the power flow input.

If the timer continues to receive power flow, it continues accumulating until CV equals
the maximum value (+32,767-time units). Once the maximum value is reached, it is
retained, and Q remains energized regardless of the state of the enable input.

When power flow to the timer stops, CV stops incrementing and is retained. Output Q, if
energized, will remain energized. When ONDTR receives power flow again, CV again
increments, beginning at the retained value.

When reset (R) receives power flow and PV is not equal to zero, CV is setback to zero
and output Q is de-energized.

Note: If PV equals zero, the time is disabled and the reset is activated, and the output of
the time becomes high. Subsequent removal of the reset or activation of input will
have no effect on the timer output; the output of the time remains high.

ONDTR passes power flow to the right when CV is greater than or equal to PV. Since no
automatic initialization to the outgoing power flow state occurs at power-up, the power
flow state is retentive across power failure.

Ladder Diagram (LD) Programming 253

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Notes:

° The best way to use an ONDTR function is to invoke it with a reference address
exactly one time each scan. Do not invoke an ONDTR with the same reference
address more than once per scan (inappropriate accumulation of time would resulf).
When an ONDTR appears in a program block, it will only accumulate time once per
scan. Subsequent calls to that same program block within the same scan will have
no effect on its ONDTRs. Do not program an ONDTR function with the same
reference address in two different blocks. You should not program a JUMPN around
a timer function. Also, if you use recursion (that is, having a block call itself either
directly or indirectly), program the program block so that it invokes the timer before
it makes any recursive calls to itself.

° For information on using timers inside parameterized blocks, refer to Using OFDT,
ONDTR and TMR in Parameterized Blocks.

° An ONDTR expires (passes power flow to the right) the first scan that is enabled
and not reset if the previous scan time was greater than PV.

° When ONDTR is used in a program block that is not called every scan, it
accumulates time between calls to the program block unless it is reset. This means
that ONDTR functions like a timer operating in a program with a much slower scan
than the timer in the main program block. For program blocks that are inactive for a
long time, ONDTR should be programmed to allow for this catch-up feature. For
example, if a timer in a program block is reset and the program block is not called
(is inactive) for four minutes, when the program block is called, four minutes of time
will already have accumulated. If the enable input is ON and the reset input is OFF,
these four minutes are applied to the timer (that is, CV is set to 4 minutes).

Ladder Diagram (LD) Programming 254

CPU Programmer’s Reference Manual

GFK-2950M

Timing diagram

Section 4
Dec 2024

Figure 184

CRIA
EMNABLE

RESET

a. ENABLE goes high; timer starts accumulating.

b. Current value (CV) reaches preset value (PV); Q goes high. Timer continues to
accumulate time until ENABLE goes low, RESET goes high or current value becomes
equal to the maximum time.

o o

o

RESET goes high; Q goes low, accumulated time is reset (CV=0).

ENABLE goes high again; timer continues accumulating time.

RESET goes low; timer then starts accumulating again, as ENABLE is high.

ENABLE goes low; timer stops accumulating. Accumulated time stays the same.

g. CV becomes equal to PV; Q goes high. Timer continues to accumulate time until
ENABLE goes low, RESET goes high or CV becomes equal to the maximum time.

h. ENABLE goes low; timer stops accumulating time.

Operands for On Delay Stopwatch Timer

A WARNING

Do notuse the Address, Address+1, or Address+2 addresses with other instructions. Overlapping
references cause erratic timer operation.

Ladder Diagram (LD) Programming

Parameter |Description Allowed Operands (Optional
Address Beginning address of a three-word WORD (R, W, P, L, symbolic No
(??27?7) array:
Word 1: Current value (CV)
Word 2: Preset value (PV)
Word 3: Control word
R When R is ON, it resets the Current Value Power flow Optional
(Word 1) to zero.
PV The Preset Value used when the timer is All except S, SA, SB, SC |Optional
enabled orreset. 0 <PV <+32,767. If PV is out
of range, it has no effect on Word 2.
Ccv Current Value of the timer All except S, SA, SB, SC |Optional
and constant
255

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Example for On Delay Stopwatch Timer

Figure 185
V_Q00010 ONDIE | V_Qooon
|} SEC { —
V_0Q00010 |_R00004
1/} E

8 —FV CVF CurremtV...

A retentive on-delay timer is used to create a signal (%Q0011) that turns on 8.0 seconds
after %Q0010 turns on, and turns off when %Q0010 turns off.

On Delay Timer

THME The On-Delay Timer (TMR) increments while it receives power Mnemonics:
| SEC |_ flow and resets to zero when power flow stops. The timer TMR SEC
passes power after the specified interval PV (Preset Value) has TMR_TENTHS
7?2?27 elapsed, as long as power is received. TMR:HUNDS
— PV CWH TMR_THOUS

The range for PVis 0 to +32,767-time units. If PV is out of range, it has no effect on the
timer's word 2. The state of this timer is retentive on power failure; no automatic
initialization occurs at power-up.

Time may be counted in the following increments:

e Seconds

e Tenths (0.1) of a second

e Hundredths (0.01) of a second

e Thousandths (0.001) of a second

When TMR is invoked with its power flow input turned OFF, its Current Value (CV) is
reset to zero, and the timer does not pass power flow to the right. Eachtime the TMR is
invoked with its power flow input turned ON, CV is updated to reflect the elapsed time
since the timer was reset. When CV reaches PV, the timer function passes power flow

to the right.

Ladder Diagram (LD) Programming 256

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Notes:

e The bestway to usea TMR function is to invoke it with a particular reference address
exactly one time each scan. Do not invoke a TMR with the same reference address
more than once per scan (inappropriate accumulation of time would result). When
a TMR appears in a program block, it will only accumulate time once per scan.
Subsequent calls to that same program block within the same scan will have no
effect on its TMRs. Do not program a TMR function with the same reference address
in two different blocks. You should not program a JUMP around a timer function.
Also, if you use recursion (that is, having a block call itself either directly or
indirectly), program the program block so that it invokes the timer before it makes
any recursive calls to itself.

e For information on using timers inside parameterized blocks, refer to Using OFDT,
ONDTR and TMR in Parameterized Blocks.

e A TMR timer expires (passes power flow to the right) the first scanthat it is enabled
if the previous scan time was greater than PV.

e When TMR is used in a program block that is not called every scan, TMR
accumulates time between calls to the program block unless it is reset. This means
that it functions like a timer operating in a program with a much slower sweep than
the timer in the main program block. For program blocks that are inactive for a long
time, TMR should be programmed to allow for this catch-up feature. For example, if
a timer in a program block is reset and the program block is not called (is inactive)
for 4 minutes, when the program block is called, four minutes of time will already
have accumulated. If the enable input is ON, these four minutes are applied to the
timer (i.e. CV is set to 4 minutes).

Ladder Diagram (LD) Programming 257

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Timing Diagram

Figure 186
ENABLE_I—l—I—‘—
(r] | |
| | | | |
A E C D E

ENABLE goes high; timer begins accumulating time.

CV reaches PV; Q goes high and timer continues accumulating time.

ENABLE goes low; Q goes low; timer stops accumulating time and CV is cleared.
ENABLE goes high; timer starts accumulating time.

ENABLE goes low before current value reaches PV; Q remains low; timer stops
accumulating time and is cleared to zero (CV=0).

Operands for On Delay Timer

Do not use the Address, Address+1, or Address+2 addresses with other instructions.
Overlapping references cause erratic timer operation.

Parameter Description Allowed Operands Optional
???7? The beginning address of a three-word WORD|R, W, P, L, symbolic No
array:

Word 1: Current value (CV)
Word 2: Preset value (PV)
Word 3: Control word

PV The Preset Value, used when the timer is All except S, SA, SB, SC Yes
enabled orreset. 0 <PV <+32,767. If PVisout
of range, it has no effect on Word 2.

CcVv The current value of the timer. All except S, SA, SB, SC and |Yes
constant

Ladder Diagram (LD) Programming 258

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Example for On Delay Timer

Figure 187
DO_DWL REL DWELL
— | 1/} { —
DWELL
{ }
DWELL TME BEL
1} TENTHS () 1
TEMID
5—FV CV|~ Current_...

An on-delay timer with address TMRID is used to control the length of time that a coil is
on. This coil has been assigned the variable DWELL. When the normally open

(momentary) contact DO_DWL is ON, coil DWELL is energized.

The contact of coil DWELL keeps coil DWELL energized (when contact DO_DWL is
released) and also starts the timer TMRID. When TMRID reaches its preset value of five
tenths of a second, coil REL energizes, interrupting the latched-on condition of coil
DWELL. The contact DWELL interrupts power flow to TMRID, resetting its current value
and de-energizing coil REL. The circuit is then ready for another momentary activation

of contact DO_DWL.
Standard Timer Function Blocks

The standard timers are a pulse timer (TP), an on-delay timer (TON), and an off-delay
timer (TOF). The pulse timer block can be used to generate output pulses of a given
duration. The on-delay timer can be used to delay setting an output ON for a fixed period
after aninput is set ON. The off-delay timer can be used to delay setting an output OFF
for afixed period after an input goes OFF so that the outputis held on for a given period
longer than the input.

Notes:
o Any block type can contain calls to the standard timers. (See Section 2 for a
discussion of the various block types.)
° Interrupt blocks can contain standard timers.
° An instance of a timer can be passed by reference to a parameterized block or
UDFB.
° When the timer stops timing as a result of reaching its Preset Time (PT), the Elapsed

Time (ET) contains the actual timer duration. For example, if the Preset Time was
specified as 333ms, but the timer actually timed to 350ms, the 350ms value is saved
in ET.

Ladder Diagram (LD) Programming 259

Section 4

CPU Programmer’s Reference Manual
Dec 2024

GFK-2950M

Data Required for Standard Timer Function Blocks

Each invocation of a timer has associated instance data that persists from one execution
of thetimerto the next. Instance variables are automatically located in symbolic memory.
(You cannot specify an address.) You can specify a stored value for each element. The
user logic cannot modify the values.

Each timer instance variable has the following structure. Elements of a timer structure
cannot be published.

The instance data type for each timer must be the same as the timer type:

The TOF timer requires an instance variable of type TOF.
The TON timer requires an instance variable of type TON.
The TP timer requires an instance variable of type TP.

Element | Type | Description Details

IN BOOL Timer input Cannot be accessed in user logic.
PT DINT Preset time Cannot be accessed in user logic.
ET DINT Elapsed time Read only. Accessible in user logic.
Q BOOL Set ON when timer finishes timing Read only. Accessible in user logic.
ENO BOOL Enable output Read only. Accessible in user logic.
Tl BOOL Set ON when the timer instance is Read only. Accessible in user logic.

timing (that is, ET is incrementing).

Resetting the Timer
The preset time (PT) may be changed while the timer is timing to affect the duration.

When the timer reaches PT, the timer stops timing and the elapsed time parameter (ET)
contains the actual timer duration.

To reset the timer function block, set the PT inputto 0. When the function block resets:
e ETissettoO

e Qs set to off (0)

e The Tl element is setto 0

e The IN parameter is ignored

Operands

TOF, TON and TP have the same input and output parameters, except for the instance
variable, which must be the same type as the instruction.

Note: Writing or forcing values to the instance data elements IN, PT, Q, ET, ENO or TI
may cause erratic operation of the timer function block.
Parameter |Description Allowed Types |Allowed |Optional
Operands
?2??7? Structure variable containing the TOF, TON, or TP. NA No

Must be same type as|
the instruction.

internal data for the timer instance.
(Refer to

Data Required for Standard Timer
Function Blocks.)

Ladder Diagram (LD) Programming 260

CPU Programmer’s Reference Manual Section 4

GFK-2950M Dec 2024
Parameter |Description Allowed Types |Allowed |Optional
Operands
IN Timer input. Controls when the timer| Flow NA Yes

will accumulate time.
TON and TP will begin to time when
IN transitions from OFF to ON.

TOF will begin to time when IN
transitions from ON to OFF.

PT Preset time (in ms). Indicates the DINT All except S, | Yes
amount of time the timer will time SA, SB, SC
until tuming Q either ON or OFF,
depending on the timer type.

Setting PT to 0 resets the timer.

Q Timer output. Action depends on the| Flow NA Yes
timer type.

When TP is timing, Q is ON.
When TON is done timing, Q tums

ON.
When TOF is done timing, Q turns
OFF.

ET Elapsed time. Indicates the length off DINT All except S, | Yes
time, (in ms), thatthe timerhas been SA, SB, SC
measuring time. and constantq

Ladder Diagram (LD) Programming 261

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Timer Off Delay

Figure 188

TOF

—pT ETH

When the input IN transitions from ON to OFF, the timer starts timing until a specified
period of time (PT) has elapsed, then sets the output Q to OFF.

Timing Diagram

Figure 189

M — —

—PT—» —PT—

1

0 t1 t2 t3 4 i5

Time Description

t0 When input IN is set to ON, the output Q follows and remains ON. The elapsed time, ET, does
not increment.

t1 When IN goes OFF, the timer starts to measure time and ET increments. ET continues to
increment until its value equals the preset time, PT.

t2 When ET equals PT, Q is set to OFF and ET remains at the preset time, PT.

t3 When input IN is set to ON, the output Q follows and remains ON. ET is set to 0.

t4 When IN is set to OFF, ET, begins incrementing. When IN is OFF for a period shorter than
that specified by PT, Q remains ON.

t5 When IN is set to ON, ET is set to 0.

Ladder Diagram (LD) Programming 262

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Example

In the following sample rung, a TOF function blockis usedto keep Light ON for 30,000ms
(30 seconds)afterDoor_Openis setto OFF.As longas Door_Openis ON, Lightremains

ON.
Figure 190
TOF
Door_Open OF_Oelay - Light
{ | IN Q @—
30000 —{PT ET—

Timer On Delay

Figure 191

TON

—PT ETH—

When the input IN transitions from OFF to ON, the timer starts timing until a specified
period of time (PT) has elapsed, then sets the output Q to ON.

Timing Diagram

Figure 192
N — _ ‘
:]
w—PT_s +— PT—

Ladder Diagram (LD) Programming 263

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

Time | Description

t0 When input IN is set to ON, the timer starts to measure time and the elapsed time output ET starts
to increment. The output Q remains OFF and ET continues to increment until its value equals the
preset time, PT.

t1 When ET equals PT, the output Q is goes ON, and ET remains at the preset time, PT. Q remains
ON until IN goes OFF.

t2 When IN is set to OFF, Q goes OFF and ET is set to 0.

t3 When IN is set to ON, ET starts To increment.

t4 IfIN is ON for a shortertime than the delay specified in PT, the output Q remains OFF. ET is set

to 0 when IN is set to OFF.

Example

In the following sample rung, a TON function block is used to delay setting Start to ON
for 1 minute (60,000ms) after Preheat is set to ON.

Figure 193
TOH
Frerest On_Delay Start
|} N Q O
Bo00o —FT ET|—

Timer Pulse

Figure 194

TF

—eT ETH

When the input IN transitions from OFF to ON, the timer sets the output Q to ON for the
specified time interval, PT has elapsed, then sets the output Q to ON.

Ladder Diagram (LD) Programming 264

CPU Programmer’s Reference Manual

GFK-2950M

Timing Diagram

Section 4
Dec 2024

Figure 195

10 1 t2 t3 t4 t5

Time | Description

t0 When input IN is set to ON, the timer starts to measure time and the elapsed time output, ET,
increments until its value equals that of the specified preset time, PT. Q is setto 0 on until ET
equals PT.

t1 When ET equals PT, Q is set to OFF. The value of ET is held until IN is set to OFF.

t2 When IN is set to OFF, ET is set to 0.

t3 When INis setto ON, the timer starts to measure time and ET begins incrementing. Q Is set to
ON.

t4 If the input is OFF for a period shorter than the input PT, the output Q remains on and ET
continues Incrementing.

t5 When ET equals PT, Q is set to OFF and ET is set to 0.

Example

In the following sample rung, a TP function block is used to set Sprayersto ON fora
5-second (5000ms) pulse.

Figure 196
TP
Rinse Or_Pulse Sprayers
| in @ G
S000 —IP'I' ETpf—

4.14 PACSystems Simulator Ladder Diagram (LD)
Program

The following sections outline Ladder Diagram (LD) functionality differences for the
PACSystems Simulator.

Ladder Diagram (LD) Programming

265

CPU Programmer’s Reference Manual

GFK-2950M

4.14.1

4.14.2

4.14.3

4.14.4

Math Functions

Floating point results calculated by math functions run on the PACSystems Simulator

may slightly differ compa
PACSystems CPU. This

red to results calculated by the same math functions run on a
is due to floating point hardware implementation differences

between the PACSystems Simulator and PACSystems CPUs.

Contacts

The table below indicates

contacts thatbehave differently on the PACSystems Simulator:

Contact

Description

FAULT

NOFLT

HIALR

LOALR

These contacts always indicate a non-fault state.

Control Functions
The table below indicates control functions that behave differently on the PACSystems

Simulator:

Control Function

Description

Do I/0

Mask 1/O Interrupt

Scan Set I/0

Suspend I/O

Suspend or Resume 1/O
Interrupt

These control functions pass power flow for valid inputs but do not perform
their intended operation at this time.

Read Switch Position

This control function always indicates the Run 1/O Enabled position (1) for
the POS operand, and it will never indicate that the MODE operand controls
memory protection as the Memory Protection Switch setting in Hardware
Configuration is ignored.

Data Move Functions
The table below indicates data move functions that behave differently on the

PACSystems Simulator:

Data Move Function

Description

BUS Read

BUS Read Modify Write

BUS Test and Set

BUS Write

All Bus Functions always pass power flow and do not perform theirintended
operation at this time. AllBus Functions set the status of operation output
(ST) to Module does not exist at rack/slot location (2).

Communication Requests
(COMMREQs)

Communication Requests pass power flow pending validation of the input
command block. If the input command block has invalid parameters, the
Function Faulted (FT) output will pass power flow. The SYSID and TASK
COMMREAQ input parameters are not validated and therefore will also not
affect power flow. Additionally, COMMREQs do not perform their intended
operation at this time.

Ladder Diagram (LD) Programming

266

Section 4
Dec 2024

CPU Programmer’s Reference Manual Section 4
GFK-2950M Dec 2024

4.14.5 Timers

Timed Contacts and Timer Function Blocks running on the PACSystems Simulator may
not work as expected as no attempt has been made to simulate the timing that is
experienced when using a PACSystems CPU. PACSystems Simulator timing is not
consistent sweep to sweep and differs from what would be experienced on a
PACSystems CPU.

4.14.6 Motion Function Blocks

When run on a PACSystems Simulator, all motion function blocks will return one of the
following errors:

e Uninitialized Axis, Module, or CAM Table variable error (error ID 0xFA2)

¢ Motion module not available error (error ID 0xFA4)

4.14.7 Communication Blocks

When the PNIO_DEV_COMM block is run in logic on a PACSystems Simulator, if the
input parameters are valid then the block will pass power flow, set the OK output to
TRUE, and set the PRIMARY output to TRUE as we are simulating that the PROFINET
controller and device are communicating with valid input parameters.

Ladder Diagram (LD) Programming 267

CPU Programmer’s Reference Manual Section 5
GFK-2950M Dec 2024

Section 5 Function Block Diagram (FBD)

Function Block Diagram (FBD) is an IEC 61131-3 graphical programming language that
represents the behavior of functions, function blocks and programs as a set of

interconnected graphical blocks.

The block types Block, Parameterized Block, and Function Block can be programmed in
FBD. The _MAIN program block can also be programmed in FBD. For details on blocks,
refer to Program Data in Section 3. For information on using the FBD editor in the

programming software, refer to the online help.

For an overview of the types of operands that can be used with instructions, refer to
Operands for Instructions in Section 3.

Most functions and function blocks implemented in FBD are the same as their LD
counterparts. Instructions that are implemented differently are discussed in detail in this
chapter. FBD has the following general differences compared to LD:

e InFBD, except for timers and counters, functions and function blocks do not have EN
or ENO parameters.

e In FBD, all functions and function blocks display a solve order, which is calculated by
the FBD editor.

For CPS400 Safety programming referto GFK-3279 VersaMax SafetyNet Function Block
Manual for the list of allowed instructions.

The FBD implementation of the PACSystems instruction set includes the following
categories:

e Advanced Math Functions
e Bit Operation Functions

e Comments

e Comparison Functions

e Control Functions

e Counters

e Data Move Functions

e Math Functions

e Program Flow Functions

e Timers

e Type Conversion Functions

e PROFINET Communication

o Consists of the PNIO_DEV _COMM function. For details, refer to the
PACSystems RX3i & RSTi-EP PROFINET I/O Controller Manual, GFK-2571.

Function Block Diagram (FBD) 268

CPU Programmer’s Reference Manual Section 5
GFK-2950M Dec 2024

5.1 Note on Reentrancy

When a functionblock is created using the FBD language, the wires are created as global
variables, not as members. This has two consequences. First, if there are multiple
instances of that block in the program, the wires will show the values from the last
instance executed during the sweep, not the values for the instance being viewed. This
will give the appearance of incorrect operation while working properly.

The second consequenceis that function blocks writtenin FBD are not reentrant. If you
have multiple instances of a block, and one of them can be called by an interrupt, then it
is possible fortheinterruptto trigger while one instance of the blockis in process, change
the values of the wires, and then return controlto the original block. This will result in
improper operation.

There is a work-around for both symptoms, which is to create the wires as member
variables rather than global variables. This must be done manually by creating member

variables of the appropriate types. You can then right-click on each wire in the FBD
diagram and use the Replace Variable command to change the wire from a global

variable to a member variable.

ACAUTION

Blocks written in the FBD language are notreentrant. Because ofthis, ifthe block is called directly,
orindirectly, froman interrupt, the block must notbe called anywhere else in the program, except
when steps are taken to explicitly makeitreentrant (see above). Doing so can lead to unexpected
operation. This applies to basic blocks, parameterized blocks, and user-defined function blocks
written in FBD.

5.2 Advanced Math Functions

The Advanced Math functions perform logarithmic, exponential, square root,

trigonometric, and inverse trigonometric operations.

Function Description
AES Absolute value. Finds the absolute value of a double- precision integer (DINT), signed
1 single-precision integer (INT), REAL or LREAL (floating-point) value. The mnemonic|
- M 0 specifies the value's data type.
For details, refer to Absolute Value in Section 4.

Evp Exponential. Raises e to the value specified in IN (¢"). Calculates the inverse natural
1 logarithm of the IN operand.
([(2] fm For details, refer to Exponential/Logarithmic Functions in Section 4.
BT Exponential. Calculates IN1 to the power of IN2 (IN1"™?).
1 For details, refer to EXPT Function below.
= M1 (2]

= P2

Function Block Diagram (FBD) 269

CPU Programmer’s Reference Manual Section 5

GFK-2950M Dec 2024
Function Description
AL Inverse trig. Calculates the inverse cosine of the IN operand and expresses the resutt
1 in radians.
- |] For details, refer to Inverse Trig — ASIN, ACOS, and ATAN in Section 4.
AT Inverse trig. Calculates the inverse sine of the INoperand and expresses the resultin
i radians.
M 0 For details, refer to Inverse Trig — ASIN, ACOS, and ATAN in Section 4.
ATAM Inverse trig. Calculates the inverse tangent of the IN operand and expresses the result
1 in radians.
- |4 0 For details, refer to Inverse Trig — ASIN, ACOS, and ATAN in Section 4.
Lk Logarithmic. Calculates the natural logarithm of the operand IN.
1 For details, refer to Exponential/Logarithmic Functions in Section 4.
- I 2
oG Logarithmic. Calculates the base 10 logarithm of the operand IN.
1 For details, refer to Exponential/Logarithmic Functions in Section 4.
= I [o
SORT Square root. Calculates the square root of the operand IN and stores the result in Q.
1 For details, refer to Square Root in Section 4.
- [(2
oS Trig. Calculates the cosine of the operand IN, where IN is expressed in radians.
1 For details, refer to
=t | iy
Trig Functions in Section 4.
=TT Calculates the sine of the operand IN, where IN is expressed in radians.
1 For details, refer to
= (2
Trig Functions in Section 4.
TAM Calculates the tangent of the operand IN, where IN is expressed in radians.
1 For details, refer to
- [(2 f
Trig Functions in Section 4.

Function Block Diagram (FBD) 270

Section 5
Dec 2024

CPU Programmer’s Reference Manual
GFK-2950M

521 EXPT Function

The Power of X (EXPT) function raises the value of input IN1 to the power

EXPT specified by the value IN2 and places the result in Q. The EXPT functon

1 operates on REAL or LREAL input value(s) and place the result in output
Q. The instruction is not carried out if one of the following invalid conditions
occurs:
= IN2 e IN1 <0, forEXPT

° IN1 or IN2 is a NaN (Not a Number)

Invalid operations (error cases) may yield results that are different from
those in the LD implementation of this function.

Operands of the EXPT Function

Parameter |Description Allowed Allowed Optional
Types Operands
Solve Order |[Calculated by the FBD editor. NA NA No
IN or IN1 For EXP, LOG, and LN, IN contains|REAL, LREAL All except variables No
the REAL value to be operated on. located in %S—%SC
The EXPT function has two inputs,
IN1 and IN2. For EXPT, IN1 is the
base value and IN2 is the exponent.
IN2 (EXPT) The REAL exponent for EXPT. REAL, LREAL All except variables No
located in %S—%SC
Q Contains the REAL REAL, LREAL All except constants and|No
logarithmic/exponential value of IN variables located in
or of INT and IN2. %S—%SC

5.3 Bit Operation Functions

The Bit Operation functions perform comparison, logical, and move operations on bit
strings. Bit Operation functions treat each WORD or DWORD data as a continuous string
of bits, with bit 1 of the WORD or DWORD being the Least Significant Bit (LSB). The last
bit of the WORD or DWORD is the Most Significant Bit (MSB).

A WARNING

Overlapping input and output reference address ranges in multiword functions is not
recommended, as it can produce unexpected results

Function Block Diagram (FBD) 271

CPU Programmer’s Reference Manual

GFK-2950M

Section 5
Dec 2024
Function Description
D Logical AND. Compares the bit strings IN1 and IN2 bit by bit. When the
1 corresponding bits are both 1, places a 1 in the corresponding location in output
N1 Q string Q; otherwise, places a 0 in the corresponding location in Q.
If additional inputs (IN3 through IN8) are used, each additional bit string is
- (12 compared to the string in Q and the result is placed in Q.
For details, refer to Logical AND.
oOR Logical OR. Compares the bit strings IN1 and IN2 bit by bit. When a pair of
1 corresponding bits are both 0, places a 0 in the corresponding location in output
- 1] 0 e string Q; otherwise, places a 1 in the corresponding location in Q.
If additional inputs (IN3 through IN8) are used, each additional bit string is
e R compared to the string in Q and the result is placed in Q.
For details, refer to Logical OR.
WOR Logical XOR. Compares the bit strings IN1 and IN2 bit by bit. When a pair of
1 corresponding bits are different, places a 1 in the corresponding location in the
T) output bit string Q; when a pair of corresponding bits are the same, places a 0 in
Q.
- |17 If additional inputs (IN3 through IN8) are used, each additional bit string is
compared to the string in Q and the result is placed in Q.
For details, refer to Logical XOR.
NOT Logical NOT. Sets the state of each bit in output bit string Q to the opposite state
1 of the corresponding bit in bit string IN1.
-] |14 0 o For details, refer to Logical NOT.
ROL Rotate Bits Left. Rotates all the bits in a string a specified number of places to
1 the left.
- |] For details, refer to Bit Operation Functions in Section 4.
=
= | EM
ROR Rotate Bits Right. Rotates all the bits in a string a specified number of places to
1 the right. For details, refer to in Section 4.
- I 2
-
= | EM
SHETL Shift Bits Left. Shifts all the bits in a word or string of words to the left by a
1 specified number of places.
o) 11 = For details, refer to Bit Operation Functions in Section 4.
- Q
= B1
= LEM

Function Block Diagram (FBD)

272

CPU Programmer’s Reference Manual Section 5
GFK-2950M Dec 2024

Function Description

SHIFTR Shift Bits Right. Shifts all the bits in a word or string of words to the right by a
1 specified number of places.

- |4 B2 For details, refer to Bit Operation Functions in Section 4.

= 4 o

= B1

= LEM
5.3.1 Logical AND, Logical OR, and Logical XOR

The Logical functions examine each bitin bit string IN1 and the corresponding bit in bit
string IN2, beginning with the least significant bitin each string, and places the resultin
Q. If additional inputs (IN3 up to IN8) are used, the function compares each bit in the
input with the corresponding bit in Q and places the result in Q. The comparison is
repeated for each input that is used. The input bit strings specified in IN1 ... IN8 may

overlap

AND
1
- |N1 Q

- N2

Function Block Diagram (FBD)

AND

IN1 Qp

IN2

IN3

IN4

IN5

ING

IN7

INS

Logical AND

If both bits examined by the Logical AND function are 1,
AND places a 1 in the correspondinglocation in output sting
Q. If eitherbitis 0 or both bits are 0, AND places a 0 in string
Q in that location.

Tip:
You can use the Logical AND function to build masks or

screens, where only certain bits are passed (the bits
opposite a 1 in the mask), and all other bits are set to 0.

Minimum number of inputs = 2
Maximum number of inputs = 8

273

CPU Programmer’s Reference Manual Section 5
GFK-2950M Dec 2024

OR Logical OR

OR 1
1 - IN1 Qb= If either bit examined by the Logical OR function is 1, OR
=t IN1 Q pe= placesa 1 in the corresponding location in output string Q.
If both bits are 0, Logical OR places a 0 in string Q in that
2 = IN2 .
= IN location.
=1 IN3 Tips:
Minimum number of
inputs = 2 - N4 e You can use the Logical OR function to combine

strings or to control many outputs with one simple
logical structure. The Logical OR function is the
=1 INS equivalent of two relay contacts in parallel multiplied

by the number of bits in the string.
=1 ING

e You can use the Logical OR functionto drive indicator
-l IN7 lamps directly from input states or to superimpose
blinking conditions on status lights.

=1 N8
Maximum
number of inputs
=8
R T Logical XOR
1 1 o . , :
- INT ok - IN1 Qb= !f the bits |r.1 the strings examlr\ed by ?(‘OR.are different, a 1
is placed in the corresponding position in the output bit
- IN2 - N2 string.
For each pair of bits examined, if only one bitis 1, XOR
- IN3 places a 1 in the corresponding location in string Q.
Minimum number If both bits are 0, XOR places a 0 in the corresponding
of inputs = 2 - N4 location in string Q.
- IN5 Tips:
e If string IN2 and output string Q begin at the
= ING same reference, a 1 placed in string IN1 will
cause the corresponding bit in string IN2 to
= IN7 alternate between 0 and 1, changing state with
IN8 each scan as long as input is received.
e You can program longer cycles by pulsing the

input to the function at twice the desired rate of
flashing. The input pulse should be one scan

long (one-shot type coil or self-resetting timer).
Maximum number of

inputs = 8 e You can use XOR to quickly compare two bit
strings, or to blink a group of bits at the rate of
one ON state per two scans.

e XOR is useful for transparency masks.

Operands for AND, OR, and XOR

Function Block Diagram (FBD) 274

CPU Programmer’s Reference Manual Section 5

GFK-2950M

5.3.2

Dec 2024
Parameter |Description Allowed Types Allowed Optional
Operands
Solve Order Calculated by the FBD [NA NA No
editor.
IN1 The value to operate on.[BOOL, WORD All No
DWORD
IN2 (Must be | The value to operate on.[BOOL, WORD All No
the same data DWORD
type as IN1.)
IN3 ... IN8 Values to operate on. |BOOL, WORD All Yes
(Must be the DWORD
same data type
as IN1.)
Q (Must be the |The operation’s result. [BOOL, WORD All except constants[No
same data type DWORD and variables
as IN1 and located in %S
IN2.) memory

Properties for AND, OR, and XOR

Property Valid Range

NumberofInputs | 2to 8

Logical NOT

Figure 197

NOT
1
- N Q =

The Logical Not or Logical Invert (NOT) function sets the state of each bitin the output
bit string Q to the opposite of the state of the corresponding bit in bit string IN1.

All bits are altered on each scan thatinputis received, making output string Q the logical
complement of input string IN1.

Function Block Diagram (FBD) 275

CPU Programmer’s Reference Manual

GFK-2950M

5.4
5.4.1

Section 5

Dec 2024
Operands
Parameter Description Allowed |Allowed Optional
Types Operands
Solve Order Calculated by the FBD NA NA No
editor.
IN1 The input string to NOT. |WORD All No
DWORD
Q (Must be the same The NOT's result. WORD All except constants [No
data type as IN1) DWORD and variables located
in %S memory

Comments
Text Block

Figure 198

{ entertext)

The Text block is used to place an explanation in the program. When you type in a
comment, the first few words are displayed.

To increase the size of the textbox and display more text, select the box and drag one

of the handles.

There are no operands for the Text block.

e Editing a comment makes the Programmer lose equality.

e Comment text is downloaded to the controller and retrieved upon Logic Upload.

Function Block Diagram (FBD)

276

CPU Programmer’s Reference Manual

GFK-2950M

5.5

Comparison Functions

Comparison functions compare two values of the same data type or determine whether
a number lies within a specified range. The original values are unaffected.

Function Description
TS Compare. Compares two numbers, IN1 and IN2.
1 For details, refer to Relational Functions in Section 4.
|41 LT
- |2 EQ
GT
EQ Equal. Tests two numbers for equality.
1 For details, refer to Comparison Functions.
= 11 0 -
- M2
=E Greater Than or Equal. Tests whether one number is greater than or equal to
1 another.
- [[1 2 For details, refer to Comparison Functions.
-2
o7 Greater Than. Tests whether one number is greater than another.
1 For details, refer to Comparison Functions.
= |1 (2]
- M2
LE Less Than or Equal. Tests whether one number is less than or equal to another.
1 For details, refer to Comparison Functions.
- ([T] o
- 2
LT Less Than. Tests whether one number is less than another.
1 For details, refer to Comparison Functions.
|41 [
= |12

Function Block Diagram (FBD)

277

Section 5
Dec 2024

CPU Programmer’s Reference Manual Section 5
GFK-2950M Dec 2024
Function Description
ME Not Equal. Tests whether two numbers are not equal.
2 For details, refer to Comparison Functions.
= M1 iy
- M2
RANGE Range. Tests whetherone numberis within the range defined by two other supplied
1 numbers.
- |1) o For details, refer to Relational Functions in Section 4.
- L2
= [
5.5.1 Equal, Not Equal, Greater or Equal, Greater Than,
Less or Equal, Less Than
Figure 199
EQ GE GT LE LT NE
1 1 1 1 1 2
- IN1 Qp =N QF N Q= =N = IN1 Q f= INT Q=
= IN2 = IN2 - N2 = IN2 = IN2 IN2

The relational functions compare input IN1 to input IN2. These operands must be the
same data type. If inputs IN1 and IN2 are equal, the function outputs the result to Q,
unless IN1 and/or IN2 is NaN (Not a Number). The following relational functions can be
used to compare two numbers:

Function Definition Relational Statement
EQ Equal IN1=IN2
NE Not Equal IN1#IN2
GE Greater Than or Equal IN1=IN2
GT Greater Than IN1>IN2
LE Less Than or Equal IN1<IN2
LT Less Than IN1<IN2
Tip:
To compare values of different data types, first use conversion functions to make the types the
same.
Operands
Parameter|(Description Allowed Allowed Optional
Types Operands
Solve Order [Calculated by the FBD editor. NA NA No
Function Block Diagram (FBD) 278

CPU Programmer’s Reference Manual Section 5

GFK-2950M Dec 2024
Parameter|Description Allowed Allowed Optional
Types Operands

IN1 The first value to be compared; the [BOOL (for EQ No

value on the left side of the relational |and NE functions

statement. only), BYTE

! ’ All except S, SA, SB,

IN2 The second value to be compared; the|DINT, DWORD, sc No

value on the right side of the relational|INT, REAL,
statement. IN2 must be the same data|LREAL, UINT,

type as IN1. WORD
BOOL ,Q, G,M, T, SA, SB,
SC
Q If the relational statement is true, Q=1. Bit reference in alAll except constants. No
non-BOOL
variable.
5.6 Control Functions

The control functions limit program execution and change the way the CPU executes the
application program.

Function Description
0o o Do 1/0 Interrupt. Forone scan, immediately services a specified range of inputs
1_ or outputs. (All inputs or outputs on a module are serviced if any reference
= ER EMC [= [locationson thatmodule are included in the DO 1/O function. Partial I/O module
updates are not performed.) Optionally, a copy of the scanned I/0O can be placed
- T in internal memory, rather than at the real input points.
For details, refer to Control Functions in Section 4.
= EMD
- ALT
Mask 1/0O Interrupt. Mask or unmask an interrupt from an I/O board when using
MAEK—HDJNTR 1/0 variables. If not using 1/O variables, use
- £l EMC) = SVC_REQ 17: Mask/Unmask 1/O Interrupt, described in Section 6.
For details, refer to Control Functions in Section 4.
o ML P18
|41
FID_IMD PID_ISA Proportional Integral Derivative (PID) Control.
1 1 Provides two PID closed-loop control algorithms:
- SF C - SF v Standard ISA PID algorithm (PID_ISA)
Independent term algorithm (PID_IND)
- PV = Py
= MAN - PlA Note: For details, refer to Section 7.
= UF - P

Function Block Diagram (FBD) 279

CPU Programmer’s Reference Manual Section 5

GFK-2950M

5.7

Dec 2024
Function Description
ST REQ Service Request. Requests a special control system service.
1 ; :
- EN EMO b= Note: For details, refer to Section 6.
- FRC
- FRM
SCAM_SET IO Scan Set I/0O. Scans the 10 of a specified scan set.
1 For details, refer to Control Functions in Section 4.
= EM EMO j=
e
- LT
- SET
Suspend I/0. Suspends for one sweep all normal I/O updates, except those
5U5_10 specified by DO /O instructions.
1 For details, refer to Control Functions in Section 4.
- E EMD o
SUSPE 10 INTR Suspend I/O Interrupt. Suspend or resume an /O interrupt when using 1/0
_1 - variables. If not using 1/O variables, use
- I ERi e [SVC_REQ 32: Suspend/Resume I/O Interrupt, described in Section 6.
For details, refer to Control Functions in Section 4.
= SLISP
w141
F_TRIG Falling Edge Trigger. Detects a high-to-low transition of a Boolean input.
1 Produces a single output pulse when a falling edge is detected.
- CLK Gl For details, refer to Control Functions in Section 4.
R TRIG Rising Edge Trigger. Detects a low-to-high transition of a Boolean input.
- i = Produces a single output pulse when a rising edge is detected.
LK - For details, refer to Control Functions in Section 4.
-, I

Counters

Function Block Diagram (FBD)

280

CPU Programmer’s Reference Manual Section 5

GFK-2950M Dec 2024
Function Description
control_parameter Down Counter. Counts down from a preset value. The output is ON
DHCTR whenever the Current Value is < 0.

) i o The parameterthat appears above the functionblock is a one-dimensional,
=|EN ENO = three-word armay in %R, %W, %P, %L, or symbolic memory that the

- oy b counter uses to store its current value, preset value and control word.
For details, refer to

- Py
Cou nte 'S in Section 4.
control_parameter Up Counter. Counts up to a designated value. The output is ON whenever
UFCTR the Curmrent Value is > the Preset Value.

= EM ENO The parameterthat appears above the functionblock is a one-dimensional,

three-word array in %R, %W, %P, %L, or symbolic memory that the
counter uses to store its current value, preset value and control word.
For details, refer to

Counters in section 4.

- B CY

- Y

Function Block Diagram (FBD) 281

CPU Programmer’s Reference Manual Section 5

GFK-2950M Dec 2024
5.8 Data Move Functions
The Data Move functions provide basic data move capabilities.
Function Description
ARRAY SIZE Array Size. Counts the number of elements in an array.
1_ For details, refer to Data Move Functions in Section 4.
= ENN EMC
w1)
ARRAY SIZE DIMA Array Size Dim1. Retumns the value of the Array Dimension 1 property of
R an array.
- ER = |For details, refer to Data Move Functions in Section 4.
w4)
AREAY SIZE DIMZ Array Size Dim2. Retumns the value of the Array Dimension 2 property of
T an array.
- [t ErD W= |For details, refer to Data Move Functions in Section 4.
= I Ol fm
BUS D Bus Rea.d. Reads data from the bus.. . '
1 For details, refer to Data Move Functions in Section 4.
={EM EMO
=R BT =
-] o
- 35
- RGN
={ OFF
={ LEM

Function Block Diagram (FBD) 282

CPU Programmer’s Reference Manual

GFK-2950M

Section 5

Dec 2024

Function Description

BUG_RMW BYTE Bus Reaclj Modify Write. Uses a read/modify/write cycle to update a data

1 element in a module on the bus.
- EM EMO Other BUS_RMW functions:
BUS_RMW_DWORD

= 0P =) BUS_RMW_WORD
ok o For details, refer to Data Move Functions in Section 4.
- R
-5
= 55
- RGN
= OFF

BUS TS BYTE Bus Test and Set. Handles semaphores on the bus.

- 1 B Other BUS_TS function:

= EM EMNO = BUS_TS_WORD

R =T For details, refer to Data Move Functions in Section 4.
- ()
- 55
= RGN
= OFF

BUS WET Bus Write. Writes data to a module on the bus.
? For details, refer to Data Move Functions in Section 4.

= EM EMO p
il ST =
=R
-3
- 55
= RGN
= OFF
= LEM

Function Block Diagram (FBD)

283

CPU Programmer’s Reference Manual Section 5

GFK-2950M Dec 2024
Function Description
COMM_REQ Communication Request. Allows the program to communicate with an
1 intelligent module, such as a Genius Bus Controller or a High-Speed
= EN EMNO o Counter.
For details, refer to
=M FT p= - . .
Communication Request in Section 4.
= SYEI0
- TASK
FAMCUT Fan Out. Copies the input value to multiple
1 FANOQUT outputs of the same data type as the input.
1 For details, refer to Fan Out bel
[T e or details, refer to Fan Out below.
[QLT e
QLT -
QUTZ =
Minimum Outputs = 2 OUT3 B
QUTA
QTS
OUITE e
QUTT
DUTE e
Maximum Outputs = 8

Moy Move Data. Copies data as individual bits, so the new location does not
1 have to be the same data type. Data can be moved into a different data
- EN EMNO type without prior conversion.
For details, refer to Move Data below.
= I o
- LEM
MOVE_DATA_EX Move Data Explicit. Provides data coherency by locking symbolic memory
1 being written to during the copy operation.
- E[EMO For details, refer to Data Move Functions in Section 4.
Note: FBD and ST do not support the constant O as a value for the
- O (] - input IN.
= |
= L EN

Function Block Diagram (FBD) 284

CPU Programmer’s Reference Manual Section 5

GFK-2950M Dec 2024
Function Description
MOVE FROM FLAT Move from Flat. Copies reference memory data to a UDT variable or UDT
1 array. Provides the option of locking the symbolic or I/O variable memory
- EI EMC e |2TE2 being written to during the copy operation.
For details, refer to Data Move Functions in Section 4.
L | DI: Ij p_—
= [
- LEM
MOVE TO FLAT] Move to Flat. Copies data from symbolic or I/O variable memory to
- 1 - reference memory. Copies across mismatching data types.
- El EMO o For details, refer to Data Move Functions in Section 4.
- O O
=M
= LEM
SIZE_OF Size Of. Counts the number of bits used by a variable.
1 For details, refer to Data Move Functions in Section 4
= EN EMOC fu
- I G

5.8.1 Fan Out

Figure 200

FANOUT
1
w- N OUTT fom

OUT2 fe=

Copies the input IN to multiple outputs.

Function Block Diagram (FBD) 285

CPU Programmer’s Reference Manual Section 5

GFK-2950M Dec 2024
Operands
Parameter (Description Allowed Types Allowed Optional
Operands
Solve Order |[Calculated by the FBD NA NA No
editor.
IN The input to copy to the |BOOL, DINT, DWORD, |All except SA, SB, |No
outputs. INT, REAL, UINT, or SC.
WORD variable or
constant
OUT1 ...0OUT8 |Variables of the same data|Must be same type as |All exceptS, SA, SB,[No
type as the IN operand. |IN. SC and constant.
The outputs. Minimum: two
outputs. Maximum: eight
outputs.
5.8.2 Move Data
Figure 201
MOV
1
= IN Qp=
- LEN

When the input operand, EN, is set to ON, the MOVE instruction copies data as bits from
one location in PACSystems controller memory to another. Because the data is copied
as bits, the new location does not need to use the same type of memory area as the
source. For example, youcan copy data from an analog memory area into a discrete
memory area, or vice versa.

MOV sets its output, ENO, whenever it receives data unless one of the following occurs:

e When the input, EN, is set to OFF, then the output, ENO, is set to OFF.

e When the input, ENis set to ON, and the input, IN, contains an indirect reference,
and the memory of IN is out of range, then the output, ENO, is set to OFF.

The value to store at the destination Q is acquired from the IN parameter. If IN is a
variable, the value to store in Q is the value stored at the IN address. If IN is a constant,
the value to store in Q is that constant

The result of the MOVE depends on whether the data type for the Q operand a bit
reference or a non-bit reference is:

e [If Qisanon-bitreference, LEN (the length)indicates the number of memory locations
in which the IN value should be repeated, starting at the location specified by Q.

e If Qis a bitreference, INis treated as an array of bits. LEN therefore indicates the
number of bits to acquire from the IN parameter to make up the stored value. If IN is

a constant, bits are counted from the least-significant bit. If IN is a variable, LEN

Function Block Diagram (FBD) 286

CPU Programmer’s Reference Manual Section 5
GFK-2950M Dec 2024

indicates the number of bits to acquire starting at the IN location. Regardless, only
LEN bits are stored starting at address Q.

Forexample,if INwas the constantvalue 29 and LENis 4, the results of a MOV operation
are as follows:

e Qis a WORD reference: The value 29 is repeatedly stored in locations Q, Q+1, Q+2,
and Q+3.

e Qs a BOOL reference: The binary representation of 29 is 11101. Since LEN is 4,
only the four least-significant bits are used (1101). This value is stored at location Q
in the same order, so 1is stored in Q, 1 is stored in Q+1, O is stored in Q+2, and 1 is
stored in Q+3.

If data is moved from one location in discrete memory to another, such as from %l

memory to % T memory, the transition information associated with the discrete memory

elements is updated to indicate whether the MOVE operation caused any discrete
memory elements to change state.

Note: |If an array of BOOL-type data specified in the Q operand does not include all the
bits in a byte, the transition bits associated with that byte (which are not in the array)
are cleared when the Move instruction receives data.

Data at the IN operand does not change unless there is an overlap in the source and
destination—a situation that is to be avoided.

Function Block Diagram (FBD) 287

CPU Programmer’s Reference Manual Section 5
GFK-2950M Dec 2024
MOV Operands
Parameter |Description Allowed |Allowed Optional
Types Operands
Solve Order Calculated by the FBD editor. NA NA No
EN Enable BOOL variable |data flow, I, Q, M, T, G,|No
S, SA, SB, SC,
discrete symbolic, I/O
variable
Bit reference in|R, P, L, Al, AQ, W,
a non-BOOL [non-discrete symbolic,
variable I/O variable
IN The source of the data to copy into| DINT, All. S, SA, SB, SC No
the output Q. This can be eithera |DWORD, INT, |allowed only for
constant or a variable whose REAL, LREAL,|WORD, DWORD,
reference address is the location off UINT, WORD, [BOOL types.
the first source data item to move. |or bit reference
IN must have the same data type as|in a non-BOOL
the variable in the Q parameter. |variable
If IN is a BOOL variable or a bit
reference, an %l, %Q, %M, or %T
reference address need notbe byte
aligned, but 16 bits beginning with
the reference address specified are
displayed online.
LEN The length of IN; the number of bits| Constant Constant No
to move.
If IN is a constant and Q is BOOL:
1 <LEN< 16;
If IN is a constant and Q is not
BOOL:
1 < LEN < 256.
All other cases: 1 < LEN < 32,767
LEN is also interpreted differently
depending on thedata typeofthe Q
location. For details, see discussion
under Move Data.
ENO Indicates whetherthe operation was|BOOL variable |data flow, |, Q, M, T, G,| Yes
successfully completed. discrete symbolic, I/O
If ENO = ON (1), the operation was variable
initiated. Results of the operation are|gjt reference in|l, @, M, T, G, R, P, L,
indicated in the FT output. anon-BOOL |Al, AQ, W, non-
IfENO = OFF (0), the operation was|variable discrete symbolic, 1/0
not performed. If ENwas ON, the FT variable
outputindicates an error condition. If]
EN was OFF, FT is not changed.
Function Block Diagram (FBD) 288

CPU Programmer’s Reference Manual

GFK-2950M

Function Block Diagram (FBD)

Section 5
Dec 2024
Parameter |Description Allowed |Allowed Optional
Types Operands
Q The location of the first destination | DINT, data flow, I, Q, M, T, S,|No
data item. Q must have the same |DWORD, INT, |SA, SB, SC, G, R, P,
data type as the variable in the IN [REAL, LREAL,|L, Al, AQ, W, symbolic,
parameter. UINT, WORD, |1/O variable
If Q is a BOOL variable or a bit or bit reference
reference, an %l, %Q, %M, or %T |in a non-BOOL
reference address does not need to|variable
be byte-aligned, but 16 bits
beginning with the specified
reference address are displayed
online.
289

CPU Programmer’s Reference Manual
GFK-2950M

5.9

Math Functions

Your program may need to include logic to convert data to a different type before using
a Math or Numerical function. The description of each function includes information about
appropriate data types. The Type Conversion Functions section explains how to convert
one data type into a different data type.

Function Description
ADD Addition. Adds two or up to eight numbers.
1 For details, refer to
e L Q Add below.
-2
O Division.® Divides one number by another and outputs the quotient.
1
(11 0 Note: Take care to avoid overflow conditions when performing
divisions.
= I[2 . L
For details, refer to Divide below
WMOD Modulo Division. Divides one number by anotherand outputs the remainder. For
1 details, refer to Modulus below.
- |11
-t M2
LIl Multiplication.® Multiplies two or up to eight numbers.
T ! Note: Take care to avoid overflow conditions when performing
divisions.
= IMZ For details, refer to Multiply below.
Negate. Multiplies a number by —1 and places the result in an output location.
N1EG For details, refer to Negate below.
- |1]

®To avoid

Overflows when multiplying or dividing 16-bit numbers, use the Type Conversion Functions to convert the numbers to a 32-bit data

type.

Function Block Diagram (FBD)

290

Section 5
Dec 2024

CPU Programmer’s Reference Manual Section 5

GFK-2950M Dec 2024

Function Description

SCALE Scales an input parameter and places the result in an output location.

1 For details, refer to Math Functions in Section 4.
= IHI OUT fm
-1 L
- COHI
- LD
= LK
S Subtraction. Subtracts one orup to seven numbers from the input IN1 and places

1 the result in an output location.
- (M1 0l For details, refer to Subtract below.
- M2

The outputis calculated when the instruction is performed without Overflow, unless an
invalid operation occurs.

591 Overflow

If an operation on integer operands results in overflow, the output value wraps around.

Examples:

e If the ADD operation, 32767 + 1, is performed on signed integer operands, the result
is -32768

o |f the SUB operation, -32767 — 1, is performed on signed integer operands, the resut
is 32767

e |If an ADD_UINT operation is performed on 65535+ 16, the result is 15.

Function Block Diagram (FBD) 291

CPU Programmer’s Reference Manual Section 5

GFK-2950M Dec 2024
5.9.2 Add
Figure 202
ADD ADD
1 1
= IN1 Qpe - INT Qb=
- N2 - IN2
- N3
- N4
- N5
= ING
-t IN7
- NS

Minimum number Maximum number
of inputs =2 of inputs = 8,

Adds the operands IN1 and IN2 ... IN8 and stores the sum in Q. IN1 ... IN8 and Q must
be of the same data type.

The result is output to Q when ADD is performed without Overflow, unless one of the
following invalid conditions occurs:

o (+)
e IN1 and/or IN2 ... IN8 is NaN (Not a Number).
If an ADD operation results in Overflow, the result wraps around. For example:

e [fan ADD_DINT, ADD_INTor ADD_REAL operation is performed on 32767 + 1, Q
will be set to -32768.

e If an ADD_UINT operation is performed on 65535 + 16, Q will be set to 15.

Function Block Diagram (FBD) 292

CPU Programmer’s Reference Manual Section 5
GFK-2950M Dec 2024

Operands of the ADD Function

Parameter Description Allowed Types Allowed Optional
Operands
Solve Order Calculated by the FBD [NA NA No
editor.
IN1 ... IN8 The values to be added. |INT, DINT, REAL, LREAL, |All except S, No
UINT SA, SB, SCand
Must be same data type as|data flow
Q.
Q The sum of IN1 ... IN8. If|INT, DINT, REAL, LREAL, |AllexceptS, [No
an Overflow occurs, Q UINT variable SA, SB, SC,
wraps around. Must be same data type as|constant and
IN1 IN8. data flow
Properties for ADD
Property Valid Range
Number of Inputs 2to8
5.9.3 Divide
Figure 203
DV
1
w-{ N1 Q =
- N2

Divides the operand IN1 by the operand IN2 of the same data type as IN1 and stores the
quotientin the output variable assigned to Q, also of the same data type as IN1 and IN2.

The result is output to Q when DIV is performed without Overflow, unless one of the
following invalid conditions occurs:

e 0divided by 0 (Results in an application fault.)
¢ IN1 and/or IN2 is NaN (Not a Number).

If an Overflow occurs, the result wraps around.

Notes:
° DIV rounds down; it does not round to the closest integer. For example,
24 DIV 5=4.

° Be careful to avoid overflows.

Operands for DIV_UINT, DIV_INT, DIV_DINT, and

DIV_REAL

Parameter |Description Allowed Types [Allowed Optional
Operands

Solve Order Calculated by the FBD editor. [NA NA No

Function Block Diagram (FBD) 293

CPU Programmer’s Reference Manual

GFK-2950M

5.9.4

Section 5

Dec 2024
Parameter |Description Allowed Types [(Allowed Optional
Operands
IN1 Dividend: the value to be INT, DINT, UINT, REAL,|All except S, [No
divided; shown to the left of DIV|LREAL SA, SB, SC
in the equation IN1 DIV IN2=Q.
IN2 Divisor: the value to divide into|INT, DINT, UINT, REAL,|All except S, No
IN1; shown to the right of DIV in| LREAL SA, SB, SC
the equation IN1 DIV IN2=Q.
Q The quotient of IN1/IN2. If an [INT, DINT, UINT, REAL |All except S, |No
Overflow occurs, the resultis |or LREAL variable SA, SB, SCand
the largest value with the constant
proper sign.
Modulus
Figure 204
MOD
1
- IN1 Q -
- N2

Divides input IN1 by input IN2 and outputs the remainder of the division to Q.

All three operands mustbe of the same data type. The sign of the result is always the
same as the sign of input parameter IN1. Output Q is calculated using the formula:

Q = IN1-((IN1

DIV IN2) * IN2)

where DIV produces an integer number.

The result is output to Q unless one of the following invalid conditions occurs:

e 0Odivided by 0 (Results in an application fault.)
e IN1 and/or IN2 is NaN (Not a Number)

Function Block Diagram (FBD)

294

CPU Programmer’s Reference Manual

Section 5

GFK-2950M Dec 2024
Operands for Modulus Function
Parameter Description Allowed Allowed Optional
Types Operands
Solve Order Calculated by the FBD editor. INA NA No
IN1 Dividend: the value to be INT, DINT, UINT |All exceptS, SA, SB,|No
divided into in order to obtain SC
the remainder; shown to the
left of MOD in the equation IN1
MOD IN2=Q.
IN2 Divisor: the value to divide into|INT, DINT, UINT [All except S, SA, SB,|No
IN1; shown to the right of MOD| SC
in the equation
IN1 MOD IN2=Q.
Q The remainder of IN1/IN2. INT, DINT, UINT |All exceptS, SA, SB,|No
variable SC and constant
5.9.5 Multiply
Figure 205
MUL MUL
1 1
- IN1 Q = - IN1 Q=
=1 IN2 - IN2
- IN3
= IN4
- IN5
- ING
- IN7
- INS

Minimum number of
inputs =2

Maximum number of
inputs = 8.

Multiplies two through eight operands (IN1
result in the output variable assigned to Q, also of the same data type.

... IN8) of the same data type and stores the

The output is calculated when the function is performed without Overflow unless an
invalid operation occurs.

If an Overflow occurs, the result wraps around.

Mnemonic

Operation

Displays as

INT

Q(16-bit) = IN1(16-bit) * IN2(16-bit)

long

base 10 number with sign, up to 5 digits

DINT

Q(32-bit) = IN1(32-bit) * IN2(32-bit)

base 10 number with sign, up to 10 digits
long

REAL

Q(32-bit) = IN1(32-bit) * IN2(32-bit)

base 10 number, sign and decimals, up to
8 digits long (excluding the decimals)

UINT

Q(16-bit) = IN1(16-bit) * IN2(16-bit)

base 10 number, unsigned, up to 5 digits
long

Function Block Diagram (FBD)

295

CPU Programmer’s Reference Manual

GFK-2950M

5.9.6

Section 5
Dec 2024
Operands for Multiply
Parameter Description Allowed (Allowed Optional
Types Operands
Solve Order Calculated by the FBD editor. NA NA No
IN1 ... IN8 The values to multiply. Must be the |INT, DINT, |All except S, SA, |[No
same data type as Q. UINT, REAL |SB, SC
Q The result of the multiplication. INT, DINT, [All except S, SA, |No
UINT, REAL |SB, SC and
variable constant
Properties for Multiply
Property Valid Range
Numberoflnputs | 2to 8
Negate
Figure 206
NEG
1
- |N Q =
Multiplies a number by —1 and places the result in the output location, Q
296

Function Block Diagram (FBD)

CPU Programmer’s Reference Manual Section 5

GFK-2950M Dec 2024
Operands
Parameter Description Allowed (Allowed Optional
Types Operands
Solve Order Calculated by the FBD editor. NA NA No
IN The value to be negated. INT, DINT, [All except S, SA,|No
REAL SB, SC
Q The result, -1(IN) INT, DINT, [All except S, SA,|No
REAL SB, SC and
variable constant

5.9.7 Subtract

Figure 207

508 SUB
1 1
IN1 Q - N1 Q=

IN2 -t IN2

- IN3

-1 IN4

=1 ING

- N7

Minimum number of Maximum number of
inputs =2 inputs = 8.

Subtracts the operands IN2 ...IN8 from the operand IN1 and stores the result in the
output variable assigned to Q.

The calculation is carried out when SUB is performed without Overflow, unless an invalid
operation occurs.

If a SUB operation results in Overflow, the result wraps around. For example:

o If a SUB_DINT, SUB_INT or SUB_REAL operation is performed on 32768 - 1, Q
will be set to 32767.

If a SUB_UINT operation results in a negative number, Q wraps around. (For example,
a result of —1 set Q to 65535.)

Function Block Diagram (FBD) 297

CPU Programmer’s Reference Manual Section 5

GFK-2950M Dec 2024
Mnemonic Operation Displays as
SUB_INT Q(16-bit) = IN1(16-bit) — IN2(16-bit) base 10 number with sign, up to 5 digits|
long
SUB_DINT Q(32-bit) = IN1(32-bit) — IN2(32-bit) base 10 number with sign, up to 10
digits long
SUB_REAL Q(32-bit) = IN1(32-bit) — IN2(32-bit) base 10 number, sign and decimals, up
to 8 digits long (excluding the decimals)
SUB_UINT Q(16-bit) = IN1(16-bit) — IN2(16-bit) base 10 number, unsigned, up to 5
digits long
Operands for Subtract
Parameter Description Allowed Types |Allowed Optional
Operands
Solve Order Calculated by the FBD NA NA No
editor.
IN1 The value to subtract from. |DINT, INT, REAL, All except S, SA, |No
UINT SB, SC
IN2 ... IN8 The value(s) to subtract All except S, SA, |No
from IN1. Must be the same SB, SC
data type as IN1.
Q The result of the DINT, INT, REAL, |Allexcept S, SA, |No
subtraction. Must be the [UINT variable SB, SC and
same data type as IN1. constant

Properties for Subtract

Property Valid Range
Numberof Inputs | 2 to 8

Function Block Diagram (FBD) 298

CPU Programmer’s Reference Manual Section 5
GFK-2950M Dec 2024

5.10 Program Flow Functions

The program flow functions limit program execution or change the way the CPU executes
the application program.

Function Description
Program_Block Program_Block The CALL function causes the logic
CALL CALL execution to go immediately to the
1 en 1 eno designated program block, external C block
terized or not), or parameterized
=~ EN ENO f= (parame

=Nt ouTt = block and execute it. After the block’s
- N2 execution is complete, control returns to the
point in the logic immediately following the

CALL instruction.

For details, refer to Program Flow
Functions in Section 4.

Non-parameterized CALL | Parameterized CALL.
May call a parameterized
external block or a
parameterized block.

The ARG_PRES (Argument Present)
function determines whether a parameter
value was present when the function block
instance of the parameter was invoked.

ARG_PRES
1

For details, refer to Program Flow

=N o Functions in Section 4.

Function Block Diagram (FBD) 299

CPU Programmer’s Reference Manual Section 5
GFK-2950M Dec 2024

5.11 Timers

This section describes the PACSystems timing functions that are implemented in the
FBD language.

511.1 Built-in Timer Function Blocks

These function blocks use WORD Array instance data. The parameter that appears
above the function block is a one-dimensional, three-word array in %R, %W, %P, %L, or
symbolic memory that the timer uses to store its current value, preset value and control

word.
Function Description
control_parameter Off Delay Timer. The timer's Current Value (CV) resets to zero
PFOT HUNDS when its enable parameter (EN) is set to ON.. CV increments
_i while EN is OFF. When CV=PV (Preset Value), ENO is set to
OFF until EN is set to ON again.
=|EN ENOf= Other OFDT functions:
- PV vk OFDT_SEC
OFDT_TENTHS
OFDT_THOUS
For details, refer to Timers in Section 4.
control_parameter On Delay Stopwatch Timer. Retentive on delay timer. Increments
ONDTR HUNDS while EN is ON and holds its value when EN is OFF.
1 ONDTR_SEC
- EN ENO = ONDTR_TENTHS
ONDTR_THOUS
=R CV p= For details, refer to Timers in Section 4.
- PV
control_parameter On Delay Timer. Simple on delay timer. Increments while EN is
TMR HUNDS ON and resets to zero when EN is OFF.
B TMR_SEC
- EN ENO j== TMR_TENTHS
TMR_THOUS
- Py CV = For details, refer to Timers in Section 4.

Function Block Diagram (FBD) 300

CPU Programmer’s Reference Manual Section 5
GFK-2950M Dec 2024

511.2 Standard Timer Function Blocks

These functions blocks use Structure Variable instance data. Each invocation of a timer
has associated instance datathat persists from one execution of the timer to the next.
Instance variables are automatically located in symbolic memory. (You cannot specify
an address.) You can specify a stored value for each element. The user logic cannot
modify the values.

Function Description

Timer Off Delay. When the input IN transitions from ON to OFF, the timer
starts timing until a specified period of time has elapsed, then sets the
output Q to OFF.

For details, refer to Timers in Section 4.

Instance_Var

instance Var Timer On Delay. When the input IN transitions from OFF to ON, the timer

TON starts timing until a specified period of time has elapsed, then sets the
f output Q to ON.
- IN ok For details, refer to Timers in Section 4.
- PT ET p=
instance Var Timer Pulse. When the input IN transitions from OFF to ON, the timer sets
TP = the output Q to ON for a specified time interval.
1 For details, refer to Timers in Section 4.
- IN Q =

-PT ET=

Function Block Diagram (FBD) 301

CPU Programmer’s Reference Manual

GFK-2950M

5.12

Type Conversion Functions

Section 5
Dec 2024

The Conversion functions change a data item from one number format (data type) to
another. Many programming instructions, such as math functions, must be used with
data of one type. As a result, data conversion is often required before using those

instructions.

Function Description
Convert Angles
DEG TO RAD DEG_TO_RAD: Converts degrees to radians.
B 1 - RAD_TO_DEG: Converts radians to degrees.
=t I G - For details, refer to Conversion Functions in Section 4.

Convert to BCD4 (4-digi

t Binary-Coded-Decimal)

UINT_ToO_BCD4
1

1§ G

UINT_TO_BDC4: Converts UINT (16-bit unsigned integer) to BCD4.
INT_TO_BCD4: Converts INT (16-bit signed integer) to BCD4.
For details, refer to Conversion Functions in Section 4.

Convert to BCD8 (8-digi

t Binary-Coded-Decimal)

DINT_TO_BCDE
1

Ir Q

DINT_TO_BDS: Converts DINT (32-bit signed integer) to BCD8.
For details, refer to Conversion Functions in Section 4.

Convert to INT (16-bit signed integer)

BCD4 TO IMT BCD4_TO_INT: Converts BCD to INT.
1 UINT_TO_INT: Converts UINT to INT
L () DINT_TO_INT: Converts DINT to INT..
REAL_TO_INT: Converts REAL to INT.
For details, refer to Conversion Functions in Section 4.
Converts a 16-bit string (WORD) value to INT.
WDHD—JDJNT For details, refer to Convert WORD to INT below.
- |14 (2l

Convert to UINT (16-bit

unsigned integer)

BCO4 TO LINT BCD4_TO_UINT: Converts BCD4 to UINT.
1 INT_TO_UINT: Converts INT to UINT.
=M Q- DINT_TO_UINT: Converts DINT to UINT.
REAL_TO_UINT: Converts REAL to UINT.
For details, refer to Conversion Functions in Section 4.
VIORD TO LIMT WORD_TO_UINT: Converts a 16-bit string (WORD) value to UINT.
_1 B For details, refer to Convert DWORD to DINT below.
= I g

Convert to DINT (32-bit

signed integer)

Function Block Diagram (FBD)

302

CPU Programmer’s Reference Manual Section 5

GFK-2950M Dec 2024
Function Description
BCOE TO DIMT BCD8_TO_DINT: Converts BCD8 to DINT.
1 UINT_TO_DINT: Converts UINT to DINT.
= IN Q- For details, refer to Conversion Functions in Section 4.
INT TO DIMT INT_TO_DINT: Converts INT to DINT.
1 REAL_TO_DINT: Converts REAL (32-bit signed real or floating-point
= |) values) to DINT.
For details, refer to Conversion Functions in Section 4.

DWORD 10 DINT DWORD_TO_DINT: Converts a 32-bit bit sting (DWORD) value to DINT.
'R For details, refer to Convert DWORD to DINT below.
= I ()

Convert to REAL (32-bit signed real or floating-point values)

BCO4 TO REAL BCD4_TO_REAL: Converts BCD4 to REAL.

Ty BCD8_TO_REAL: Converts BCDS to REAL.

= M () UINT_TO_REAL: Converts UINT to REAL.
INT_TO_REAL: Converts INT to REAL.

DINT_TO_REAL: Converts DINT to REAL.
LREAL_TO_REAL:Converts LREAL to REAL.
For details, refer to Conversion Functions in Section 4.

Convert to LREAL(64-bit signed real or floating-point values)

REAL TO LREAL Converts a REAL value to LREAL.
2 For details, refer to Conversion Functions” in Section 4.
L 2 j

Convert to WORD (16-bit string)

Converts an INT (16-bit signed integer) value to a WORD value.
INT_TO_WORD
- 1_ For details, refer to Convert INT or UINT to WORD below.
= |1 () o
UINT TO WORD Converts an unsigned single-precision integer (UINT) to WORD.
- 1_ For details, refer to Convert INT or UINT to WORD below.
= |4)

Convert to DWORD (32-bit bit string)

OIMT TO DWWORD Converts a double-precision signed integer (DINT) value to DWORD.
- 1_ For details, refer to Convert DINT to DWORD below.
- |)
Truncate

Function Block Diagram (FBD) 303

CPU Programmer’s Reference Manual Section 5

GFK-2950M

5.12.1

5.12.2

Dec 2024
Function Description
Rounds a REAL (32-bit signed real or floating-point) number down to a
THUN?—DlNT DINT number
For details, refer to Conversion Functions in Section 4.
- M Q
TRUMNC IMT Rounds a REAL (32-bit signed real or floating-point) number down to an
1 INT number
(4] 2 f For details, refer to Conversion Functions in Section 4.

Convert WORD to INT

Figure 208
WORD_TO_INT
1
o [N Q

Converts the input data into the equivalent single-precision signed integer (INT) value,

which it outputs to Q. This function does not change the original input data. The output
data can be used directly as input for another program function, as in the examples.

The function passes datato Q, unless the data is out of range (0 through +65,535).

Operands
Parameter |(Description Allowed |Allowed Optional
Types Operands
Solve Order Calculated by the FBD editor. NA NA No
IN The value to convert to INT. WORD All except S, SA, |No
SB, and SC
Q The INT equivalent value of the INT All except S, SA, |No
original value in IN. SB, SC and
constant

Convert WORD to UINT

Figure 209

1

- [N Q

WORD_TO_UINT

These functions convert the input data into the equivalent single-precision unsigned

integer (UINT) value, which it outputs to Q.

Function Block Diagram (FBD)

The conversion to UINT does not change the original data. The output data can be used
directly as input for another program function, as in the example.

304

CPU Programmer’s Reference Manual
GFK-2950M

Section 5
Dec 2024

The function passes the converted data to Q, unless the resulting data is outside the

range 0 to +65,535.

Operands
Parameter (Description Allowed Allowed Optional
Types Operands
Solve Order |[Calculated by the FBD editor. NA NA No
IN The value to convert to UINT. WORD All except S, SA, SB,[No
and SC
Q The UINT equivalent value of the |UINT All except S, SA, SB,[No

original input value in IN.

SC and constant

512.3 Convert DWORD to DINT

Figure 210

DWORD_TO_DINT
1

Converts DWORD data into the equivalent signed double-precision integer (DINT) value
and stores the resultin Q. The conversion to DINT does not change the original data.

The output data can be used directly as input for another program function. The function

passes data to Q unless the data is out of range.

Function Block Diagram (FBD)

305

CPU Programmer’s Reference Manual

GFK-2950M

5.12.4

5.12.5

Section 5
Dec 2024
Operands
Parameter Description Allowed |Allowed Optional
Types Operands
Solve Order Calculated by the FBD editor. NA NA No
IN The value to convert to DINT. DWORD All except S, SA, |No
SB, and SC
Q The DINT equivalent value of the |UINT All except S, SA, |No
original input value in IN. SB, SC and
constant

Convert INT or UINT to WORD

Figure 211
UINT_TO_WORD
1
- | Q) o

Converts an unsigned single-precision integer (UINT) operand IN to a 16-bit bit string
(WORD) value and stores the result in the variable assigned to Q.

Figure 212
INT_TO_WORD
1
- [N Q =

Converts a 16-bit signed integer (INT) operand IN to a 16-bit bit string (WORD) value
and stores the result in the variable assigned to Q.
The output data can be used directly as input for another program function. The function
passes data to Q unless the data is out of range.

Operands
Parameter (Description Allowed Types|Allowed Optional
Operands
Solve Order [Calculated by the FBD editor. NA NA No
IN The value to convert to WORD. INT or UINT, All except S, SA, |No
depending on SB, and SC
function
Q The WORD equivalent value of the |WORD All except S, SA, |No
original value in IN. 0 < Q < 65,535. SB, SC and
constant
Convert DINT to DWORD
Figure 213
306

Function Block Diagram (FBD)

CPU Programmer’s Reference Manual Section 5
GFK-2950M Dec 2024

DINT_TO_DWORD
1
- IN Q =

When DINT_TO_DWORD receives data, it converts the input double-precision signed
integer (DINT) data into the equivalent DWORD (32-bit bit string) value, which it outputs
to Q. DINT_TO_DWORD does not change the original DINT data.

The output data can be used directly as input for another program function. The function
passes data to Q unless the data is out of range.

Operands
Parameter Description Allowed Allowed Optional
Types Operands
Solve Order Calculated by the FBD editor. [NA NA No
IN The value to convert to DWORD.[DINT All except S, SA,|No
SB, and SC

Q The DWORD equivalent value off DWORD All except S, SA,|No

the original value in IN. 0 < Q < SB, SC and

4,294,967,295. constant

5.13 PACSystems Simulator Function Block
Diagram (FBD)

The following sections outline Function Block Diagram (FBD) functionality differences for
the PACSystems Simulator.

5.13.1 Math Functions

Refer to Section 4.14.1 Math Functions.

513.2 Control Functions

Refer to Section 4.14.3 Control Functions.

5.13.3 Data Move Functions

Refer to Section 4.14.4 Data Move Functions.

5.13.4 Timers

5.13.5 Refer to Section 4.14.5 Timers.Communication Blocks

Refer to Section 4.14.7 Communication Blocks.

Function Block Diagram (FBD) 307

Section 6
Dec 2024

CPU Programmer’s Reference Manual
GFK-2950M

Section 6 Service Request Function

Use a Service Request function to request one of the following control system services:

SVC_REQ 1: Change/Read Constant Sweep Timer

SVC_REQ 2: Read Window Modes and Time Values

SVC_REQ 3: Change Controller Communications Window Mode

SVC_REQ 4: Change Backplane Communications Window Mode and Timer Value
SVC_REQ 5: Change Background Task Window Mode and Timer Value
SVC_REQ 6: Change/Read Number of Words to Checksum

SVC_REQ 7: Read or Change the Time-of-Day Clock

SVC_REQ 8: Reset Watchdog Timer

SVC_REQ 9: Read Sweep Time from Beginning of Sweep

SVC_REQ 10:
SVC_REQ 11:
SVC_REQ 12:
SVC_REQ 13:
SVC_REQ 14:
SVC_REQ 15:
SVC_REQ 16:
SVC_REQ 17:
SVC_REQ 18:
SVC_REQ 19:
SVC_REQ 20:
SVC_REQ 21:
SVC_REQ 22:
SVC_REQ 23:
SVC_REQ 24:
SVC_REQ 25:
SVC_REQ 29:
SVC_REQ 32:
SVC_REQ 45:
SVC_REQ 50:
SVC_REQ 51
SVC_REQ 56:
SVC_REQ 57:
SVC_REQ 63:

Service Request Function

Read Target Name

Read Controller ID

Read Controller Run State

Shut Down (STOP) CPU

Clear Controller or I/O Fault Table
Read Last-Logged Fault Table Entry
Read Elapsed Time Clock
Mask/Unmask I/O Interrupt

Read I/O Forced Status

Set Run Enable/Disable

Read Fault Tables

User-Defined Fault Logging
Mask/Unmask Timed Interrupts
Read Master Checksum

Reset Module

Disable/Enable EXE Block and Standalone C Program Checksums
Read Elapsed Power Down Time
Suspend/Resume /O Interrupt

Skip Next I/O Scan

Read Elapsed Time Clock

: Read Sweep Time from Beginning of Sweep

Logic Driven Read of Nonvolatile Storage
Logic Driven Write to Nonvolatile Storage
Logic Driven Write of Reference Memory

308

CPU Programmer’s Reference Manual
GFK-2950M

6.1

6.1.1

The following Service Requests are used in CPU HSB redundancy applications.
Refer to the PACSystems Hot Standby CPU Redundancy User's Guide, GFK-2308.
For non-HSB applications, refer to PACSystems RX7i, RX3i and RSTi-EP TCP/IP

Ethernet Communications User Manual, GFK-2224.

e SVC_REQ 26: Role switch (redundancy)

e SVC_REQ 27: Write to reverse transfer area (Hot Standby Redundancy)

e SVC_REQ 28: Read from reverse transfer area (Hot Standby Redundancy)

e SVC_REQ 43: Disable data transfer copy in backup unit (Hot Standby Redundancy)
e SVC_REQ 55: Set application redundancy mode (non-Hot Standby Redundancy)

Operation of SVC_REQ Function

PACSystems supports the Service Request function in LD and FBD.
Ladder Diagram

Figure 214

svVC
- REOQ |

—|FNC

—{PEM

When SVC_REQreceives powerflow, it requests the CPU to perform the special service
identified by the FNC operand.

Parameters for SVC_REQ are in the parameter block, which begins at the reference
identified by the PRM operand. The number of 16-bit references required depends on
the type of special controller service being requested. The parameter block is used to
store both the function's inputs and outputs.

SVC_REQ passes power flow unless an incorrect function number, incorrect
parameters, or out-of-range references are specified. Specific SVC_REQ functions may

have additional causes for failure.

Because the service request continues to be invoked each time power flow is enabled to
the function, additional enable/disable logic preceding the request may be necessary,
depending upon the application. (For example, repeated calling of SVC_REQ 24 would
continually reset a module, probably not the intended behavior.) In many cases a
transition contact or coil will be enough. Alternatively, you could use more complex logic,

such as having the function contained within a block that is only called a single time.

Operands

Note: Indirect referencing is available for all register references (%R, %P, %L, %W, %Al,
and %AQ).

Service Request Function 309

Section 6
Dec 2024

CPU Programmer’s Reference Manual Section 6

GFK-2950M Dec 2024
Operand |Data Type Memory Area Description
FNC INT variable or All except %S - %SC Function number; Service Request
constant number. The constant or reference
that identifies the requested service.
PRM WORD variable All except flow, %S - %SC|The first WORD in the parameter
and constant block for the requested service.

Successive 16-bit locations store
additional parameters.

Example
Figure 215
V_I0000 SVC REO ¥_0ooo0
7 —{FNC

V_Ro00o01 — FPEM

When the enabling input %0001 is ON, SVC_REQ function number 7 is called, with the
parameter block starting at %R0001. If the operation succeeds, output coil % Q0001 is

set ON.

Service Request Function 310

CPU Programmer’s Reference Manual

GFK-2950M

6.1.2

Function Block Diagram

Section 6

Dec 2024

Figure 216

SVC_REQ
1

= EM ENO f=
= FNC

- PRM

The SVC_REQ function requests the CPU to perform the special service identified by

the FNC operand.

Parameters for SVC_REQ are in the parameter block, which begins at the reference
identified by the PRM operand. The number of 16-bit references required depends on
the type of special controller service being requested. The parameter block is used to
store both the function's inputs and outputs.

Operands
Note: Indirect referencing is available for all register references (%R, %P, %L, %W, %Al,
and %AQ.
Parameter |Description Allowed Allowed Operands Optional
Types
Solve Order Calculated by the FBD editor. NA NA No
EN Enable input. When set to ON, the BOOL data flow, I, Q, M, T, G, S, SA, SB, SC, [No
SVC_REQ executes discrete symbolic, 1/0 variable
Bit reference in a ,Q,MT,G,R, P, L, Al AQ, W,
non-BOOL variable |non-discrete symbolic, I/O variable
FNC Function number; Service Request INT, DINT, UINT, All except %S - %SC No
number. The constant or variable that [WORD, DWORD You can use data flow only if the
identifies the requested service. parameter block requires only one WORD)
If you use a symbolic variable or an 1/0
variable, ensure that its Array Dimension
1 property is set to a value large enough
to contain the entire parameter block.
PRM The first word in the parameter block |INT, DINT, UINT, All except flow, %S - %SC and constant |No
for the requested service. Successive |WORD, DWORD
16-bit locations store additional
parameters.
ENO Setto ON unless an incorrect function [BOOL data flow, |, Q, M, T, G, non-discrete Yes

number, incorrect parameters, or out-
of-range references are specified.
Specific SVC_REQ functions may
have additional causes for failure.

symbolic, I/O variable

Bit reference in a
non-BOOL variable.

,Q,MT, G R, P, L, Al AQ, W,
non-discrete symbolic, I/O variable

6.2

SVC_REQ 1: Change/Read Constant Sweep

Timer

Use SVC_REQ function 1 to:

e Disable Constant Sweep mode

e Enable Constant Sweep mode and use the old Constant Sweep timer value

Service Request Function

311

CPU Programmer’s Reference Manual

GFK-2950M

Section 6
Dec 2024

e Enable Constant Sweep mode and use a new Constant Sweep timer value

e Set a new Constant Sweep timer value only

e Read Constant Sweep mode state and timer value.

The parameter block has a length of two words used for both input and output.

SVC_REQ executes successfully unless:

e A number other than 0, 1, 2, or 3 is entered as the requested operation:

e The scan time value is greater than 2550ms (2.55 seconds)

e Constant sweep time is enabled with no timer value programmed or with an old value
of 0 for the timer.

6.2.1 To disable Constant Sweep mode:
Enter SVC_REQ 1 with this parameter block:

Address

Description

Address

0

Address + 1

Ignored

6.2.2 To enable Constant Sweep mode and use the old

timer value:

Enter SVC_REQ 1 with this parameter block:

Address

Description

Address

1

Address + 1

0

If the timer value does not already exist, entering 0 causes the function to set the OK
output to OFF.

Service Request Function

312

CPU Programmer’s Reference Manual Section 6

GFK-2950M

6.2.3

6.2.4

6.2.5

Dec 2024

To enable Constant Sweep mode and use a new timer

value:
Enter SVC_REQ 1 with this parameter block:

Address Description
Address 1

Address + 1 |New timer value

Note: If the timer value does not already exist, entering 0 causes the function
to set the OK output to OFF.

To change the timer value without changing the

selection for sweep mode state:
Enter SVC_REQ 1 with this parameter block:

Address Description
Address 2
Address + 1 |New timer value

To read the current timer state and value without

changing either:

Enter SVC_REQ 1 with this parameter block:
Address Description

Address 3

Address +1 |ighored

Output

SVC_REQ 1 returns the timer state and value in the same parameter block references:

Address Description

Address 0 = Normal Sweep
1 = Constant Sweep

Address + 1 |Current timer value

If the word address + 1 contains the hexadecimal value FFFF, no timer value has been
programmed.

Service Request Function 313

CPU Programmer’s Reference Manual Section 6
GFK-2950M Dec 2024

SVC_REQ 1 Example

If contact OV_SWP is set, the Constant Sweep Timer is read, the timer is increased by
2 ms, and the newtimervalue is sent backto the CPU. The parameterblock is at location
%R3050. The example logic uses discrete internal coil %M0001 as a temporary location
to hold the successful result of the first rung line. On any sweep in which OV_SWP is not
set, %MO00001 is turned off.

Figure 217
OV_sSWF MOVE SVC REQ ADD INT V_Mooo01
i | WORD {
3
1—IN O V_E03050 {—FNC V_R03051 —{INt Q- ¥_R03051
V_R03050 — PEM 2 —IN2
V_M00001 [MOVE SVC REQ
|} WORD L
1
1—{IN OF V_R03050 1—FNC
V_R03050 —|PRM

6.3 SVC_REQ 2: Read Window Modes and Time
Values

Use SVC_REQ 2 to obtain the current window mode and time values for the controller
communications window and the backplane communications and the background task
window.

The parameter block has a length of three words. All parameters are output parameters.
It is not necessary to enter values in the parameter block to program this function.

Output

Address |Window High Byte Low Byte
Address Controller Communications Window [Mode Value in ms
Address +1 [Backplane Communications Window |Mode Value in ms
Address +2 [Background Window Mode Value in ms

Note: A window is disabled when the time value is zero.

Service Request Function 314

CPU Programmer’s Reference Manual Section 6
GFK-2950M Dec 2024

Mode Values

Mode Name [Value |Description

Limited Mode 0 The execution time of the window is limited to its respective default
value or to a value defined using SVC_REQ 3 for the controller
communications window or SVC_REQ 4 for the systems
communicationswindow. The window will terminate when it has no
more tasks to complete.

Constant Mode |1 Each window will operate in a Run to Completion mode, and the
CPU will alternate among the three windows for a time equal to the
sum of each window's respective time value. If onewindow s placed
in Constant mode, the remaining two windows are automatically
placed in Constant mode. If the CPU is operating in Constant
Window mode and a particular window's execution time is not
defined using the associated SVC_REQ function, the default time for
that window is used in the constant window time calculation.

Run to 2 Regardless ofthe window time associated with a particular window,
Completion whether default or defined using a service request function, the
Mode window will run until all tasks within that window are completed.

SVC_REQ 2 Example

Figure 218
V_Q00102 [SUCREQ

2 —FNC

V_R00010 —|FEM

When %Q00102 is set, the CPU places the current time values of the windows in the
parameter block starting at location %R0010.

Service Request Function 315

CPU Programmer’s Reference Manual Section 6
GFK-2950M Dec 2024

6.4 SVC_REQ 3: Change Controller
Communications Window Mode

Use SVC_REQ 3 to change the controller communications window mode and timer
value. The change takes place during the next CPU sweep after the function is called.

The parameter block has a length of one word.

SVC_REQ 3 executes unless a mode other than 0 (Limited) or 2 (Run to Completion) is
selected.

6.4.1 To disable the controller communications window:
Enter SVC_REQ 3 with this parameter block:

Address|High Byte (Low Byte
Address |0 0

6.4.2 To re-enable or change the controller communications

window mode:
Enter SVC_REQ 3 with this parameter block:

Address|High Byte Low Byte

Address |Mode: 0 = Limited 1ms < value < 255ms in 1ms
2 = Run to Completion |increments

SVC_REQ 3 Example

Figure 219
V_10025 MOVE SVC REQ
i1} UINT
1
25 1IN Q- v_Po00st 3 —{FNC

V_P000S1 —|FRM

V_10025 MOVE
4} UINT

0—IN Q- v_P0o00st

When enabling input %100125 transitions on, the controller communications window is
enabled and assigned a value of 25ms. When the contact transitions off, the window is
disabled. The parameter block is in global memory location %P00051.

6.5 SVC_REQ 4: Change Backplane
Communications Window Mode and Timer
Value

Service Request Function 316

CPU Programmer’s Reference Manual Section 6
GFK-2950M Dec 2024

Use SVC_REQ 4 to change the Backplane Communications window mode and timer
value. The change takes place during the next CPU sweep after the function is called.

SVC_REQ 4 executes unless a mode other than 0 (Limited) or 2 (Run to Completion) is
selected.

The parameter block has a length of one word.

6.5.1 To disable the Backplane Communications window:
Enter SVC_REQ 4 with this parameter block:

Address|High Byte|Low Byte

Address |0 0
6.5.2 To enable the Backplane Communications window
mode:
Enter SVC_REQ 4 with this parameter block:
Address|High Byte Low Byte
Address |[Mode 0 = Limited 1ms < value < 255ms

2 = Run to Completion

SVC_REQ 4 Example

When enabling output %MO0125 transitions on, the mode and timer value of the
Backplane Communications window is read. If the timer value is greater than or equal to
25ms, the value is not changed. If it is less than 25ms, the value is changed to 25ms. In
either case, when the rung completes execution the window is enabled. The parameter
block for all three windows is at location %R5051. Since the mode and timer for the
Backplane Communications window is the second value in the parameter block retumed
from the Read Window Values function (SVC_REQ2), the location of the existing window
time for the Backplane Communications window is in the low byte of %R5052.

Figure 220
V_100001 V_MO00125
— 1)}
V_MO00125 [SYCREQ AND AND
|} WORD WORD |
2 —|FNC V_R05052 —{IN1 Q- ¥_R0S060 V_R0S052 —{IN1 Q= W_RS0061
¥_R05051 —|FEM 16#00FF —{IN2 16#FF00 —1N2
V_M00125 [LTINT OR WORD SVC REQ
| | —
W_R0S060 —{IN1 O V_R00061 —{IN1 Q- V_R000S2 4 —{FNC
25 —{IN2 25 —{IN2 W_R00052 —{FEM

Service Request Function 317

CPU Programmer’s Reference Manual Section 6
GFK-2950M Dec 2024

6.6 SVC_REQ 5: Change Background Task

Window Mode and Timer Value

Use SVC_REQ 5 to change the Background Task window mode and timer value. The
change takes place during the next CPU sweep after the function is called.

SVC_REQ 5 executes unless a mode other than 0 (Limited) or 2 (Run-to-Completion) is
selected.

The parameter block has a length of one word.

6.6.1 To disable the Background Task window:

Enter SVC_REQ 5 with this parameter block:

Address|High Byte |Low Byte
Address |0 0

6.6.2 To enable the Background Task window mode:
Enter SYC_REQ 5 with this parameter block:

Address|High Byte Low Byte

Address [Mode 0 = Limited 1ms < value < 255ms
2 = Run to Completion

Service Request Function 318

CPU Programmer’s Reference Manual

GFK-2950M

SVC_REQ 5 Example

When enabling contact #FST_SCNiis setinthe firstscan, the MOVE function establishes
a value of 20ms for the Background task window, using a parameter block beginning at
%P00050. Later in the program, when input %100500 transitions on, the state of the
Background task window toggles on and off. The parameter block for all three windows
is at location %P00051. The time for the Background task window is the third value in
the parameter block returned from the Read Window Values function (function #2),
therefore, the location of the existing window time for the Background window is

Section 6
Dec 2024

%P00053.
Figure 221
#FST_SCN MOVE
11 UINT |
LI |
1
20 —|IN Q- v_P000S0
V_I100500 SVC REQ EQUINT | V_MO00002
i1} { —
2 —{FNC V_P00053 —1H1 o
Y_P000S1 | PEM 0 —{IN2
V_ID0S00 WV_MO00002 MOVE SVC REQ
4 i1 VDT -
1
0o—IN Q- v_P000S3 5 —FNC
V_Mo0002 MOVE
| } UINT V_P00053 — PRM
1
V_P000S0 —IN QF v_P000S2

Service Request Function

319

CPU Programmer’s Reference Manual Section 6

GFK-2950M

6.7

6.7.1

6.7.2

Dec 2024

SVC_REQ 6: Change/Read Number of Words
to Checksum

Use SVC_REQ 6 to read the current word count in the program to be check-summed or
set a new word count. By default, 16 words are checked. The function is successful

unless some number other than 0 or 1 is entered as the requested operation.

The parameter block has a length of 2 words.

To read the word count:

Enter a zero in the first word of the parameter block.

Address |Description

Address 0

Address + 1|Ignored
The function returns the current checksum (word count) in the second word of the
parameter block. No range is specified for the read function; the value returned is the
number of words currently being check-summed.

Address [Description
Address 0

Address + 1|Current word count

To set a new word count:

Entera oneinthefirst word of the parameter block and the new word count in the second
word.

Address [Description
Address 1

Address + 1|New word count
The CPU changes the number of words to be check-summed to the value given in the
second word of the parameter block, rounded up to the next multiple of 8. To disable
check-summing, set the new word count to 0.

Service Request Function 320

CPU Programmer’s Reference Manual Section 6
GFK-2950M Dec 2024

SVC_REQ 6 Example

Figure 222
HEST_SCN [XOR MOVE
| WORD ot |
1 1
y oo —IN QF 5 Iawse 1= QF gl
 Lovsse —|IN2
V_100137 [sWCREQ ADD SVCREQ
— UINT L
6 —{FNC proes =N QF g ranse 6 —FNC
v Looyse —{PRM 16 —{IN2 1 L5 —{PRM

When enabling contact #FST_SCN is set, the parameter blocks for the checksum task
function are built. Later in the program, when input %100137 transitions on, the number
of words being check-summed is read from the CPU operating system. This number is
increased by 16, with the results of the ADD_UINT function being placed in the hold new
count for set parameter. The second service request block requests the CPU to set the
new word count.

The example parameter blocks are located at address %L00150. They have the following
contents:

Address |Description

%L00150 |0 =read current count
%L00151 |hold current count
%L00152 |1 = set current count
%L00153 |hold new count for set

Service Request Function 321

CPU Programmer’s Reference Manual Section 6

GFK-2950M

6.8

6.8.1

Dec 2024

SVC_REQ 7: Read or Change the Time-of-
Day Clock

Use SVC_REQ 7 to read or change the time of day clock in the CPU. The function is
successful unless:

¢ Aninvalid number is entered for the requested operation.
¢ Aninvalid data format is specified.

e Datais provided in an unexpected format.

Parameter Block Formats

In the first two words of the parameter block, you specify whether to read or set the time
and date, and which format to use.

Address 2-Digit Year Format 4-Digit Year Format
Address 0 =read time and date 0 = read time and date
(word 1) 1 = settime and date 1 =settime and date
Address+1 0 = numeric data format 80h — numeric data format
(word 2) 1= BCD format 81h = BCD format
2 = unpacked BCD format 82h = unpacked BCD format
3 = packed ASCII format (with 83h = packed ASCII format
embedded spaces and colons)
4 = POSIX format n/a
Address+2 Data Data
(word 3)
to the end

Words 3 to the end of the parameter block contain output data returned by a read
function, or new data being supplied by a change function. In both cases, format of these
data words is the same. When reading the date and time, words (address + 2) to the end
of the parameter block are ignored on input.

Service Request Function 322

CPU Programmer’s Reference Manual
GFK-2950M

Section 6
Dec 2024

The format and length of the parameter block depends on the data format and number

of digits required for the year:

Data Format and N-digit Year

Length of parameter block

(number of words)
BCD, 2-digit year 6
BCD, 4-digit year 6
POSIX format 6
Unpacked BCD 2 9
Unpacked BCD 4 10
Numeric (2 and 4-digit years) 9
Packed ASCII, 2-digit year 12
Packed ASCII, 4-digit year 13

In any format:

e Hours are stored in 24-hour format.

e Day of the week is a numeric value ranging from 1 (Sunday) to 7 (Saturday).

Value |Day of the Week

Sunday

Monday

Tuesday

Wednesday

Thursday

Friday

N|o|lOoa| R~ OIN]| =~

Saturday

Service Request Function

323

CPU Programmer’s Reference Manual

GFK-2950M

BCD, 2-Digit Year

Section 6
Dec 2024

In BCD format, each time and date item occupy one byte, so the parameter block has
six words. The last byte of the sixth word is not used. When setting the date and time,
this byte is ignored; when reading date and time, the function returns a null character

(00).
Parameter Block Address Example
Format (Sun., July 3, 2005, at 2:45:30 p.m.

= 14:45:30 in 24-hour format)
1 =change or 0 =read Address 0 (read)
1 (BCD format) Address+1 1 (BCD format)
High Byte Low Byte Address |High Byte Low Byte
month year Address+2 |07 (July) 05 (year)
hours day of month Address+3 |14 (hours) 03 (day)
seconds minutes Address+4 (30 (seconds) 45 (minutes)
(null) day of week Address+5 |00 01 (Sunday)

BCD, 4-Digit Year

In this format, all bytes are used.

Parameter Block Format [Address Example
(Sun., July 3, 2005, at 2:45:30 p.m.
= 14:45:30 in 24-hour format)

1=change or 0 =read Address 00 (read)

81h (BCD format, 4-digit) Address+1 81h (BCD format, 4-digit)

High Byte Low Byte Address High Byte Low Byte

year year Address+2 20 (year) 05 (year)

day of month month Address+3 03 (day) 07 (July)

minutes hours Address+4 45 (minutes) 14 (hours)

day of week seconds Address+5 01 (Sunday) 30 (seconds)

Service Request Function

324

CPU Programmer’s Reference Manual Section 6
GFK-2950M Dec 2024

POSIX

The POSIX format of the Time-of-Day clock uses two signed 32-bitintegers (two DINTSs)
to represent the number of seconds and nanoseconds since midnight January 1, 1970.
Reading the clock in POSIX format might make it easier for your application to calculate
time differences. This format can also be useful if your application communicates to other
devices using the POSIX time format. To read and/or change the date and time using
POSIX format, enter SVC_REQ 7 with this parameter block:

Parameter Block Format |Address Example: December 1,2000 at 12 noon
1=change or 0 =read Address 0

4 (POSIX format) Address+1 4

seconds (LSW) Address+2 975,672,000

(MSW) Address+3

nanoseconds (LSW) Address+4 0

(MSW) Address+5

The PACSystems CPU’'s maximum POSIX clock value is F48656FE (hexadecimal)
seconds and 999,999,999 (decimal) nanoseconds, which corresponds to December
31st, 2099 at 11:59 pm. This is the maximum POSIX value that SVC_REQ 7 will accept
for changing the clock. This is also the maximum POSIX value SVC_REQ 7 will return
once the Time-Of-Day clock passes this date.

If SVC_REQ 7 receives an invalid POSIX time to write to the clock, it does not change
the Time-Of-Day clock and disables its power-flow output.

Note:

o When reading the PACSystems CPU clock in POSIX format, the data returned is
not easily interpreted by a human viewer. If desired, it is up to the application logic
to convert the POSIX time into year, month, day of month, hour, and seconds.

° At 03:14:08 UTC on 19 January 2038, 32-bit versions of the Unix time stamp will

cease to work, as it will overflow the largest value that can be held in a signed 32-
bit number (TFFFFFFF16 or 2,147,483,647). Before this moment, software using
32-bit time stamps will need to adopt a new convention for time stamps, and file
formats using 32-bit time stamps will need to be changed to support larger time
stamps or a different epoch.

Service Request Function 325

CPU Programmer’s Reference Manual

GFK-2950M

Unpacked BCD (2-Digit Year)

Section 6

Dec 2024

In Unpacked BCD format, each digit of the time and date items occupies the low-order
four bits of a byte. The upper four bits of each byte are always zero. This format requires
nine words. Values are hexadecimal.

Parameter Block Format |Address |Example

(Thurs., Dec. 8, 2002, at 9:34:57 a.m.)
1 =change or 0 = read Address Oh
2 (Unpacked BCD format) Address+1 [2h

High Byte |Low Byte Address High Byte Low Byte
year Address+2 00h 02h
month Address+3 01h 02h
day of month Address+4 02h 08h
hours Address+5 00h 09h
minutes Address+6 03h 04h
seconds Address+7 05h 07h
day of week Address+8 00h 05h

Unpacked BCD (4-Digit Year)

In Unpacked BCD format, each digit of the time and date items occupies the low-order
four bits of a byte. The upper four bits of each byte are always zero. This format requires
nine words. Values are hexadecimal.

Parameter Block Format

Address

Example
(Thurs., Dec. 8, 2002, at 9:34:57 a.m.)

1 =change or 0 = read

Address Oh

82h (Unpacked 4-digit BCD format)

Address+1 |82h

High Byte |Low Byte Address High Byte Low Byte
year Address+2 00h 02h
month Address+3 01h 02h
day of month Address+4 00h 08h
hours Address+5 00h 09h
minutes Address+6 03h 04h
seconds Address+7 05h 07h
day of week Address+8 00h 05h
Numeric, 2-Digit Year

In numeric format, the year, month, day of month, hours, minutes, seconds and day of
week each occupy one unsigned integer. To read and/or change the date and time using
the numeric format, enter SVC_REQ function #7 with this parameter block:

Service Request Function

326

CPU Programmer’s Reference Manual

GFK-2950M

Section 6
Dec 2024
Parameter Block Format Address Example
Wed., June 15, 2005, at 12:15:30 a.m.
1 =change or 0 = read Address 0
0 (Numeric format, 2-digit year) |Address+1 0
High Byte Low Byte Address Value
year Address+2 05
month Address+3 06
day of month Address+4 15
hours Address+5 12
minutes Address+6 15
seconds Address+7 30
day of week Address+8 04

Numeric, 4-Digit Year

In numeric format, the year, month, day of month, hours, minutes, seconds and day of
week each occupy one unsigned integer. To read and/or change the date and time using

the numeric format, enter SVC_REQ function #7 with this parameter block:

Parameter Block Format Address :):mple: Wed., June 15, 2005, at 12:15:30

1 =change or 0 = read Address 0

80h (Numeric format, 4 digit year) |Address+1 [80h

High Byte Low Byte Address Value
year Address+2 2005
month Address+3 06
day of month Address+4 15
hours Address+5 12
minutes Address+6 15
seconds Address+7 30
day of week Address+8 04

Packed ASCII, 2-Digit Year

In Packed ASCII format, each digit of the time and date items is an ASCII formatted byte.
Spaces and colons are embedded into the data to format it for printing or display. ASCII
format for a 2-digit year requires 12 words in the parameter block. Values are

hexadecimal.
Example

Parameter Block Format (Address |(Mon., Oct. 5, 2005, at 11:13:25 p.m. =
23:13:25 in 24-hour format)

1=change or 0 =read Address Oh (read)

3 (ASCII format) Address+1 [3h (ASCII format)

Service Request Function

327

CPU Programmer’s Reference Manual

GFK-2950M

Section 6

Dec 2024

High Byte Low Byte Address High Byte Low Byte
year year Address+2 35h (5) 30h (0)

month (space) Address+3 31h (1) 20h (space)
(space) month Address+4 20h (space) 30h (0)

day of month day of month Address+5 35h (5) 30h (leading 0)
hours (space) Address+6 32h (2) 20h (space)

: (colon) hours Address+7 3Ah (3) 33h (3)
minutes minutes Address+8 33h (3) 31h (1)
seconds : (colon) Address+9 32h (2) 3Ah (:)

(space) seconds Address+10 20h (space) 35h (5)

day of week day of week Address+11 32h (2=Mon.) [30h (leading 0)

Service Request Function

328

CPU Programmer’s Reference Manual

GFK-2950M

Packed ASCII, 4-Digit Year

ASCII format for a 4-digit year requires 13 words in the parameter block. Values are

hexadecimal.

Section 6
Dec 2024

Parameter Block Format

Address

Example
(Mon., Oct. 5, 2005, at 11:13:25 p.m. =
23:13:25 in 24-hour format)

1 =change or 0 = read Address Oh (read)

83 (ASCII format) Address+1 [83h (ASCII format, 4-digit)

High Byte Low Byte Address High Byte Low Byte
year (hundreds) |year (thousands) Address+2 30h (0) 32h (2)

year (ones) year (tens) Address+3 35h (5) 30h (0)

month (tens) (space) Address+4 31h (1) 20h (space)
(space) month (ones) Address+5 20h (space) 30h (0)

day of month day of month (tens) Address+6 35h (5) 30h (leading 0)
(ones)

hours (tens) (space) Address+7 32h (2) 20h (space)

: (colon) hours (ones) Address+8 3Ah (1) 33h (3)
minutes (ones) minutes (tens) Address+9 33h (3) 31h (1)
seconds (tens) : (colon) Address+10 32h (2) 3Ah (A)
(space) seconds (ones) Address+11 20 (space) 35 (5)

day of week (ones)|day of week (tens) Address+12 32h (2 = Mon.) 30h (leading 0)

SVC_REQ 7 Example

In this example, the time of day is set to 12:00 pm without changing the current year,
BCD format requires six contiguous memory locations for the parameter block.

Rung 1 sets up the new time of day in two-digit year BCD format. It writes the value 4608
(equivalent to 12 00 BCD) to NOON and the value 0 to MIN_SEC.

Rung 2 requests the current date and time using the parameter block located at

%P00300.

Rung 3 moves the new time value into the parameter block starting at R0O0300. It uses
AND and ADD operations to retrieve the current clock value from %P00303 and replace
the hours, minutes and seconds portion of the value with the values in NOON and

MIN_SEC.

Rung 4 uses the parameter block beginning at %R00300 to set the new time.

Figure 223

Service Request Function

329

CPU Programmer’s Reference Manual Section 6

®EST_SCH MCVE INT MOVE INT
1 {1t —
4808 —N 2| noon g —IN 2 Min_sec
TOOO1E MOVE INT MOVE INT SVCREQ T00094
2 X O—
g —n al-eoo200 1 =N af— Pooz01 e
F00200 —JP
TO0001 190017 ZhT AT 200 INT TeE T
3 i —
Fo0302 —IN1 o[Roo203 00292 —{N1 2l rooag2 MIN_SEC —|I% al— roo2os
18 —{INZ HOON —|INZ
Toonot aai? MOVE INT MOVE INT SVC REQ
4 -
- QU RO020] —n al— roo20 —
200300 —]

6.9 SVC_REQ 8: Reset Watchdog Timer

Use SVC_REQ 8 to reset the watchdog timer during the scan.

Ordinarily, when the watchdog timer expires, the CPU stops and goes into an error state
without warning. SVC_REQ 8 allows the timer to keep going during a time-consuming

task (for example, while waiting for a response from a communications line).

Be sure that resetting the watchdog timer does not adversely affect the controlled process.

SVC_REQ 8 has no associated parameter block; however, you must specify a dummy
parameter, which SVC_REQ 8 will not use.

SVC_REQ 8 Example

Figure 224
v_aooz27 SVC REQ
i | -
V_I01476
i | g —|FNC
V_M00010
{ | V_AI0001 —|PRM

In the LD example at right, power flow through enabling output %Q0127 or input %1476
or internal coil %MO00010 causes the watchdog timer to be reset.

6.10 SVC_REQ 9: Read Sweep Time from
Beginning of Sweep

Use SVC_REQ 9 to read the timein milliseconds since the start of the sweep. The data
format is unsigned 16-bit integer.

Service Request Function 330

CPU Programmer’s Reference Manual

GFK-2950M

Output

Section 6
Dec 2024

The parameter block is an output parameter block only; it has a length of one word.

Address

Description

Address

time since start

of scan

SVC_REQ 9 Example

Figure 225
I SUC REQ [GrinT |
V_M00200
9 —{FNC v_Roozoo —{IM1 QF——(}—
V_E00200 —|FEM 100 —INZ
Note: Higher resolution (in nanoseconds) can be obtained by using SVC_REQ 51:

Read Sweep Time from Beginning of Sweep.

Service Request Function

331

CPU Programmer’s Reference Manual

GFK-2950M

6.11

SVC_REQ 10: Read Target Name

Use SVC_REQ 10 to read the name of the currently executing target.

Output

Section 6
Dec 2024

The output parameter block has a length of four words. It returns eight ASCII characters:
the target name (from one to seven characters) followed by null characters (00h). The
last character is always a null character. If the target name has fewer than seven

characters, null characters are appended to the end.

Address Low Byte [High Byte
Address character 1 character 2
Address+1 character 3 character 4
Address+2 | character 5 character 6
Address+3 | character 7 00

SVC_REQ 10 Example

Figure 226

10020

- 3

T Ll

I

10 —{IN

OO0
om

[]

=— Dnno
WD

w

-~
-

When enabling input %I0301 goes ON, registerlocation %R0099 is loaded with the value
10, which is the function code for the Read Target Name function. The program block
READ_ID is then called to retrieve the target name. The parameter block is located at
address %R0100.

Figure 227

W

L

Program block READ_|

Service Request Function

332

CPU Programmer’s Reference Manual Section 6
GFK-2950M Dec 2024

6.12 SVC_REQ 11: Read Controller ID

Use SVC_REQ 11 to read the name of the controller executing the program.

Output

The output parameter block has a length of four words. It returns eight ASCII characters:
the Controller ID (from one to seven characters) followed by null characters (00h). The
last character is always a null character

If the Controller ID has fewer than seven characters, null characters are appended to the
end.

Address Low Byte [High Byte

Address character 1 [character 2
Address+1 character 3 |character 4
Address+2 character 5 |character 6

Address+3 character 7 |00
SVC_REQ 11 Example

Figure 228

V_I00303 MOVE READ_ID
} RORD [CALL}

1 —|IN QF v_RO0099

When enabling input %10303 is ON, register location %R0099 is loaded with the value
11, which is the function code for the Read Controller ID function. The program block
READ_ID is then called to retrieve the ID. The parameter block is located at address

%R0100.

Figure 229
#ALW ON SVC REQ

V_R00099 —|FNC

V_R00100 —|FREM

Program Block READ_ID:

Service Request Function 333

CPU Programmer’s Reference Manual Section 6
GFK-2950M Dec 2024

6.13 SVC_REQ 12: Read Controller Run State

Use SVC_REQ 12 to read the current RUN state of the CPU.
Output

The output parameter block has a length of one word.

Address |Description
Address 1 =run/disabled

2 = run/enabled

SVC_REQ 12 Example

Figure 230
V_100102 [SVCREQ EQ INT
—| |—
DISFLAY
12 —{FNC 1—IN O—{CAIL}-
V_R04002 —|PEM _R04002 —{INZ

When contactV_100102 is ON, the CPU run state is read into location %R4002. If the
state is Run/Disabled, the CALL function calls program block DISPLAY.

Service Request Function 334

CPU Programmer’s Reference Manual Section 6
GFK-2950M Dec 2024

614 SVC_REQ 13: Shut Down (STOP) CPU

Use SVC_REQ 13 to stop the CPU after the specified number of scans has been
performed. All outputs go to their designated default states at the start of the next CPU
scan. An informational Shut Down Controller faultis placed inthe Controller Fault Table.
The I/O scan continues as configured.

SVC_REQ 13 has an input parameter block with a length of one word.
Address |Description

Address Number of scans. Valid values:

-1: The CPU uses the Number of Last Scans value configured in the Hardware
Configuration Scan tab to determine whento transition to STOP Mode. For detais
on Hardware Configuration parameters, refer to PACSystems RX7i, RX3i and
RSTi-EP CPU Reference Manual, GFK-2222.

1 through 5: The CPU finishes executing this scan, then executes this number of
scans —1, and transitions to STOP Mode.

Note: For CPUs with firmware version earlier than 2.00, the value must be set to 0;
otherwise the CPU does not stop.

SVC_REQ 13 Example

When a Loss of I/O Module faultoccurs, the #.0S_|OMcontactturns ONand SVC_REQ
13 executes.

In this example, if the Shut Down CPU function executes, the JUMPN to the end of the
program prevents the logic that follows the JUMPN from executing in the current sweep.

Figure 231
#LOS_IOM END_FPROG
N o)
i O
END_FROG MOVE WORD SVC REQ EndFrogram
I}
1
1 —IN Q— ROOODO1 13 —|FNC
ROOOO1 —{FRM

The block's last instruction is a LABELN:

Figure 232

| |® EndProgram

6.15 SVC_REQ 14: Clear Controller or 1/O Fault
Table

Use SVC_REQ 14 to clear either the Controller Fault Table or the I/O Fault Table. The
SVC_REQ outputis set ON unless some number otherthan O or 1 is entered as the

requested operation.
Service Request Function 335

CPU Programmer’s Reference Manual Section 6
GFK-2950M Dec 2024

The parameter block has a length of 1 word. It is an input parameter block only. There is
no output parameter block.

Address [Description

Address [0 = clear Controller Fault Table
1 = clear I/O Fault Table

SVC_REQ 14 Example

When inputs %10346 and %10349 are on, the Controller Fault Table is cleared. When
inputs %0347 and %10349 are on, the I/O Fault Table is cleared. When input %10348 is
on and input %10349 is on, both are cleared. Positive transition coils V_MO00001 and
V_MO00002 are used to trigger these service requests to prevent the fault tables from

being cleared multiple times.
The parameterblockforthe Controller Fault Table is located at %R0500; for the I/O Fault
Table the parameter block is located at %R0550.

Note: Both parameter blocks are set up elsewhere in the program.

Figure 233
V_100349 V_l00346 V_Moooo1
s
i} i} =
V_I00348
|7
¥_Mooooi SVC REQ
I}
10
14 —FNC
V_R00500 —PRM
V_100349 V_lno347 V_Mooooz
I X -~
V_l00348
|7
V_MO0002 SVC REQ
1} -
1k
14 —FNC
¥_R00550 —PAM

Service Request Function 336

CPU Programmer’s Reference Manual Section 6
GFK-2950M Dec 2024

6.16 SVC_REQ15: Read Last-Logged Fault Table
Entry

Use SVC_REQ 15 to read the last entry logged in the Controller Fault Table or the VO
Fault Table. The SVC_REQ outputis set ON unless some invalid number is entered as
the requested operation or the fault table is empty.

The non-extended parameter block has a length of 22 words and the extended
parameter block has a length of 24 words.

Input Parameter Block
Address [(Format

Address+0 |0 = Read Controller Fault Table

1 = Read /O Fault Table

80h = Read extended Controller Fault Table
81h = Read extended I/O Fault Table

Output Parameter Block

The format of the output parameter block depends on whether SVC_REQ 15 reads the
Controller Fault Table, the extended Controller Fault Table, the I/O Fault Table or the
extended I/O Fault Table.

Controller Fault Table Output Format B9 Ui a0 @ O

Address |Format
High Byte Low Byte High Byte Low Byte
0 Address+0 1
unused long/short (always 01) Address+1 reference address|long/short
memory type (always 03)
unused unused Address+2 reference address offset
slot rack Address+3 slot rack
task Address+4 block bus
fault action fault group Address+5 point
error code Address+6 fault action fault group
Address+7 fault type fault category
fault extra data Address+8 to |fault extra data fault description
Address+18
minutes seconds Address+19 minutes seconds
day of month hour Address+20 day of month hour
year month Address+21 year month
milliseconds (extended format only) Address+22 milliseconds (extended format only)
not used (extended format only) Address+23 not used (extended format only)

Long/Short Value

The first byte (low byte) of word address +1 contains a number that indicates the length
of the fault-specific data in the fault entry. Possible values are as follows:

Description Short Bytes Long Bytes

Service Request Function 337

CPU Programmer’s Reference Manual Section 6
GFK-2950M Dec 2024

Controller extended and non-extended fault [00 = 8 bytes (short) |01 =24 bytes (long)
tables

I/O extended and non-extended fault tables |02 =5 bytes (short) |03 =21 bytes (long)

Note: PACSystems CPUs always return the Long values for both extended and non-

extended formats.

SVC_REQ 15 Example 1

Figure 234
V_100250 V_100251 MOVE
1 | |} i
1
0 —IN Of— v_R00600
W_I00250 V_I00251 MOVE
| (p}—— DT L
1
1 —{IN O v_Rro0s00

#ALW ON SVC REQ

15 —{FNC

V_R00s00 | FEM

When inputs %10250 and %10251 are both on, the firstMove function places a zero (read
Controller Fault Table) into the parameter block for SVC_REQ 15. When input %10250
is on and input %0251 is off, the Move instruction instead places a one (read I/O Fault

Table) in the SVC_REQ parameter block. The parameter block is located at location
%R0600.

Service Request Function 338

CPU Programmer’s Reference Manual

GFK-2950M

SVC_REQ 15 Example 2

Section 6
Dec 2024

Figure 235
#FST_SCN

MOVE

- — INT =

1IN QF ¥_R00&00

V_Tooom

] 1

09 —INZ

EQINT

LI |

#I0_FRES

I |

265 —IN2

V_Mooo07

#10_FRES SVC REQ V_Tooo01
{ | —{ —
15 —{FNC
V_R00&00 —| FEM
V_Toooo1 EQ INT
V_M00007

V_RoO&03 —{IM1 af——— }—

V_Mo00o7

v_Roos0z <11 afb—{ }—i

SVCREQ

LI |

1-1

13 —|FNC

V_R00001 —| FEM

The CPU is shut down when any fault occurs on an I/O module except when the fault
occurs on modulesin rack 0, slot 9 and in rack 1, slot 9. If faults occur on these two
modules, the system remains running. The parameter for table type is set up on the first
scan. The contactlO_PRES, when set, indicates that the /O Fault Table contains an
entry. The CPU sets the normally open contactin the scan after the fault logic places a
fault in the table. If faults are placed in the table in two consecutive scans, the normally

open contact is set for two consecutive scans.

The example uses a parameter block located at %R0600. After the SVC_REQ function
executes, the second, third, and fourth words of the parameter block identify the I/O
module that faulted:

Service Request Function

339

CPU Programmer’s Reference Manual Section 6

GFK-2950M Dec 2024
High Byte Low Byte
%R0600 1
%R0601 reference address long/short

memory type

%R0602 reference address offset

%R0603 slot number rack number
%R0604 block (bus address) I/0O bus no.
%R0605 point address

%R0606 fault data
In the program, the EQ_INT blocks compare the rack/slot address in the table to
hexadecimal constants. The internal coil %M0007 is turned on when the rack/slot where
the fault occurred meets the criteria specified above. If %M0007 is on, its normally closed
contactis off, preventing the shutdown. Conversely, if %MO0007 is off because the fault
occurred on a different module, the normally closed contact is on and the shutdown
occurs.

6.17 SVC_REQ 16: Read Elapsed Time Clock

Use SVC_REQ 16 to read the system's elapsed time clock. The elapsed time clock
measures the time in seconds since the CPU was powered on. The parameter block has
a length of three words used for output only.

Output

Address Description

Address Seconds from power on (low order)

Address+1 Seconds from power on (high order)

Address+2 100 microsecond (ps) ticks
The first two words are the elapsed time in seconds. The last word is the number of 100
Js ticks in the current second.

The resolution of the CPU's elapsed time clock is 100 microseconds (us). The overall
accuracy of the elapsed time clock is £0.01%. The accuracy of an individual sample of
the elapsed time clock is approximately 105 ps.

A WARNING

The SVC_REQ instruction is not protected against operating system and user interrupts. The
timing and length ofthese interrupts are unpredictable. The clock sample returned by SVC_REQ
16 can sometimes be much morethan 105 us old by the time execution is returned to the LD logic.

SVC_REQ 16 Example

The following logicis used in a block that is called infrequently. The screen shot was
taken between calls to the block. The logic displayed calculates the number of seconds
that have elapsed since the last time the block was called. It performs the final operation
on rung 4 by subtracting the time obtained by SVC_REQ 16 the last time the block was
called (vetum)fromthe time currently obtained by SVC_REQ16 (novum)and storing the

calculated value in the variable named diff.
Service Request Function 340

CPU Programmer’s Reference Manual Section 6
GFK-2950M Dec 2024

On rung 2, SVC_REQ 16 returns three WORDs, stored in the 3-WORD array tempus.
The first two WORDs (16-bit values) are moved to a DINT (a 32-bit value). This move
amounts to a rough data type conversion that ignores the fact that the DINT type is a
signed value. Despite that, the subsequent calculations are correct until the time since
power-on reaches approximately 50 years. The DINT is converted to REAL to yield the
number of whole seconds elapsed since power-on, stored in variable sec. On rung 3, the
third word returned by SVC_REQ 16, tempus [2], is converted to REAL. This is the
number of 100 ps ticks. To obtain a fraction of a second, stored in the variable fraction,
the value is divided by 10,000. On rung 4, sec and fraction are added to express the
exact number of seconds elapsed since power-on, and this value is stored in the variable
novum. On rung 1, the previous value of novumwas saved as vetum, the exact number
of seconds elapsed since power-on the lasttime the block was called. The last instruction
on the fourth rung subtracts vetum from novum to yield the number of seconds that have
elapsed since the last time the block was called.

Service Request Function 341

CPU Programmer’s Reference Manual
GFK-2950M

Section 6
Dec 2024

Figure 236
MOVE
REAL
4
3427648 1 3427617
novian —IN Q= vetun
SVC REQ MOVE DINTTO
WORD REAL
2
15084 2 3427640
16 —|FNC terrpus[0] —IN Q IN Qf sec
15084
ternpus —| PRM
MOVE OINTTO DIV REAL
WORD REAL -
3
8097 1 0.8097
terrpus[2] —IN a IN Q0 IN1 Qp= fractio
10000 —IN2
ADD SUBE REAL)|
REAL -
4
3427640 3427648 3427648 315625
sec —|IN1 Q— nowm nowvurn —{ IN1 O ditt
0.8097 3427617
fractio —IN2 vetum —|IN2

Note: Higher resolution (in nanoseconds) can be obtained by using SVC_REQ 50: Read

Elapsed Time Clock.

Service Request Function

342

CPU Programmer’s Reference Manual Section 6
GFK-2950M Dec 2024

6.18 SVC_REQ 17: Mask/Unmask I/O Interrupt

Use SVC_REQ 17 to mask or unmask an interrupt from an input/output board. When an
interrupt is masked, the CPU does not execute the corresponding interrupt block when

the input transitions and causes an interrupt.

The parameter block is an input parameter block only; it has a length of three words.

Address |Description

Address 0 = unmask input
1 =mask input

Address+1 [memory type

Address+2 |reference (offset)
Memory type is a decimal number that resides in the low byte of word address + 1. It
corresponds to the memory type of the input:

Memory Type ([Description

70 %! memory in bit mode
10 %Al memory
12 %AQ memory

Successful execution occurs unless:
e Some number other than 0 or 1 is entered as the requested operation.

e The memory type of the input/output to be masked or unmasked is not %I, %Al or
%AQ memory.

e The I/O board is not a supported input/output module.

o The reference address specified does not correspond to a valid interrupt trigger
reference.

e The specified channel does not have its interrupt enabled in the configuration.

6.18.1 Masking/Unmasking Module Interrupts

During module configuration, interrupts from a module can be enabled or disabled. f a
module's interrupt is disabled, it cannot be used to trigger logic execution in the
application program, and it cannot be unmasked. However, if an interruptis enabled in
the configuration, it can be dynamically masked or unmasked by the application program
during system operation.

The application program can mask and unmask interrupts that are enabled using Service
Request Function Block#17. To mask orunmask aninterruptfrom an open VME module,
the application logic should pass VME_INT_ID (17 decimal, 11H) as the memory type
and the VME interrupt id as the offset to SVC_REQ 17.

When the interrupt is not masked, the CPU processes the interrupt and schedules the
associated program logic for execution. When the interrupt is masked, the CPU
processes the interrupt but does not schedule the associated program logic for
execution.

When the CPU transitions from STOP Mode to RUN Mode, the interrupt is unmasked.

Service Request Function 343

CPU Programmer’s Reference Manual

GFK-2950M

Section 6
Dec 2024

For additional information on configuring and using VME module interrupts in a
PACSystems RX7i control system, refer to PACSystems RX7i User's Guide to
Integration of VME Modules, GFK-2235.

SVC_REQ 17 Example 1

In this example, interrupts from input %I100033 are masked. The following values are
moved into the parameter block, which starts at %P00347, on the first scan:

Figure 237
#FST_SCN MOVE MOVE
i} DINT OINT |
1 1
70 —{IN Q- V_P0024s 3 —IN QpF V_PO04%
V_100046 MOVE SVCREQ
{1} ot -
!
1={IX OpF V_Po0%? 17 ~{FNC
V_POOMT ~{PRM
Address Block Input | Description
Address %P00347 1 Interrupts from input are masked.
Address + 1 %P00348 70 Input type is %l.
Address + 2 | %P00349 33 Offset is 33.

Service Request Function

344

CPU Programmer’s Reference Manual

GFK-2950M

6.19

6.20

SVC_REQ 17 Example 2

Section 6
Dec 2024

Figure 238
#FST_SCN [MOVE MOVE
|} DINT OINT |
1 1
0—IN QF v_Ro0w! 6=IN QF V_R00102
V_T00001 | MOVE SVCREQ
il o -
1
1={IN QF V_R00100 17 —{FNC
V_R00100 —{PRM

When %T00001 transitions on, alarm interrupts from input %AI0006 are masked. The
parameter block at %R00100 is set up on the first scan.

SVC_REQ 18: Read /O Forced Status

Use SVC_REQ 18 to read the current status of forced values in the CPU's %l and %Q
memory areas.

Note: SVC_REQ 18 does not detect overrides in %G or %M memory types. Use %S0011
(#OVR_PRE) to detect overrides in %I, %Q, %G, %M, and symbolic memory types.

The parameter block has a length of one word used for output only.

Output

Address |Description

Address |0 = No forced values are set

1 = Forced values are set

SVC_REQ 18 Example

Figure 239
V_100001 [syC REQ EQ INT
—/t
V_T00001
18 4{FNC 1< o—
¥_R01003 —{PRN V_R01003 —{IN2

SVC_REQ reads the status of I/O forced values into location %R1003. If the returned
value in %R1003 is 1, there is a forced value, and EQ INT turns the %T0001 coil ON.

SVC_REQ 19: Set Run Enable/Disable

Use SVC_REQ 19to permit the LD program to control the RUN mode of the CPU.

Service Request Function 345

CPU Programmer’s Reference Manual

GFK-2950M

Section 6
Dec 2024

The parameter passed indicates which function to perform. The OK outputis turned ON
if the function executes successfully. It is set OFF if the requested operation is not SET
RUN DISABLE mode (1) or SET RUN ENABLE mode (2).

The parameter block is an input parameter block only with this format:

Address

Description

Address

1=SET RUN DISABLE mode
2 =SET RUN ENABLE mode

SVC_REQ 19 Example

When input %100157 transitions to on, the RUN DISABLE mode is set. When the
SVC_REQ function successfully executes, coil %Q00157 is turned on. When % Q00157
is on and register %R00099 is greater than zero, the mode is changed to RUN ENABLE
mode. When the SVC_REQ successfully executes, coil %Q00157 is turned off.

Figure 240
V_I00M57 MOVE SVCEREQ| V_Q00157
i1} OINT {s}—
1
1—{IN QfF ¥_R0O0100 19 —{FNC
V_R00100 —{PEM
V_Qo00157 [GTUINT
{ | =
MOVE SUCREQ| V_000158
V_R00093 —{IN1 O UINT {(R}—
1
0 —IN2 2 —IN Qf ¥_R00100 19 —|FNC
V_R00100 —| PRM
346

Service Request Function

CPU Programmer’s Reference Manual Section 6
GFK-2950M Dec 2024

6.21 SVC_REQ 20: Read Fault Tables

Use SVC_REQ 20 to retrieve the entire Controller or I/O Fault Table and return it to the
LD program in designated registers.

The first input parameter designates which table is to be read. A second input parameter
(always zero for the standard Read Fault Tables) is used by the extended format to read
a designated fault entry or to read a range of fault entries. The fault table data is placed
in the parameter block following the input parameters.

The OK outputis turned on if the function executes successfully. It is off if the requested
operation is not Read Controller Fault Table (00h), Read I/O Fault Table (01h), Read
Extended Controller Fault Table (80h), Read Extended I/O Fault Table (81h), Read I/O
Fault Table with Remote Fault Record (41h), or Read Extended I/O Fault Table with
Remote Fault Record (C1h). The OK outputis also turned off if there is insufficient space
in the specified memory reference to accommodate the requested fault data. If the
specified fault table is empty, the function sets the OK output on, but returns only the
fault table header information.

The parameterblockis aninput and output parameter block. The parameter block comes
in two formats:

¢ Non-Extended: Read Controller Fault Table (00h), Read I/O Fault Table (01h) or
Read I/O Fault Table with Remote Fault Record (41h)°®

e Extended: Read Extended Controller Fault Table (80h), Read Extended I/O Fault
Table (81h) or Read Extended I/O Fault Table with Remote Fault Record (C1h)®.

6.21.1 Non-Extended Formats
Input Parameter Block Format

Amount of Retuned Data

Address + 0 00h = Read Controller Fault Table 693 registers required for resulting output
01h = Read I/O Fault Table 693 registers required for resulting output
41h = Read I/O Fault Table with 757 registers required for resulting output

Remote Fault Record

Address + 1 Always 0

61/0 Fault Table with Remote Fault Record requires RX3i CPU firmware 9.40 or later.
Service Request Function 347

CPU Programmer’s Reference Manual

GFK-2950M

Section 6
Dec 2024

Non-Extended Output Parameter Block Format

Format

Controller Fault Table Output

1/0 Fault Table Output
Format

Address
High Byte Low Byte High Byte Low Byte
2018 00h = Controller Fault 01h = 1/O Fault
Unused Table Address+0 Unused Table
Unused Always zero (0) Address+1 Unused Always zero (0)
Unused Unused Address+2 Unused Unused
Address+3—
Unused Unused Address+14 Unused Unused
Minutes Seconds Address+15— Minutes Seconds
Address+17
Day of Month Hour (Time Since Last Day of month Hour
Clear,
Year Month in BCD Format) Year Month
Number of faults since last clear Address+18 Number of faults since last clear
Number of faults in queue Address+19 Number of faults in queue
Number of faults read Address+20 Number of faults read
Start of fault data Address+21 Start of fault data

Address 1/0 Fault Table Output Format

High Byte Low Byte
Address+0 Unused 41h =1/O Fault Table with Remote

Fault Record

Address+1 Starting index of faults to be read
Address+2 Number of faults to be read
Address+3— Address+14 | Unused Unused
Address+15— Minutes Seconds
Address+17
(Time Since Last Clear, Day of month Hour
in BCD Format) Year Month

Address+18 Number of faults since last clear
Address+19 Number of faults in queue
Address+20 Number of faults read
Address+21 Start of fault data

For the non-extended formats, the returned data for each fault consists of 21 words (42
bytes) for 00h and 01h and 23 words (46 bytes) for 41h. This request returns 16
Controller Fault Table entries or 32 I/O Fault Table entries, or the actual number of
faults, if fewer. If the fault table read is empty, no data is returned.

Service Request Function

348

CPU Programmer’s Reference Manual

GFK-2950M

Section 6
Dec 2024

Format of Returned Data for Fault Table Entries

Format for Parameter Setting 00h or 01h

Controller Fault Table (00h) 1/0 Fault Table (01h) Output

Output Format Address Format

High Byte Low Byte High Byte Low Byte

Unused Long/short Address+21 Memory type Long/Short’

Unused Unused Address+22 Offset

Slot Rack Address+23 Slot Rack

Task Address+24 Bus address 1/0 Bus Number (block)

Fault action Fault group Address+25 Point

Error code Address+26 Fault action Fault group
Address+27 Fault type Fault category

Fault extra data Address+28 Fault extra data Fault description
::::z:::?;_ Fault extra data

Minutes Seconds Address+39— |Minutes Seconds

Day of month Hour Address+41 Day of month Hour
(Time-stamp,

Year Month in BCD Format)|Year Month

Start of next fault output parameter block [Address+42 Start of next fault output parameter block

Start of next fault output parameter block |

7The Long/Short indicator in the low byte of Address + 21 specifies the amount of fault data present in the fault entry:

Fault Table | Long/Short Value | Fault Data Returned

Controller 00 8 bytes of fault extra data presentin the fault entry

01 24 bytes of fault extra data

1/0 02 5 bytes of fault extra data

03 21 bytes of fault extra data

Service Request Function 349

CPU Programmer’s Reference Manual

GFK-2950M

Format for Parameter Setting 41h

Address 1/0 Fault Table with Remote Fault Record (0x41) Output
Format
High Byte Low Byte
Address+21 Memory type Long/Short’
Address+22 Offset
Address+23 Slot Rack
Address+24 Remote Slot Remote Rack
Address+25 Remote Sub-Slot Remote Device ID
Address+26 Bus address 1/0 Bus Number (block)
Address+27 Point
Address+28 Fault action Fault group
Address+29 Fault type Fault category
Address+30 Fault extra data Fault description
Address+31— | Fault extra data
Address+40
Address+41— | Minutes Seconds
Address+43 Day of month Hour
(Time-stamp,
in BCD Year Month
Format)
Address+44 Start of next fault output parameter block

Service Request Function

Section 6
Dec 2024

350

CPU Programmer’s Reference Manual
GFK-2950M

6.21.2 Extended Formats

Section 6
Dec 2024

Each extended format request can read a maximum of 64 faults, or the size of the fault
table if it contains fewer than 64 faults.
For extended formats (Read Extended Controller Fault Table (80h), Read Extended /O
Fault Table (81h) or Read Extended I/O Fault Table with Remote Fault Record (C1h)),
the controller calculates the number of entries being read. Be sure that enough register
space is available to accommodate the number of fault entries requested. If the amount
of datarequested exceeds the register space available, the CPU returns a fault indicating
that reference memory is out of range.
The total size of the fault table for the extended fault format is

Header Size + ((# fault entries) x (size of fault entry))

Input Parameter Block Format

Amount of Retuned Data
Address+0 80h = Read Extended Controller Fault 23 words (46 bytes)foreach fault entry
Table 23 words (46 bytes)foreach fault entry
81h = Read Extended I/O Fault Table 25 words (50 bytes)foreach fault entry
C1h = Read Extended I/O Fault Table with
Remote Fault Record
Address+1 Starting index of faults to be read
Address+2 Number of faults to be read

Extended Format Output Parameter Block Format

Controller Fault Table Output

1/0 Fault Table Output

Format Address Format

High Byte |Low Byte High Byte [Low Byte

Unused gg:trollf::ir;ﬁtd Address Unused 81h = Extended
Table I/0 Fault Table

Starting index of faults to be read Address+1 Starting index of faults to be read

Number of faults to be read Address+2 Number of faults to be read

Unused Unused Address+3—Address+14 Unused Unused

Minutes Seconds Address+15—Address+17 |Minutes Seconds

Day of Month Hour (Time Since Last Clear, Day of month Hour

Year Month in BCD Format) Year Month

Number of faults since last clear Address+18 Number of faults since last clear

Number of faults in queue Address+19 Number of faults in queue

Number of faults read Address+20 Number of faults read

Unused

Address+21—Address+36

Unused

Start of fault data

Address+37

Start of fault data

Service Request Function

351

CPU Programmer’s Reference Manual

GFK-2950M

Section 6

Dec 2024

Address 1/0 Fault Table Output Format

High Byte Low Byte
Address Unused C1h = Extended I/O Fault Table with

Remote Fault Record

Address+1 Starting index of faults to be read
Address+2 Number of faults to be read
Address+3—Address+14 Unused Unused
Address+15—Address+17 Minutes Seconds
(Time Since Last Clear, Day of month Hour
in BCD Format)

Year Month
Address+18 Number of faults since last clear
Address+19 Number of faults in queue
Address+20 Number of faults read
Address+21—Address+36 Unused
Address+37 Start of fault data

352

Service Request Function

CPU Programmer’s Reference Manual Section 6
GFK-2950M Dec 2024

Format of Returned Data for Fault Table Entries

Format for Parameter Setting 0x80h & 0x81h

Controller Fault Table (0x80) 1/0 Fault Table (0x81) Output

Output Format Address Format

High Byte Low Byte High Byte [Low Byte

Reference
Unused Long/Short Address+37 address memory|Long/Short Value
type

Unused Unused Address+38 Reference address offset

Slot Rack Address+39 Slot Rack

Task Address+40 Bus address 1/0 bus number (block)

Fault action Fault group Address+41 point

Error code Address+42 Fault action Fault group
Address+43 Fault type Fault category

Fault extra data Address+44 Fault extra data |Fault description
::g:::::i_ Fault extra data

Minutes Seconds Address+55— Minutes Seconds

Day of month Hour Address+58 Day of month Hour

Year Month (Time-stamp Year Month

Milliseconds in BCD Format) Milliseconds

Not used Address+59 Not used

Start of next fault output parameter block |Address+60 Start of next fault output parameter block

Service Request Function 353

CPU Programmer’s Reference Manual

GFK-2950M

Format for Parameter Setting 0xC1h

Section 6
Dec 2024

1/0 Fault Table with Remote Fault Record (0xC1) Output

Address Format
High Byte Low Byte
Address+37 Reference address memory type Long/Short Value
Address+38 Reference address offset
Address+39 Slot Rack
Address+40 Remote Slot Remote Rack
Address+41 Remote Sub-Slot Remote Device ID
Address+42 Bus address 1/0 bus number (block)
Address+43 point
Address+44 Fault action Fault group
Address+45 Fault type Fault category
Address+46 Fault extra data Fault description
Address+47—Address+56 | Fault extra data
Address+57—Address+60 | Minutes Seconds
(Time-stamp Day of month Hour
in BCD Format) Yoar Month
Milliseconds
Address+61 Not used
Address+62 Start of next fault output parameter block

Service Request Function

354

CPU Programmer’s Reference Manual Section 6
GFK-2950M Dec 2024

SVC_REQ 20 Example 1: Non-Extended Format

When Read_PLC transitions on, a value of 0 is moved to the parameter block, which is
located at %R00500, and the Controller Fault Table is read. When Read_IO transitions
on, avalue of 1is moved to the parameter block and the I/O Fault Table is read. When
the SVC_REQ function successfully executes, coil OK is turned on.

Figure 241
Read_PLC MOVE UINT SVC REQ Ok
| &
1
o0 —IN Qf— ROO500 20 —{FNC
Read_I0 MOVE UINT
|} RO0500 —|PRM
1
1 —{IN Qf— ROO500

SVC_REQ 20 Example 2: Extended Format

When Read_PLC_Xttransitions on, the Extended Controller Fault Table is read. The
parameter block begins at %R00500. %R00500 contains the fault table type (Controller
Extended); %R00501 contains the starting fault to read, and %R00502 contains the
number of faults toread starting with the fault numberin %R00501. Whenthe SVC_REQ
function successfully executes, coil OK is turned on.

Figure 242
fread_PLC_xt MOVE MOVE MOVE
|} WORD WORD WORD @_
1 1 1
80 —|IN Q1 ROOS00 1 —IN Q[RODS01 10 —IN Q1 ROOS0Z
SVC REQ OK
e &

20 —|FNC

RODS00 —|FRM

Service Request Function 355

CPU Programmer’s Reference Manual

GFK-2950M

6.22

SVC_REQ 21: User-Defined Fault Logging

Use SVC_REQ 21 to define a fault that can be displayed in the Controller Fault Table.
The fault contains binary information or an ASCII message. The user-defined fault codes

start at 0 hex.

The error code information for the fault must be within the range 0 to 2047 for an
Application Msg: to be displayed. If the error code is in the range 81 to 112 decimal, the
CPU sets a fault bit of the same number in %SA system memory. This allows up to 32
bits to be individually set.

Section 6
Dec 2024

Error Code Status Bit
Errors 0—80 No bit set
Errors 81—112 Sets %SA
Errors 113—2047 No bit set
Errors 2048—32,767 [Reserved

When EN is active, the fault data array referenced by IN is logged as a fault to the
Controller Fault Table. If EN is not enabled, the ok bitis cleared. If the error code is out
of range, the ok bit is cleared, and the fault will not be logged as requested.

The parameter block is an input parameter block only with this format:

Parameter Error code
address MSB LSB
Address+1 Text2 Text1
Address+2 Text4 Text3
Address+3 Text6 Textd
Address+4 Text8 Text7
Address+5 Text10 Text9
Address+6 Text12 Text11
Address+7 Text14 Text13
Address+8 Text16 Text15
Address+9 Text18 Text17
Address+10 Text20 Text19
Address+11 Text22 Text21
Address+12 Text24 Text23

The input parameter data allows you to select an error code in the range 0 to 2047 and
text information that will be placed in the fault extra data portion of a long controller fault.
The controller faultaddress, faultgroup, and fault action are filled in by the function block.

The fault textbytes 1 — 24 can be used to pass binary or ASCIl data with the fault. If the
first byte of the fault text data is non-zero, the data will be an ASCII message string. This
message will then be displayed in the fault description area of the fault table. If the
message is less than 24 characters, the ASCIl string must be NULL byte-terminated.
The programmer will display Application Msg: and the ASCIl data will be displayed as a
message immediately following Application Msg:. If the error code is between 1 and
2047, the error code number will be displayed immediately after Msg: in the
Application Msg: string. (If the error code is greater than 2047, the function is ignored,

and its output is set to OFF.)

Service Request Function 356

CPU Programmer’s Reference Manual Section 6
GFK-2950M Dec 2024

If the first byte of text is zero, then only Application Msg: will display in the fault
description. The next 1-23 bytes will be considered binary data for user data logging.
This data is displayed in the Controller Fault Table.

Note: When a user-defined fault is displayed in the Controller Fault Table, a value
of -32768 (8000 hex) is added to the error code. For example, the error code 5 will
be displayed as -32763.

SVC_REQ 21 Example

Figure 243
#FST_EXE [ELEMONY] V_0Q00001
| b WORD { }—i

16#0057 —{IN1 Q- V_P0O0001
1642445 —|IN2
1B#5453 —IN3
168#504F —{IN4
16#4F20 <{INS
16#004E —{ING
1680000 —{IN7

V_I00050 [s9'C REQ
—— — -

21— FNC

V_FP00001 | FRNM

The value passedtoIN1is the faulterrorcode. The value passedin, 16x0057, represents
an error code of 87 decimal and will appear as part of the fault message. The values of
the next inputs give the ASCII codes for the text of the error message. For IN2, the input
is 2D45. The low byte, 45, decodes to the letter E and the high byte, 2D, decodes to -.
Continuing in this manner, the string continues with S T O P O and N. The final character,
00, is the null character that terminates the string. In summary, the decoding yields the
string message E_STOP ON.

6.23 SVC_REQ 22: Mask/Unmask Timed
Interrupts

Use SVC_REQ 22 to mask or unmask timed interrupts and to read the current mask.
When the interrupts are masked, the CPU does not execute any timed interrupt block
timed program that is associated with a timed interrupt. Timed interrupts are
masked/unmasked as a group. They cannot be individually masked or unmasked.

Service Request Function 357

CPU Programmer’s Reference Manual
GFK-2950M

Section 6
Dec 2024

Successful execution occurs unless some number other than O or 1 is entered as the

requested operation or mask value.
The parameter block is an input and output parameter block.

To determine the current mask, use this format:

Address 0 = Read interrupt mask

The CPU returns this format:

Address 0 = Read interrupt mask

Address+1 |0 = Timed interrupts are unmasked

1 = Timed interrupts are masked

To change the current mask, use this format:

Address 1 = Mask/unmask interrupts

Address+1 |0 = Unmask timed interrupts

1 = Mask timed interrupts

SVC_REQ 22 Example

When input %100055 transitions on, timed interrupts are masked.

Figure 244
V_I00055 [MOWE MOVE SVC REQ
L |t}—— UINT UINT |
1 1
1—IN QfF ¥_R01002 1IN QF ¥_R01003 2z —|FNC
Y_R0100Z2 —{PRM
Service Request Function 358

CPU Programmer’s Reference Manual

GFK-2950M

6.24

SVC_REQ 23: Read Master Checksum

Section 6
Dec 2024

Use SVC_REQ 23 to read master checksums for the set of user program(s) and the
configuration, and to read the checksum for the block from which the service request is

made.

There is no input parameter block for this service request. The output parameter block
requires 15 words of memory.

Output

When a RUN Mode Store is active, the program checksums may not be valid until the
store is complete. To determine when checksums are valid, three flags (one each for
Program Block Checksum, Master Program Checksum, and Master Configuration

Checksum) are provided at the beginning of the output parameter block.

Address Description

Address Program Checksum Valid (0 = not valid, 1 = valid)

Address + 1 Master Program Checksum Valid (0 = not valid, 1 = valid)
Address + 2 |Master Configuration Checksum Valid (0 = not valid, 1 = valid)
Address +3 |Number of LD/SFC Blocks (including _MAIN)

Address + 4 |Size of User Program in Bytes (DWORD data type)

Address + 6 |Program Set Additive Checksum

Address +7 |Program CRC Checksum (DWORD data type)

Address +9 [Size of Configuration Data in Kbytes

Address + 10

Configuration Additive Checksum

Address + 11

Configuration CRC Checksum (DWORD data type)

Address + 13

high byte: always zero
low byte: Currently Executing Block’s Additive Checksum

Address + 14

Currently Executing Block’s CRC Checksum

Service Request Function

359

CPU Programmer’s Reference Manual

GFK-2950M

SVC_REQ 23 Example

Section 6
Dec 2024

NE DINT

V_MO00055

IN1 a

INZ

Figure 245
V_MO00054 TMERSEC V_M00054
/1 —(
V_PO0013
80 —PV CV[-
V_MO00054 SYCREQ
{ |
23 —|FNC V_P00022 —
V_P00016 — PEM V_P00031 —
V_MO00054 MOVE
1} DWORD |
1
V_F00022 —{IN QpF V_P00031

{3}

1

When the timer using registers %P00013 through %P00015 expires, the checksum read
is performed. The checksum data returns in registers %P00016 through %P00030. The
master program checksum in registers %P00022 and %P00023 (the program checksum
is a DWORD data type and occupies two adjacent registers) is compared with the last
saved master program checksum. If these are different, coil %M00055 is latched on. The
current master program checksum is then saved in registers %P00031 and %P00032.

Service Request Function

360

CPU Programmer’s Reference Manual Section 6
GFK-2950M Dec 2024

6.25 SVC_REQ 24: Reset Module

Use SVC_REQ 24 to reset a daughterboard or some modules. Modules that support
SVC_REQ 24 include:

RXS3i IC693BEM331, IC694BEM331, IC693APU300, IC694APU300,
IC695ETMO001, IC693ALG2222, IC694ALG2222, IC695PNC001

RX7i: Embedded Ethernet Interfface module, IC697BEM731, IC698BEM731,
IC697HSC700, IC697ALG230, IC698ETMO001

The SVC_REQ output is set ON unless one of the following conditions exists:
— Aninvalid number for rack and/or slot is entered.
— There is no module at the specified location.
— The module at the specified location does not support a runtime reset.
— The CPU was unable to reset the module at the specified location.

For this function, the parameter block has a length of 1 word. It is an input parameter
block only.

Address |Description

Address |Module slot (low byte)
Module rack (high byte)

Rack 0, Slot 1 indicates that a reset is to be sent to the daughterboard.

Notes:

e |tis important to invoke SVC_REQ #24 for a given module for only one sweep at a time.
Each time this function executes, the target module will be reset regardless of whether it has
finished starting up from a previous reset.

e After sending a SVC_REQ #24 to a module, you must wait a minimnum of 5 seconds before
sending another SVC_REQ #24 to the same module. This ensures that the module has time
to recover and complete its startup.

Service Request Function 361

CPU Programmer’s Reference Manual Section 6
GFK-2950M Dec 2024

SVC_REQ 24 Example

Figure 246
100200 100250
1 1| {D—
100250 MOVE
2 1} WORD [
1
2 —{IN Q— ROOS00
100250 SVC
3 1} REQ |
24 —FNC
ROO500 —|PRNM

This example resets the module in rackO/slot 2.

In rung 1, when contact %100200 is closed, the positive transition coil sets %100250 to
ON for one sweep.

The MOVE_WORD instruction in rung 2 receives power flow and moves the value 2 into
%R00500.

The SVC_REQ function in rung 3 then receives power flow and resets the module
indicated by the rack/slot value in %R00500.

Service Request Function 362

CPU Programmer’s Reference Manual

GFK-2950M

6.26

SVC_REQ 25: Disable/Enable EXE Block and

Standalone C Program Checksums

Use SVC_REQ25to enable ordisable the inclusion of EXE in the background checksum
calculation. The default is to include the checksums.

This service request uses only an input parameter block.

Address
Address

Description

0 = Disable C applications inclusion in checksum calculation

1= Enable C application inclusion in checksum calculation

The parameter block is unchanged after execution of the service request.

SVC_REQ 25 Example

When the coil TEST transitions from OFF to ON, SVC_REQ 25 executes to disable the
inclusion of EXE blocks in the background checksum calculation. When coil TEST
transitions from ON to OFF, the SVC_REQ executes to again include EXE blocks in the
background checksum calculation.

Figure 247
TEST MOVE SVCREQ
b UINT B
1
0 —IN QF V_R0O0150 25 —|FNC
TEST MOVE
{Lh UINT _R001S0 —{PRM
1
1 —{IN QF V_R0O0150

Service Request Function 363

Section 6
Dec 2024

CPU Programmer’s Reference Manual
GFK-2950M

6.27

SVC_REQ 29: Read Elapsed Power Down
Time

Use SVC_REQ 29 to read the amount of time elapsed between the last power-down and
the most recent power-up. If the watchdog timer expired before power-down, the CPU is

not able to calculate the power down elapsed time, so the time is set to 0.

This service request cannot be accessed from a C block.

Note: This service request will only work when a PME project is stored to the user
flash and the Logic source is set to Always Flash or Conditional Flash and the
Data Power-Up source is set to Conditional Flash.

This function has an output parameter block only. The parameter block has a length of
three words.

Address Description

Address Power-down elapsed seconds (low order)
Address + 1 Power-down elapsed seconds (high order)
Address + 2 100pS ticks

The first two words are the power-down elapsed time in seconds. The last word is the
number of 100 us ticks in the current second.

Note: Although this request responds with a resolution of 100 uS, the actual accuracy is
1 second. The battery-backed clock, which is used when the controller is powered
down, is accurate to within 1 second.

SVC_REQ 29 Example

When input %10251 is ON, the elapsed power-down time is placed into the parameter
block that starts at %R0050. The output coil (%Q0001) is turned on.

Figure 248
%I0251 %Q0001
: SVC \
REQ
80026 | FNC
%R0050 1 pARM

Service Request Function 364

Section 6
Dec 2024

CPU Programmer’s Reference Manual Section 6
GFK-2950M Dec 2024

6.28 SVC_REQ 32: Suspend/Resume /O Interrupt

Use SVC_REQ 32 to suspend a set of /O interrupts and cause occurrences of these
interrupts to be queued until these interrupts are resumed. The number of I/O intenupts
that can be queued depends on the I/O module’s capabilities. The CPU informs the O
module that its interrupts are to be suspended or resumed. The I/O module’s default is
resumed. The Suspend applies to all I/O interrupts associated with the /O module.
Interrupts are suspended and resumed within a single scan.

SVC_REQ 32 uses only an input parameter block. Its length is three words.

Address Description

Address 0 = resume interrupt
1 = suspend interrupt

Address +1 |memory type

Address + 2 [reference (offset)

Successful execution occurs unless:

e Some number other than 0 or 1 is passed in as the first parameter.
e The memory type parameter is not 70 (%! memory).

¢ The I/O module associated with the specified address is not an appropriate module
for this operation.

e The reference address specified is not the first %l reference for the High-Speed
Counter.

e Communication between the CPU and this I/O module has failed. (The board is not
present, or it has experienced a fatal fault.)

Note: /O interrupts, unless suspended or masked, can interrupt the execution of a function
block. The most often used application of this Service Request is to prevent the
effects of the interrupts for diagnostic or other purposes.

Service Request Function 365

CPU Programmer’s Reference Manual Section 6
GFK-2950M Dec 2024

SVC_REQ 32 Example

Figure 249
®FST_SCN MOVE MOVE
Ik INT i
LI
1 1
70 —{IN Q= v_P00002 &5 —{IN Q= v_P00003
MOVE SVC REQ v_Too00
INT { }—i
1
1—{IN Q- v_Pooo01 32 —{FNC
V_P00001 —| PRM
V_Too001 EQINT
MOVE V_To0006
v_AI00I—{INI 0 nr
1
3400 —{IN2 V_Alooo1 —|IN O v_Ed0001
MOVE SVCREQ
INT L
1
0—IN Q- v_P00DD1 32 —FNC
V_P00001 —{PRM

Interrupts from the high-speed counter module whose starting point reference address
is %100065 will be suspended while the CPU solves the logic of the second rung. Without
the Suspend, an interrupt from the HSC could occur during execution of the third rung
and %T00006 could be set while %R000001 has a value other than 3,400. (%AI00001
is the first non-discrete input reference for the High Speed Counter.)

Service Request Function 366

CPU Programmer’s Reference Manual Section 6
GFK-2950M Dec 2024

6.29 SVC_REQ 45: Skip Next I/O Scan

Use the SVC_REQ function #45 to skip the next output and input scans. Any changes to
the output reference tables during the sweep in which the SVC_REQ #45 was executed
will not be reflected on the physical outputs of the corresponding modules. Any changes
to the physical input data on the modules will not be reflected in the corresponding input
references during the sweep after the one in which the SVC_REQ #45 was executed.

This function has no parameter block.

Note:

e This service request is provided for conversion of Series 90-30 applications. The
Suspend I/O (SUS_IO) function block, which is supported by all PACSystems firmware
versions, should be used in new applications.

e The DOIO Function Block is not affected by the use of SVC_REQ #45. It will still update
the I/0 when used in the same logic program as the SVC_REQ #45.

SVC_REQ 45 Example

Figure 250
IDLE SVCREQ

TS | -
| B |

45 —|FNC

R00001 —|PRM

In the following LD example, when the Idle contact passes power flow, the next Output
and Input Scan are skipped.

Service Request Function 367

CPU Programmer’s Reference Manual

GFK-2950M

6.30 SVC_REQ 50: Read Elapsed Time Clock

Section 6
Dec 2024

Use SVC_REQ 50 to read the system’s elapsed time clock. The elapsed time clock
measures the time in seconds since the CPU was powered on. The parameter block has

a length of four words used for output only.

Output

Address

Description

Address

Seconds from power on (low order)

Address+1

Seconds from power on (high order)

Address+2

nanosecond ticks (low order)

Address+3

nanosecond ticks (high order)

The first two words are the elapsed time in seconds. The second two words are the

number of nanoseconds elapsed in the current second.

The resolution of the CPU’s elapsed time clock is 100 us. The overall accuracy of the
elapsed time clock is £0.01%. The accuracy of an individual sample of the elapsed time
clock is approximately 105 ps.

A WARNING

The SVC_REQ instruction is not protected against operating system and user interrupts. The
timing and length ofthese interrupts are unpredictable. The clock sample returned by SVC_REQ
50 can sometimes be much more than 105 ps old by the time execution is returned to the LD logic.

Service Request Function

368

CPU Programmer’s Reference Manual Section 6
GFK-2950M Dec 2024

SVC_REQ 50 Example

The following logic is used in a block that is called occasionally. The screen shot was
taken between calls to the block. The second rung of logic calculates the number of
seconds that have elapsed since the last time the block was called. The third rung
calculates the number of nanoseconds to be added to, or subtracted from, the number
of seconds. The first rung saves the previous value of novum [0] and novum[1] into
vetum[0] and vetum[1] before the second rung of logic places the current time values in

novum[0] and novum[1].

Figure 251
MOVE SVCREQ MOVE
ﬂ DINT WORD | ;CZ
1
S00468 2 S00465 41716 4 00463
nowurn[0] —IN Q= vetum[0] S0 —FNC ternpus[0] — IN Q= novum(0]
41716
tempus —{PRM
SUB DINT SUE DINT
2
500463 3 44260413 43410665
novurn[0] — 1M1 O sec novurn(1] —IN1 O nano
500465 92671073
vetum[0] —IN2 vetumn[1] —{IN2
GT DINT
3
SUB DINT ADD
om0 DINT
-43410665 3 2 48410665 951589335
nano —{IN2 sec —{IN1 Qf sec2 nano —IN1 Q- nano2
1—{IN2 1000000000 —IN2

Service Request Function 369

CPU Programmer’s Reference Manual Section 6
GFK-2950M Dec 2024

6.31 SVC_REQ 51: Read Sweep Time from
Beginning of Sweep

Use SVC_REQ 51 to read the time in nanoseconds since the start of the sweep. The
data is unsigned 32-bit integer.

Output

The parameter block is an output parameter block only; it has a length of two words.

Address |Description

Address time (nanoseconds) since start of scan —low order

Address+1 |time (nanoseconds) since start of scan — high order

SVC_REQ 51 Example

The elapsed time from the start of the scan is read into locations % R00200 and %R00201
if it is greater than 10,020ns, internal coil %MO0200 is turned on.

Figure 252
$YC REQ GT DINT
M00200
51 —fFNC ROO200 —JIN1 Q M
R00200 —FRM 1020 —1'N2

Service Request Function 370

CPU Programmer’s Reference Manual Section 6
GFK-2950M Dec 2024

6.32 SVC_REQ 56: Logic Driven Read of
Nonvolatile Storage

A CAUTION

This Service Request is not supported on CPE330 and CPE400/CPL410/CPS400 CPUs.

PACSystems controllers support a 64 KB nonvolatile flash memory area, which can be
accessed by the logic-driven read/write service requests. Values are stored in the
nonvolatile storage area using SVC_REQ 57: Logic Driven Write to Nonvolatile Storage.

These values are applied to the controller user memory on power-up.

If you want only to write to nonvolatile storage and have the values restored on a power
cycle, you may not need to use SVC_REQ 56. However, a logic driven read from
nonvolatile storage can be commanded as needed. For example, you can use
#FST_SCNwithSVC_REQ 56 calls toforce areload oneach STOP Mode to RUN Mode
transition.

SVC_REQ 56 specifies aread operation from nonvolatile storage when the PACSystems
is running. You can specify which reference address range to read and optionally a
different destination memory location in CPU memory in which to place the read data.
Using different memory locations enables you to set up a comparison between existing

values in CPU memory with values in nonvolatile storage.

SVC_REQ 56 execution time will vary depending on the number of values stored in
nonvolatile storage, as it will find the most recent value for the requested reference
address range.

You can read up to 32 words (64 bytes) inclusively per invocation of SVC_REQ 56.

6.32.1 Discrete Memory

Discrete memory can be read as individual bits or as bytes. For more information, refer
to section Memory Type Codes.

If a discrete memory destination is forced, the forced value remains intact in CPU
memory even though the count in word 10 (address + 10) indicates that all the data was
read and transferred.

If a memory location has an associated transition bit and SVC_REQ 56 causes a
transition on that value, the transition bit is set.

6.32.2 Restoring data values on CPE200 Series

Criteria for a successful restoration from removable media to internal PLC storage:
e The data must be from the same family of PLC (CPE200 Series)
e The datato be restored must match the PLC target name of the original writer
e The data on the removable media cannot be modified

e Restore only performed on PLC power up

Service Request Function 371

CPU Programmer’s Reference Manual Section 6

GFK-2950M

Dec 2024

Note: These checks will prevent the user from accidently restoring the data to the
incorrect PLC or restoring modified data.

Steps to restore data values saved to micro SD card onto replacement PLC:

PLC powered up.
Either download PME project or perform a RDSD download to PLC.

Insert micro SD card with previously stored data (see criteria above).

Power cycle PLC which will restore the data values from micro SD card to
internal storage (see criteria above) and reference memory.

PLC fault table will contain an informational fault indicating the restoration was
successful or if it failed.

Fault Group 140, 701 — Restore Success, 702 — Restore Failed

The restored data values will be restored prior to the first execution of logic

For more information on Fault Group 140, see section Non-Critical CPU Software
Event (Group 140)

6.32.3 Storage Disabled Conditions

By default, the following write operations disable SVC_REQ 56 until logic is written to
nonvolatile storage:

¢ RUN Mode Store (RMS), even if a second RMS reverts everything to the
original state.

e Test-Edit session, even when you cancel your edits.

e Word-for-word change.

e Downloading to RAMonly of a stopped PACSystems CPU, even if the downloaded
contents are equal to the contents already on the nonvolatile storage. Setting bit 0 of
input word 8 (address + 7) to a value of 1 enables SVC_REQ 56 despite the above
conditions.

6.32.4 Maximum of One Active Instruction

When SVC_REQ 56 is active, it does not support an interrupt that attempts to activate
SVC_REQ 57 or a second instance of SVC_REQ 56. If an attempt fails, an error
indicating that another instance is active will be returned.

6.32.5 ENO and Power Flow To The Right

If the status is Success or Partial Read (see address+9), on the SVC_REQinstruction,
ENO is set to True in FBD and ST, and power flow passes to the right in LD.

6.32.6 Parameter Block

Address Description

Address+0 Memory type. Refer to

Memory Type Codes below.

Address+1

Service Request Function

372

CPU Programmer’s Reference Manual Section 6
GFK-2950M Dec 2024

Address Description

Address+2 The zero-based offset N to read from nonvolatile storage. Contains the complete offset
forany memory area except %W, which also requires the use of address + 2 for offsets
greater than 65,535.
e For %I, %Q, %M, %T, and %G memory in byte mode, N= (Ra - 1) / 8, where
Ra =one-based reference address. Forexample, to read from the one-based bit
reference address %T33, enter the byte offset 4: (33 -1)/8 = 4.

e For %W, %R, %Al, and %AQ memory, and for %I, %Q, %M, %T, and %G
memory in bit mode, N = Ra - 1. For example, to read from the one-based
reference address %R200, enter the zero-based reference offset 199; to read
from %I73 in bit mode, enteroffset 72. For memory in bit mode, the offset must
be set on a byte boundary, thatis, a numberexactly divisible by 8: 0, 8, 16, 24,
and so on.

Address+3 Length. The number ofitems to read from nonvolatile storage beginning atthe reference
address calculated fromthe offsetdefined at [address + 1 and address + 2]. The length
can be one of the following:

Description Valid range

The number of words (16-bit registers)to read from | 1 through 32 words
%W, %R, %Al, or %AQ nonvolatile storage

The number of bytes to read from %l, %Q, %M, %T, | 1 through 64 bytes
or %G in byte mode nonvolatile storage

The number of bits to read from %I, %Q, %M, %T, | 1 through 512 bits in
or %G in bit mode nonvolatile storage increments of 8 bits

The value must reside in the low byte of address + 3. The highbyte must be set to zer.

Address + 4 Destination memory. The CPU memory area to write the read data to. This does not
need to be the same memory area as specified at [address]. Writing to a different
memory area enables you to compare the values thatwere already in the CPU with the
values read from nonvolatile storage.

Address+5 The zero-based offset Nin CPU memory to start writing the read data to. Address + 5,
the least significant word, contains the complete offsetfor any memory area except %W,
which also requires the use of address + 6 for offsets greater than 65,535.

o For %I, %Q, %M, %T, and %G memory in byte mode, N=(Ra -1)/8, where Ra =
one-based reference address. Forexample, to write to the one-based bit reference
address %T33, enter the byte offset 4: (33 -1)/8 =4.

e For%W, %R, %Al, and %AQ memory, and for %I, %Q, %M, %T, and %G memory
in bitmode, N= Ra - 1. Forexample, to write to the one-based reference address

%R200, enter the zero-based reference offset 199; to write to %I73 in bit mode,
enter offset 72.

Address+6

Address+7 e Whenhbit0 is setto 1, storage disabled conditions are ignored. A read is allowed
even if the logic in RAM has changed since nonvolatile storage was read or written.

e Bits 1 through 15 must be set to zero; otherwise, the read fails.

Address+8 Reserved. Must be set to zero; otherwise, the read fails.

Address+9 Response status. The status read from nonvolatile storage. The low byte contains the
maijor error code; the high byte contains the minor error code.

For definitions, refer to Response Status Codes for SVC_REQ 56.

Address+10 Response Count. The number of words, bytes, or bits copied.

Service Request Function 373

CPU Programmer’s Reference Manual Section 6
GFK-2950M Dec 2024

Service Request Function 374

CPU Programmer’s Reference Manual

GFK-2950M

Memory Type Codes

Type Decimal Value Type Decimal Value
%R 8 %G (byte mode) 56

%Al 10 %I (bit mode) 70

%AQ 12 %Q (bit mode) 72

%! (byte mode) 16 %T (bit mode) 74

%Q (byte mode) 18 %M (bit mode) 76

%T (byte mode) 20 %G (bit mode) 86

%M (byte mode) | 22 %W 196

Response Status Codes for SVC_REQ 56

Minor Major Description

00 01 Success. All values requested were found and copied.

01 01 Partial Read. All values found were copied, but some or all values were not
in storage.

01 02 Insufficient Destination Memory. The Destination memory location is not
large enough to store the requested values.

02 02 Invalid Length. The lengthrequested is largerthan 64 bytes orless than 1
byte or the number of bits is not an exact multiple of 8.

03 02 Invalid storage ordestination reference address. A specified memory area
is not %l, %Q, %T, %M, %G, %R, %Al, %AQ, or %W, or the offsetis out
ofrange, orthe offset is not byte-aligned for discrete memory in bit mode.

04 02 Invalid request. Spare bits or spare words in parameter block are not set
to zero.

01 03 Storage Busy. A SVC_REQ 57 or another SVC_REQ 56 instruction is
active. Forexample, an interrupt block is attempting to execute SVC_REQ
56 when the block it interrupted was executing SVC_REQ 56.

01 04 Storage Disabled. The logic in RAM differs from the logic in nonvolatie
storage. See Storage disabled conditions.

02 04 Storage Closed. Either the storage has not been created or a previous
corruption error or unexpected read/write failure closed the storage.

01 05 Unexpected Read Failure. A command to the storage hardware failed
unexpectedly.

02 05 Corrupted storage. A corrupted checksum or storage header caused a read
to fail.

Service Request Function

375

Section 6
Dec 2024

CPU Programmer’s Reference Manual

GFK-2950M

SVC_REQ 56

Example

Section 6
Dec 2024

The following LD logic reads ten continuous bytes written to nonvolatile storage from
%G1—%G80 into %G193—%G273. The value applied to IN1, 56, selects byte mode.

The parameter block starts at %R00040. The response words are returned to %R00049

and %R00050.

Figure 253

SetupParmBlk

ROOO<D

ToRD Read

ash

(2

=

o

Parameter Block for SVC_REQ 56 Example

Address + Address | Input Definition

Offset Value

Address+0 %R00040 56 Data type = %G (byte mode)
Address+1 %R00041 0 Address written from, low word
Address+2 %R00042 0 Address written from, high word
Address+3 %R00043 10 Length = 10 bytes

Address+4 %R00044 56 Data type to write to = %G (byte mode)
Address+5 %R00045 24 Address to write to, low word
Address+6 %R00046 0 Address to write to, high word
Address+7 %R00047 0 Storage disabled conditions are enforced
Address+8 %R00048 0 Reserved, must be setto 0
Address+9 %R00049 NA Response status.

Address+10 %R00050 NA Response count.

6.33 SVC_REQ 57: Logic Driven Write to
Nonvolatile Storage

PACSystems controllers support a 64 KB nonvolatile flash memory area that can be
accessed by the logic-driven read/write service requests. Values are stored in the

Service Request Function

376

CPU Programmer’s Reference Manual Section 6
GFK-2950M Dec 2024

nonvolatile storage area using SVC_REQ 57. These values are applied to the controller
user memory on power up.

SVC_REQ 57 specifies a range of reference addresses to read from a running
PACSystems CPU and write to nonvolatile storage. This feature is intended to retain a
limited set of values, such as set points or tuning parameters that need to change when

the PACSystems is running.
This feature uses 64 KB of nonvolatile storage. But not all of this memory is available for

the actual data being written by the service request. Some of the memory is used
internally by the controller to maintain information about the data being stored.

Note: Nonvolatile storage is intended for storing values that do not change frequently.
Once the nonvolatile storage area fills up, a power cycle or STOP Mode Store is
required to store more values. The logic-driven write is not a replacement for battery
backed RAM for values that change frequently or during every sweep. (Refer to
Section 6.33.11, When nonvolatile storage is full.)

RSTi-EP CPE205/CPE210/CPE215/CPE220/CPE240 controllers allow users to
backup the data on a removable microSD card (uSD) during a write request. Users are
able to restore the data from the removable media to the internal storage. To
successfully restore the data, the PLCs must be powered up with the removable media
present. For further information, see section 6.32.2, Restoring data values on CPE200
Series.

Note: A read request (SVC_REQ 56) will not restore the data from the removable
media to the internal storage.

6.33.1 Length of Data Written

SVC_REQ 57 scans the nonvolatile storage to find the most recent values stored for the
specified range. If it finds no values for the range or the most recent stored values are
different, the new values are written to nonvolatile storage.

SVC_REQ 57 reports the length of data written in word 8 (starting address + 7) of the
parameter block. The number of words written is calculated from the first word that
changed to the end of the array. For example, if you specify 8 words to be written, but
only the values of words 3 and 4 are changed, the SVC_REQ identifies the first mismatch
at word 3 and writes the values of words 3 through 8 (a length of 6 words).

Youcanwrite up to 32words (64 bytes)inclusively perinvocation of SVC_REQ 57. Each
invocation requires 4 words of command data (8 bytes). A 1-byte write requires 9 bytes
whereas a 64-byte write requires 72 bytes. You can generally make the most efficient
use of nonvolatile storage by transferring data in 56-byte increments, since this will
actually write 64 bytes to the device. Given the bookkeeping overhead required by the
Controller and possible fragmentation, at least 54,912 bytes and no more than 64,000
bytes will be available for the reference data and the 8 bytes of command data for each
invocation. For additional information, refer to Fragmentation below.

6.33.2 Write Frequency

Multiple calls to SVC_REQ 57 in a single sweep may cause CPU watchdog timeouts.
The number of calls to SVC_REQ 57 that can be made requires consideration of many
variables:

o software watchdog timeout value

Service Request Function 377

CPU Programmer’s Reference Manual Section 6
GFK-2950M Dec 2024

e the amount of data being written
e sweep time
e age of nonvolatile storage (flash)

If the application attempts to write to flash too frequently, the CPU could experience a
watchdog timeout while waiting for a preceding write operation to complete.

The Logic Driven Read/Write to Flash service requests are not intended for high
frequency use. We recommend limiting the number of calls to SVC_REQ 57 to avoid the

potential for causing a watchdog timeout.

6.33.3 Nonvolatile Storage Life Span

The nonvolatile storage device on the PACSystems CPU is rated for a limited number of
write cycles that can be performed before the nonvolatile storage wears outand a write
request returns an error. Write cycles occur when SVC_REQ 57 is called or when flash
compaction is performed after a power cycle when flash memory allotted for
SVC_REQ 57 has become full. Therefore, we recommend limiting the number of calls to
SVC_REQ 57 to the minimum number necessary to save the limited set of updated
values to nonvolatile storage. For example, SVC_REQ 57 should not be called every
sweep.

Service Request Function 378

CPU Programmer’s Reference Manual Section 6
GFK-2950M Dec 2024

6.33.4 Discrete Memory
Discrete memory can be written to as individual bits or as bytes. For more information,
see Address.

Force and transition information is not written to nonvolatile storage.

6.33.5 Creating a Removable Nonvolatile Storage Backup

On PACSystems controllers that support creation of backup data on removeable

media, the user only needs to execute a write service request with the removable

media present. (If the removable mediais not present, then the controller will update
the internal storage. To enable removable media in CPU, set ‘MicroSD’ parameter
value to ‘Enabled’ in the CPU settings tab.) The card can be inserted at any time before
the write service request is executed; however, it is not advised to insert the removable
device while the controller is in RUN Mode.

The CPU will indicate an informational fault code when the removable media is
inserted:

Fault Group 140, 705 — Card Inserted, 707 — Card Ready, 708 — Card Not Ready

After the user has issued the write service request, the CPU will indicate an
informational fault code if the backup was successful or failed:

Fault Group 140, 703 — Backup Success, 704 — Backup Failed

The CPU will indicate an informational fault code when the removable media is
removed:

Fault Group 140, 706 — Card Removed
For more information, please see Non-Critical CPU Software Event (Group 140).

Creating the backup of the data to the removable media may take 100-300 ms and the
response status should be monitored. Read and write service requests called
immediately following a write service request will fail since the storage is locked
during the backup process.

The operation of backing up data will impact the sweep time: approximately 1 ms is
added to the sweep time during the backup to the removable media.

Note: When removing the removable storage device, a logic impact of about 500us is
observed.

Service Request Function 379

CPU Programmer’s Reference Manual Section 6
GFK-2950M Dec 2024

6.33.6 Retentiveness

Writing values to nonvolatile storage for non-retentive memory such as %T does not
make the memory retentive. Forexample, all values stored to % T memory are set to zero
on power-up ora STOP Mode to RUN Mode transition. You can, however, read such
values from storage after power-up or STOP Mode to RUN Mode transition by using
SVC_REQ 56.

6.33.7 Maximum of One Active Instruction

When SVC_REQ 57 is active, it does not support an interrupt that attempts to activate
SVC_REQ 56 or a second instance of SVC_REQ 57.

6.33.8 Storage Disabled Conditions

By default, the following write operations disable SVC_REQ 57 until logic is written to
nonvolatile storage:

¢ RUN Mode Store (RMS) (even if a second RMS reverts everything to the original
state)

e Test-Edit session (even when you cancel your edits)

e Word-for-word change

e Downloading to RAM only of a stopped PACSystems CPU (even if the downloaded
contents are equal to the contents already on the nonvolatile storage)

Setting bit 0 of input word 4 (address + 4) to a value of 1 enables SVC_REQ 57 despite
the above conditions.

Removable Storage Restore Disabled

The following conditions will disable SVC_REQ 57:
e CPUis configured to use Power-Up and Data source from Always RAM; and

e |f users store the configuration into flash memory to make use of the write
service request

Note: If the RAM and the Flash memory does not match, restoring from the removable
storage may fail. To ensure the RAM and Flash memory match, users will need to
configure the controller in PME to use the Flash memory.

6.33.9 Error Checking

When writing to nonvolatile storage, error checking is provided to ensure that logic and
the Hardware Configuration (HWC) in nonvolatile memory match the logicand HWC in
PACSystems RAM.

6.33.10 Fragmentation

Due to the nature of the mediain PACSystems CPUs, writes may produce fragmentation
of the memory. That is, small portions of the memory may become unavailable,
depending upon the sequence of the writes and the size of each one. Data is stored on
the device in 128 512-byte sections. Each section uses 12 bytes of bookkeeping
information, leaving a maximum of 64,000 bytes devoted to the reference data and
command data for each invocation. However, the data for a single invocation cannot be

Service Request Function 380

CPU Programmer’s Reference Manual Section 6
GFK-2950M Dec 2024

split across sections. So, if there is insufficient space in the currently used section to
contain the new data, the unused portion of that section becomes lost.

Example: Suppose that the current operation is writing 64 bytes of reference data and 8
bytes of command data (72 bytestotal). If there are only 71 bytes remaining in the current
section, the new data will be written to a new section and the unused 71 bytes in the old

section become unavailable.

6.33.11 When nonvolatile storage is full

When logic driven user nonvolatile storage is full, a fault is logged. Before you can use
SVC_REQ 57 to write again, use one of the following solutions:

To retain the most up-to-date data and continue writing with SVC_REQ 57 to
nonvolatile storage:

1. Stop the PACSystems.
2. Power cycle the PACSystems.

A power cycle when nonvolatile storage is full triggers a compaction of existing data.
During compaction, multiple writes of the same reference memory address are removed,
which leaves only the most recent data, and contiguous reference memory addresses
are combined into the fewest number of records necessary.

If compaction cannot take place, a second faultis logged, and you need to use one of
the following two solutions.

To retain specific data from nonvolatile storage, clear nonvolatile storage, and
then return the data to nonvolatile storage:

1. While the controller is still running, use SVC_REQ 56 to read the desired
values into PACSystems memory.

2. Upload the current values from controller memory as initial values to your
project.

3. Stop the controller.

Service Request Function 381

CPU Programmer’s Reference Manual Section 6
GFK-2950M Dec 2024
4. Do one of the following:
Clear the flash memory, or

Write to flash. The flash is erased prior to writing, which frees up some space.

5. Download the initial values to the controller.
6. Start the controller.

7. Use SVC_REQ 57 to write the desired values from controller memory to
nonvolatile storage.

To write to flash to erase everything:

1. Stop the Controller.
2. Write to flash. The flash is erased prior to writing, which frees up some space.

6.33.12 Equality

Because data in nonvolatile storage is not considered part of the project, writing to
nonvolatile storage does not impact equality between the CPU and Logic Developer.

6.33.13 Redundancy

Redundancy systems can benefit from the use of logic driven user nonvolatile storage
as long as all of the references saved to nonvolatile storage are included in the transfer
lists. Each redundancy CPU maintains its own separate logic driven user nonvolatile
storage by means of SVC_REQ 57 during its logic scan. If the values of reference
addresses to be stored to user nonvolatile storage are synchronized, the logic driven
user nonvolatile storage data in each CPU is identical. If the values to be stored are not
synchronized, then each CPU’s user nonvolatile storage may be different.

6.33.14 ENO and Power Flow to the Right

If the status is Success or Partial Read, then on the SVC_REQ instruction, ENO is set to
True in FBD and ST, and power flow passes to the right in LD.

Service Request Function 382

CPU Programmer’s Reference Manual Section 6

GFK-2950M

Dec 2024

6.33.15 Parameter Block for SVC_REQ 57

Address + Offset |Description

Address+0

Memory type. Refer to

Memory Type Codes above.

Address+1

The zero-based offset N to write to nonvolatile storage. Contains the complete offset for

Address+2

any memory area except %W, which also requires the use of address + 2 for offsets

greater than 65,535.

e For%l, %Q, %M, %T, and %G memory in byte mode, N=(Ra -1)/8, where Ra = one
based reference address. For example, to read from the one-based bit reference
address %T33, enter the byte offset 4: (33 -1)/8 = 4.

e For %W, %R, %Al, and %AQ memory, and for %I, %Q, %M, %T, and %G memory in
bit mode, N = Ra - 1. For example, to read from the one-based reference address
%R200, enter the zero-based reference offset 199;to read from %I73in bit mode, enter
offset 72. For memory-in-bit mode, the offset must be seton a byte boundary, that s,
a number exactly divisible by 8: 0, 8, 16, 24, and so on.

Address+3

Length. The number of items to write to nonvolatile storage beginning at the reference
address calculated from the offset defined at[address + 1 and address + 2]. The lengthcan
be one of the following:

Description Valid range

The number of words (16-bit registers) | 1 through 32 words
to read from %W, %R, %Al, or %AQ
nonvolatile storage

The number of bytes to read from %I, | 1 through 64 bytes
%Q, %M, %T, or %G in byte mode
nonvolatile storage

The number of bits to read from %l, 1 through 512 bits in
%Q, %M, %T, or %G in bit mode increments of 8 bits
nonvolatile storage

The value must reside in the low byte of address + 3. The high byte must be set to zero.

Address + 4

When bit 0 is set to 1,

Storage Disabled Conditions are ignored. A write is allowed even if the logic in RAM has
changed since nonvolatile storage was read or written.

Bits 1 through 15 must be set to zero; otherwise, the write fails.

Address+5

Reserved. Value must be set to zero.

Address+6

Response status. The low byte contains the major error code; the high byte contains the
minor error code.

Address+7

Count of items written: Words, bytes or bits. Calculated fromthe first word that changed to
the end of the array.

Address+8

Address+9

The number of bytes available in nonvolatile storage.

Address+10

Reserved.

Address+11

Response Status Codes for SVC_REQ 57

Minor | Major | Description

00 01 Success. All values requested were written.

01 01 Existing values found. All values requested are in storage, butone or more values
were already stored.

Service Request Function

383

CPU Programmer’s Reference Manual Section 6
GFK-2950M Dec 2024

Minor | Major | Description

01 02 Insufficient source memory. Counting from the offset, not enough reference
addresses are left in the specified memory area.

02 02 Invalid length. The length requested was largerthan 64 bytes orless than 1 byte
or the number of bits is not divisible by 8.

03 02 Invalid source reference address. The memory area specified is notsupported, the
starting orending offset is out ofrange, orthe offset is not byte-aligned for discrete
memory areas.

04 02 Invalid request. Spare bits or spare words in the parameter block are not set
to zero.
01 03 Storage busy. A SVC_REQ 56 or another SVC_REQ 57 instruction is active. For

example, an interrupt block is attempting to execute SVC_REQ 57 when the block
it interrupted was executing SVC_REQ 57.

01 04 Storage disabled. The logic in RAM differs from the logic stored in nonvolatile
storage. Refer to

Storage Disabled Conditions above,

02 04 Storage closed. Eitherthe storage has not been created ora previous corruption
error or unexpected read/write failure closed the storage.

01 05 Unexpected write failure. The command to the storage hardware failed
unexpectedly.

02 05 Corrupted storage. The write failed due to a bad checksum or corrupted storage
header information.

01 06 Write failed. Storage is full.

03 01 Success in writing Flash, but back-up to SD is disabled

Service Request Function 384

CPU Programmer’s Reference Manual

GFK-2950M

SVC_REQ 57 Example

The following LD logic writes ten continuous bytes to nonvolatile storage, ranging from
%G1 through %G80. The value applied to IN1, 56, determines byte mode.

Section 6
Dec 2024

The parameter block starts at %R00050. The response words are returned to
%R00056—%R00059.

Figure 254

SetupParmBlk

11
17

WriteLogicFls:
T
py

Parameter Block for SVC_REQ 57 Example

Address + Offset Address Input Value Definition
Address+0 %R00050 56 Data type = %G (byte mode)
Address+1 %R00051 0 Address written from, low word
Address+2 %R00052 Address written from, high word
Address+3 %R00053 10 Length = 10 bytes
Address+4 %R00054 0 Storage disabled conditions are enforced
Address+5 %R00055 Reserved, must be setto 0
Response status. The low byte contains the
Address+6 %R00056 NA major error code; the high byte contains the
minor error code.
Address+7 %R00057 NA Count of items written: Words, bytes or bits.
Address+8 %R00058 NA The number of bytes available in nonvolatile
Address+9 %R00059 NA storage.
Address+10 %R00060 NA Reserved
Address+11 %R00061 NA Reserved

6.34

Reference Memory

Service Request Function

SVC_REQ 63: Logic Driven Write of

385

CPU Programmer’s Reference Manual Section 6
GFK-2950M Dec 2024

This Service Requestis supported on the CPE330 and CPE400/CPL410/CPS400 only.
However, when a CPU is configured for Hot Standby Redundancy, this Service Request
will not be available.

PACSystems controllers support four storage locations in nonvolatile memory, which can
be written to or deleted by this Service Request. Each storage location can hold an
arbitrary length of reference memory data from the %Al, %AQ, or %R reference tables,
up to the maximum table size configured in PAC Machine Edition.

This data s restored to the reference tables at power-up after initial values have been
established, but only if the data in RAM was not preserved over the power cycle. f RAM

was preserved none of the data in the four storage locations is restored. Refer to the
%S0055 system bit or the Audit Trail to determine if any reference table data was

restored at power-up.

When the data is copied to Reference memory, it is done in order of Storage Location
number, beginning with location 0. Therefore, if the stored data comes from overlapping
references, the data with the higher Storage Location number will overwrite the data with
the lower Storage Location number.

6.34.1 Write Frequency
This Service Request is not intended for high frequency use. Therefore, it will restrict
the rate at which writes may be performed.

The first hour after the CPU transitions from STOP mode to RUN mode is considered
development time where many writes may be performed, up to a maximum of 40 per
Storage Location. Any attempt to perform more than 40 writes in that hour will cause an
error status to be returned in the status location.

Normal mode is all the time after the first hour of RUN mode. During this time writes are
limited to 24 every 24 hours. After the 24" write, the user must wait until 24 hours have
elapsed since the first write before another write will be accepted.

These frequency limitations are performed on an individual storage location basis. So,
if the maximum writes have been performed in one storage location, it is still possible to

perform writes in a different storage location.

There is one other write restriction. Only one write operation may be active at a time.
Writes require multiple sweeps to be performed. During this time no other SVCREQ 63
operations may be performed. The user must wait until the write status changes from
the Write in Progress state to a completion state. This time is variable, based on the

sweep time of the CPU.

6.34.2 Data Deletion
The data in the storage locations can be deleted by one of several methods:
e Use of the Service Request function block in Run mode (See below.)
e Any Stop Mode store to RAM
e Any Stop Mode clear of logic in RAM
e Clearing User Flash from Machine Edition

e Firmware downgrade

Service Request Function 386

CPU Programmer’s Reference Manual
GFK-2950M

6.34.3

6.34.4

Equality

The data in the nonvolatile storage locations is not considered to be part of the project.
Therefore, the presence, or not, of data inthe storage locations does not impact equality
between the CPU and Machine Edition.

Function Block Operation

When the Service Request receives power flow, it will validate the command block and
start the write or delete operation. If there is anything wrong with the command block an
error code will be written to the Status word. Otherwise, the Status will be setto the In-
progress value and the Service Requestwill conclude. If Service Requestexecution was
successful, ENO is set to True in FBD and ST, and power flow passes to the right in LD.
If an error was detected, ENO is set to False and power flow does not pass to the right.
It is recommended that the user set the Status word to zero before executing the Service
Request.

Command Block

Address + Parameter Parameter
Offset Name Type Definition
Address+0 Status WORD See below
Address+1 Storage Location WORD Storage Location ID (0-3)
Only these values are valid:
Address+2 Memory Type WORD 8 =%R
VP 10 = %Al
12 = %AQ
Address+3 Reference Memory 1-based Starting Address
Address+4 Starting Offset DWORD For example, for %R10, use the number 10.
Address+5
Length DWORD The number of registers to be saved.
Address+6

There are two special values for the Length parameter. If the Length is setto zero, any
datain the specified storage location will be deleted. The Memory Type and Starting
Offset are ignored.

If the Length is set to the maximum DWORD value of 16#FFFF FFFF, then the entire
table specified by the Memory Type (Address+2) will be written to the storage location.
The actual amount of data written is based on the current Reference Table size. The
Starting Offset in Address+3 & 4 will be ignored.

Writes and deletes take place during some number of CPU sweeps after execution of
the Service Request. Thefirstexecutionforeach storage location will take more sweeps
than later executions as the storage location is being initialized the first time the Service
Request is executed. When the operation completes the Status Word will be updated
with the completion status. The user should monitor the Status word to know when this
happens and whether the operation was successful. That is the point at which the next
write or delete will be accepted. Multiple writes can be done to the same Storage Location
without intervening deletes. The CPU will take care of deleting the old data automatically.

Service Request Function 387

Section 6
Dec 2024

CPU Programmer’s Reference Manual Section 6
GFK-2950M Dec 2024

6.34.5 Status Word

The Status Word s the first word of the Command Block. The least-significant byte (LSB)
is the major code, and the most-significantbyte (MSB) is the minor code. These are
defined in the table below.

Minor | Major | Description

00 01 Success. Request completed successfully.

02 01 Operation is in-progress and will complete during a later sweep.

01 02 Insufficient source memory. Counting from the offset, not enough reference
addresses are left in the specified memory area.

03 02 Invalid source reference address. The memory area specified is not supported, or
the starting or ending offset is out of range.

05 02 The specified Memory Type is not supported. Valid values are 8, 10, and 12.

06 02 The specified Storage Location is not supported. Valid values are 0 — 3.

08 02 An internal error occurred.

01 03 The previous SVC_REQ 63 instruction is still active. Wait for the previous status
to change from 16#0201 before using SVCREQ 63 again.

02 03 The maximum number of writes have already been performed. Wait forthe next
available time before attempting another write.

02 04 An error occurred within the CPU’s file system. A fault logged in the PLC Fault
Table may have more information.

03 04 The SVCREQ was executed on a PLC thatis configured for redundant CPU

operation. This SVCREQ is not available with redundant configurations.

01 05 Unexpected write failure. The command to the storage hardware failed
unexpectedly.

03 05 Unexpected write failure. The data was successfully written, but the creation of a
backup copy of the data failed.

6.34.6 SVC_REQ 63 Example

In this example, Analog Inputs %AIl0021 to %AIl0100 are written to Storage Location 0.
The parameter block is in %R0001-%R0007. The user activates SaveData to execute
the SVCREQ for one sweep only. When the write operation completes, the variable
WrtSuccess will be On if the write was successful. The variable WrtFailed will be On if
the write failed.

Service Request Function 388

CPU Programmer’s Reference Manual

Section 6

GFK-2950M Dec 2024
SaveData ELEMOV SVCEED ’ InProgress ’
I} HOED {B—
" HrtSuccess |
0 —m1 9 Roo001 £ —|F¥C —(E—
’ ’ ’ " MatFailed |
0 —{Ihz Eo0oni[o] —|FEM (B
1o —{IN3
21 —IN4
0 —INS
a0 —INE
0 —IN7
’ InFiogress ’ WE OINT ’ InFiogress ’
X - E—
ECOINT)
Rooo0i[o] —{IN1 a —
’ " HrtSuccess |
t6#0201 — N2 RoBoi[o] —{LHt] {5— _
#0001 —INZ
" [HEUINT
HirtFailed
EODDO0] —{T¥1 al (5— .
#0001 —IN2
Parameter Block
Address +
Address | Input Value | Definition
Offset P
Address+0 %R00001 Status Word. Always initialized to zero.
Address+1 %R00002 Writing to Storage Location 0.
Address+2 %R00003 10 Saving data from the %Al table.
Address+3 %R00004
21 Starting offset is %A100021
Address+4 %R00005
Address+5 %R00006 80 Length is 80 registers. So, the saved data wil
Address+6 %R00007 be %Al100021 to %AI00100.

6.35 PACSystems Simulator Service Request

Functions

The table below indicates Service Request Functions that behave differently when run
in logic on the PACSystems Simulator:

Service Request

Description

Interrupt

SVC_REQ 17: Mask/Unmask I/0

This service request passes power flow for valid inputs but does
not perform its intended operation at this time.

SVC_REQ 19: Set Run Enable/Disable

This service request updates the output enabled state, but there
is no output scan on the simulated target.

Service Request Function

389

CPU Programmer’s Reference Manual Section 6
GFK-2950M Dec 2024

Service Request Description

SVC_REQ 24: Reset Module This service request passes power flow for valid inputs but does
not perform its intended operation at this time.

SVC_REQ 32: Suspend/Resume I/O | This service request passes power flow for valid inputs but does
Interrupt not perform its intended operation at this time.

SVC_REQ 45: Skip Next I/O Scan This service request passes power flow for valid inputs but does
not perform its intended operation at this time.

SVC_REQ 56: Logic Driven Read of | This service requestindicates failure by not passing power flow.
Nonvolatile Storage

SVC_REQ 57: Logic Driven Write of This service request indicates success by passing power flow.
Nonvolatile Storage

SVC_REQ 63: Logic Driven Write of This service request indicates success by passing power flow.
Reference Memory

Service Request Function 390

CPU Programmer’s Reference Manual Section 7
GFK-2950M Dec 2024

Section 7 PID Built-In Function Block

This chapter describes the PID (Proportional plus Integral plus Derivative) built-n
function block, whichis used for closed-loop process control. The PID function compares
feedback from a process variable (PV)with a desired process set point (SP) and updates
a control variable (CV) based on the error.

The PID function uses PID loop gains and other parameters stored in a 40-word
reference array of 16-bit integer words to solve the PID algorithm at the desired time
interval.

Figure 255: PID in Ladder Diagram PID in Ladder Diagram

FID IND PID ISA
I — 7] B PID _IND PID_ISA
TTTT e T 1
—sF ov— —sp cvl- =4 SP CV = = SP CV =
—FV —fpv
- AN = MAN
—hitan —{man
- UP - UP
—up —{up -{ DN = DN
—{oN —lou

This chapter presents the following topics:

e Operands of the PID Function

e Reference Array for the PID Function

e Operation of the PID Function

e PID Algorithm Selection (PIDISA or PIDIND) and Gain Calculations
e Determining the Process Characteristics

e Setting Tuning Loop Gains

e PID Example

PID Built-In Function Block 391

CPU Programmer’s Reference Manual Section 7
GFK-2950M Dec 2024
71 Operands of the PID Function
Figure 256
PID IND PID ISA
—{sP CV— —sP cV
—PV —PV
—{MAN —{MAN
—upP —up
—DN —DN
7.1.1 Operands for LD Version of PID Function Block
Parameter |Description Allowed Allowed Optional
Types Operands
Instance Variable name of the PID Parameter Block | WORD R, L, P,W [No

(???27) array, which contains user-configurable and internal and
parameters, described in Reference Array for the PID symbolic
Function Uses 40 words that cannot be shared.

SP The control loop or process set point. Set using | INT, BOOL |All exceptS,|No
process variable counts, the PID function adjusts the| array of SA, SB, and
output control variable so that the process variable|length 16 or|SC
matches the set point (zero error). more,

Constant

PV Process Variable input from the process being INT, BOOL |All exceptS,|No

controlled. Often a %Al input. array of SA, SB, and
length 16 or|SC, and
more constant

MAN While Power Flow is received, the PID function block | Power Flow | NA No
is held in manual mode. If no Power Flow is received
the PID function block is in Auto mode.

uUpP While Power Flow is received, the Manual Command | Power Flow | NA No
is increased by 1 each user configured Sample
Period.

DN While Power Flow is received, the Manual Command | Power Flow | NA No
is decreased by 1 each user configured Sample
Period.

Ccv The control variable output to the process. Often a| INT, BOOL |All except |No
%AQ output. array of %S and

length 16 or|constant
more

PID Built-In Function Block

392

CPU Programmer’s Reference Manual

Section 7

GFK-2950M Dec 2024
7.1.2 Operands for FBD Version of PID Function Block
Figure 257
Control_Parameter Control_Parameter
PID_IND PID_ISA
1 2
=118 Vir - SP CV fm
=PV - PV
= MAN - MAN
- UP - UP
= DN - DN
Parameter Description Allowed Allowed Optional
Types Operands
Control Structure [Instance Variable name of the PID Parameter Block array,|WORD R, L, P,W No
Variable which contains user-configurable and internal parameters, and symbolic
described in Reference Array for the PID Function
.Uses 40 words that cannot be shared.
Function block Calculated by the FBD editor. Can be changed by the user.[NA NA No
solve order — FBD
version
SP The control loop or process set point. Set using process | INT, BOOL All except S, No
variable counts, the PID function adjusts the output contol | array of length | SA, SB, and SC
variable so that the process variable matches the set point | 16 or more,
(zero error). Constant
PV Process Variable input from the process being controlied. | INT, BOOL All except S, No
Often a %Al input. array of length | SA, SB, SC and
16 or more constant
MAN When energized to 1 (through a contact), the PID functon | BOOL, Power | All No
block is in manual mode. If this input is 0, the PID block is | Flow
in automatic mode.
(U]=] If energized along with MAN, increases the control variable | BOOL, Power | All No
by 1 CV count per solution of the PID function block. Flow
DN If energized along with MAN, decreases the control variabe | BOOL, Power | All No
by 1 CV count per solution of the PID function block. Flow
cVv The control variable output to the process. Often a %AQ | INT, BOOL All except %S No
output. array of length | and constant
16 or more

7.2

Reference Array for the PID Function

This parameter block for the PID function occupies 40 words of memory, located at the
starting Instance Variable specified in the PID function block operands. Some of the
words are configurable. Other words are used by the CPU for internal PID storage and

are normally not changed.

PID Built-In Function Block

393

CPU Programmer’s Reference Manual Section 7
GFK-2950M Dec 2024

Every PID function call must use a different 40-word memory area, even if all the
configurable parameters are the same.

The configurable words of the reference array must be specified before executing the
PID function. Zeros can be used for most default values. Once suitable PID values have
been chosen, they can be defined as constants in BLKMOV functions so the program

can set and change them as needed.

The LD version of the PID function does not pass power flow if there is an errorin the
configurable parameters. The function can be monitored using a temporary coil while
modifying data.

7.2.1 Scaling Input and Outputs
All parameters of the PID function are 16-bit integer words for compatibility with 16-bit
analog process variables. Some parameters must be defined in either PV counts or units
or in CV counts or units.

The SP input must be scaled over the same range as the PV, because the PID function
calculates error by subtracting these two inputs.

The process PV and control CV counts do not have to use the same scaling. Either may
be-32,0000r0to 32,000 to match analog scaling, orfrom 0to 10,000 to display variables
as 0.00% to 100.00%. If the process PV and control CV do not use the same scaling,
scale factors are included in the PID gains.

PID Built-In Function Block 394

CPU Programmer’s Reference Manual

GFK-2950M

7.2.2

Reference Array Parameters

Section 7
Dec 2024

Note:

Machine Edition software allows you to modify the configurable parameters for a

PID instruction in real time in online programmer mode. To customize PID
parameters, right click the PID function and select Tuning.

Words Parameter/Description Low.:v et Range
Units

1 Loop Number Integer 0 to 255 (for user
(Address+0) |Optional number of the PID block. It provides a common identification in the CPU display only)

with the loop number defined by an operator interface device.
2 Algorithm - Set by the CPU
(Address+1) 1 = ISA algorithm

2 = Independent algorithm
3 Sample Period 10ms. 0 (every sweep) to
(Address+2) |The shortesttime, in 10ms. Increments, between solutions of the PID algorithm. 65535

For example, use a 10 for a 100ms. Sample period. Minimum time of 10ms is (10.9 Min) At least

enforced by the block if the sweep<10ms) 10ms.
4,5 Dead Band + PV Counts |Dead Band +: 0 to
(Address+3, Dead Band — 32767
Address+4) Integral values defining the upper (+) and lower (-) Dead Band limits. If no Dead (never negative)

Band is required, these values must be 0. If the PID Error (SP - PV) or (PV - Dead Band -: -

SP) is above the (-) value and below the (+) value, the PID calculations are 32768 to 0

solved with an Error of 0. If non-zero, the (+) value must greaterthan 0 and the| (never positive)

(-) value less than 0 or the PID block will not function.

Leave these at 0 until the PID loop gains are set up or tuned. A Dead Band

might be added to avoid small CV output changes due to variations in error.
6 PID_IND: Proportional Gain (Kp) CV%/PV% |0 to 327.67%
(Address+5) PID_ISA: Controller gain (Kc = Kp)

PID_IND: Change in the control variable in CV Counts fora 100 PV Count [%CV/%PV

change in the Error term. Entered as an integer representing a fixed -point

decimal ratio with two decimal places. Displayed as a ratio of percentages with

two decimal places.

For example, a Kp entered as 450 is displayed as 4.50 and results in a

Kp * Error / 100 or 450 * Error / 100 contribution to the PID Output.

PID_ISA: Same as PID_IND.

Kp is generally the first gain set when adjusting a PID loop.
7 PID_IND: Derivative Gain (Kd) 0.01 sec 0 to 327.67 sec
(Address+6) PID_ISA: Derivative Time (Td = Kd)

PID_IND: Change in the control variable in CV Counts if the Error or PV

changes 1 PV Count every 10ms. Entered as an integer representing a

fixed-point decimal time in seconds with two decimal places. The least

significant digit represents 0.01 second (10ms.) units. Displayed as seconds

with two decimal places.

For example, Kd entered as 120 is displayed as 1.20 Sec and results in a

Kd * A Error / delta time or 120 * 4 / 3 contribution to the PID Output if Error

changes by 4 PV Counts every 30ms. Kd can be used to speed up a slow loop

response but is very sensitive to PV input noise. This noise sensitivity can be

reduced by using the derivative filter, which is enabled by setting bit 5 of the

Config Word .

PID_ISA: The ISA derivative time in seconds, Td, is entered and displayed in

the same way as Kd. Total derivative contribution to PID Output is

Kc * Td * A Error / dt.
8 PID_IND: Integral Rate (Ki) Repeats/0.00/0 to 32.767
(Address+7) PID_ISA: Integral Rate (1/Ti = Ki) 1 Sec repeats/sec

PID Built-In Function Block

395

CPU Programmer’s Reference Manual Section 7
GFK-2950M Dec 2024

Low Bit

Words Parameter/Description .
Units

Range

PID_IND: Rate of change in the control variable in CV Counts per second when
the Error is a constant 1 PV Count. Entered as an integerrepresenting a fixed {
point decimal rate with three decimal places. The least significant digit
represents 0.001 counts persecond,or 1 count per0.001 second. Displayed ag
Repeats/Sec with three decimal places.

For example, Ki entered as 1400 is displayed as 1.400 Repeats/Sec and
results in a Ki * Error * dt or 1400 * 20 * 50/1000 = 1,400 contribution to PID
Output for an Error of 20 PV Counts and a 50ms. CPU sweep time (Sample
Period of 0).

PID_ISA: The ISA Integral Time in seconds, Ti, must be inverted and entered,
as integral rate, as described for PID_IND. Total integral contribution to PID
Output is Kc * Ki * Error * dt.

Ki is usually the second gain set after Kp.

9 CV Bias/Output Offset CV Counts |-32768 to 32767

(Address+8) |Numberof CV Counts added to the PID Output before the rate and amplitude (add to PID output)
clamps. It can be used to set non-zero CV values when only Kp Proportiona
gains are used, orfor feed-forward control of this PID loop output from another

control loop.
10, 11 CV Upper Clamp CV Counts |-32,768 to 32,767
(Address+9. CV Lower Clamp (Word 10 must be
Address+10) |Number of CV Counts that define the highest and lowest value that CV is greater than word
allowed to take. These values are required. The Upper Clamp must have a 11.)

more positive value than the Lower Clamp, or the PID block will not work.
These are usually used to define limits based on physical limits for a CV output|
They are also used to scale the Bar Graph display for CV. The PID block has
anti-reset-windup, controlled by bit 4 of the Config Word, to modify the integral
term value when a CV clamp is reached.

12 Minimum Slew Time Seconds/ |0 (none)to 32,000
(Address+11) |Minimum number of seconds for the CV output to move from 0 to full travel offFull Travel [sec
100% or 32,000 CV Counts. Itis an inverse rate limit on how fast the CV output to move full CV
can change. travel

If positive, CV cannot change more than 32,000 CV Counts times the solution
time interval (seconds) divided by Minimum Slew Time.

For example, if the Sample Period is 2.5 seconds and the Minimum Slew Time
is 500 seconds, CV cannot change more than 32,000 * 2.5/ 500 or 160 CV
Counts per PID solution.

The integral term value is adjusted if the CV rate limit is exceeded.

When Minimum Slew Time is 0, there is no CV rate limit. Set Minimum Slew
Time to 0 while tuning or adjusting PID loop gains.

13 Config Word Low 6 bits [Boolean

(Address+12) |The low 6 bits of this word are used to modify default PID settings. The otherfused
bits should be set to 0.

Bit 0: Error Term Mode.
When this bit has the default value of 0, the error term is SP - PV.

If the Error=SP-PV is positive, the CV output will decrease.
If the Error=SP-PV is negative, the CV output will increase.

This is type of operation is known as reverse acting. A good example is your
home heating system.

When this bit is 1, the error term is PV - SP.

If the Error=PV-SP is positive, the CV output will increase.

If the Error= PV-SP is negative, the CV output will decrease.

This type of operation is known as direct acting. A good example is your home
cooling system.

Bit 1: Output Polarity.

PID Built-In Function Block 396

CPU Programmer’s Reference Manual Section 7
GFK-2950M Dec 2024

Low Bit

Units Range

Words Parameter/Description

When this bitis 0, the CV outputis the output of the PID calculation. When it is
setto 1, the CV outputis the negated output of the PID calculation. Setting this|
bit to 1 inverts the Output Polarity so that CV is the negative of the PID output
rather than the normal positive value.

Bit 2: Derivative Action on PV.

When this bit is 0, the derivative action is applied to the error term. When it is
set to 1, the derivative action is applied to PV only.

Bit 3: Deadband action.

When the Deadband action bit is 0, the actual error value is used for the PID
calculation.

When the Deadband action bit is 1, deadband action is chosen. If the error
value is within the deadband limits, the error used for the PID calculation is
forced to be zero. If, however, the error value is outside the deadband limits,
the magnitude of the error used for the PID calculation is reduced by the
deadband limit (Jerror| = |error — deadband limit|).

Bit 4: Anti-reset windup action.

When this bit is 0, the anti-reset-windup action uses a reset (integral term)
back-calculation. Whenthe outputis clamped, the accumulated integral term is}
replaced with whatever value is necessary to produce the clamped output
exactly.

When the bit is 1, the accumulated integral term is replaced with the value of
the integral term at the start of the calculation. In this way, the pre-clamp
integral value is retained as long as the output is clamped. This option is not
recommended for new applications. Refer to CV Amplitude and Rate Limits
below.

Bit 5: Enable derivative filtering.

When this bit is set to 0, no filtering is applied to the derivative term.

When set to 1, a first order filter is applied. This will limit the effects of higher
frequency process disturbances, such as measurement noise, onthe derivative

term.
14 Manual Command CV Counts |[Tracks CV in Auto
(Address+13) |Setto the current CV output while the PID block is in Automatic mode. When orsets CV in

the block is switched to Manual mode, this value is used to set the CV outpuf Manual

and the internal value of the integral term within the Upper and Lower Clamp
and Slew Time limits.

15 Control Word Maintained [Boolean

(Address+14) |Ifthe Override bit (bit 0) is set to 1, the Control Word and the intemal SP, PVv[by the CPU,
and CV parameters must be used for remote operation of the PID block (see|unless bit 0
below). This allows a remote operatorinterface device, such as a computer, to[(Override)
take control away from the application program. is setto 1.

ACAUTION

If you do not want to allow remote operation of the PID block, make]
sure the Control Word is setto 0. If the low bit is 0, the next4 bits can
be read to track the status of the PID inputcontacts as longas the PID
Enable contact has power.

Control Word is a discrete data structure with the first five bit positions defined
in the following format:

Word Status or
Bit | "'°™ |Function |External Action if Override bit is
Value
set to 1:

PID Built-In Function Block 397

CPU Programmer’s Reference Manual

Section 7

GFK-2950M Dec 2024
o Low Bit
Words Parameter/Description . Range
Units
. If 0, monitor block contacts below.
0 1 Override
If 1, set them externally.
1 5 Manual If 1, block is in Manual mode. If other
/Auto numbers, it is in Automatic mode.
Should normally be 1. Otherwise block
2 4 Enable .
is never called.
3 8 upP If 1 and Manual (Bit 1)is 1, CV is
/Raise incremented every solution.
4 16 DN If 1 and Manual (Bit 1)is 1, CV is
/Lower decremented every solution.
16 Internal SP Set and Non-configurable,
(Address+15) |Tracks the SP input. If Override = 1, must be set exterally to solve the PID [maintained [unless bit 0
algorithm using an alterate SP value. The original SP value is maintained unti|by the CPU, [(Override) of
overwritten. unless bit 0 |Control Word is set
(Override) of |to 1.
Control Word
issetto 1.
17 Internal CV Set and Non-configurable.
(Address+16) |Tracks CV output. maintained
by the CPU.
18 Internal PV Set and Non-configurable,
(Address+17) |Tracks PV input. Must be set exterally if Override bit is set to 1. maintained [unless bit 0
by the CPU, [(Override) of
unless bit 0 [Control Word is set
(Override) of |to 1.
ControlWord
is setto 1.
19 Output Set and Non-configurable.
(Address+18) [A Signed word value representing the output of the function block before thelmaintained
optionalinversion. If the output polarity bit in the Config Word is set to 0, this|by the CPU.
value equals the CV output. If the outputpolarity bit is set to 1, this value equals
the negative of the CV output.
20 Derivative Term Storage
(Address+19) [Used internally for storage of intermediate values. Do not write to this location.
21, 22 Integral Term Storage
(Address+20. [Used internally for storage of intermediate values. Do not write to these
Address+21) locations.
23 Slew Term Storage
(Address +22) [Used internally for storage of intermediate values. Do not write to this location.
24 - 26 Previous Solution Time Set and Non-configurable.
(Address+23 — [Internal storage of time of last PID solution. Normally do not write to these |maintained
Address+25) |locations. Some special circumstances may justify writing to these locations. |by the CPU.
Note: If you call the PID block in Automatic mode after a long
delay, you might want to use SVC_REQ #16 or
SVC_REQ #51 to load the current CPU elapsed time
clock into Word 24 to update the last PID solution time to
avoid a step change of the integral term.
27 Integral Remainder Storage Set and Non-configurable.
(Address+26) [Holds remainder from integral term scaling. maintained
by the CPU.

PID Built-In Function Block

398

CPU Programmer’s Reference Manual Section 7

GFK-2950M Dec 2024
Words Parameter/Description Lo‘_" — Range

Units
28, 29 SP, PV Lower Range PV Counts [-32768 to 32767

(Address+27, [SP, PV Upper Range
Address+28) |Optionalintegervaluesin PV Counts that define high and low display values for|
SP and PV. (Word 29 must be greater than word 28.)

30 Reserved N/A Non-configurable.
(Address+29) [Word 30 is reserved. Do not use this location.

31, 32 Previous Derivative Term Storage Set and Non-configurable.
(Address+30, [Used in calculations for derivative filter. Do not write to these locations. maintained

Address+31) by the CPU.

33-40 Reserved N/A Non-configurable
(Address+32 — [Words 32-39 are reserved. Do not use these references.

Address+39)

PID Built-In Function Block 399

CPU Programmer’s Reference Manual Section 7

GFK-2950M Dec 2024
7.3 Operation of the PID Function
7.3.1 Automatic Operation

When the PID function block is called, it compares the current CPU time with the last PID
solution time stored in the reference array. If the interval between the two times is equal
to or greater than the Sample Period (word 3 of the reference array) and also equal to or
greater than 10 ms, the PID algorithm s solved using this time interval. Both the last
solution time and CV output are updated. In Automatic mode, the output CV is copied to
the Manual Command parameter (word 14 of the reference array).

Note: If you call the PID block in Auto mode after a long delay, you may want to use
SVC_REQ 16 or SVC_REQ 51 to load the current CPU time into the stored Previous
Solution Time (word 24 of the reference array). This will update the last PID solution
time and avoid a large step change of the integral term. Another method to prevent
the step change is to copy the PV value to the SP before placing the loop into Auto.

7.3.2 Manual Operation

The PID function block is placed in Manual mode by providing power flow to both the
Enable and Manual input contacts. The output CV is set from the Manual Command
parameter. If either the UP or DN inputs have power flow, the Manual Command word is
incremented (UP) or decremented (DN) by one CV count every PID Sample Period. For
faster manual changes of the output CV, it is also possible to add or subtractany CV
count value directly to/from the Manual Command word (word 14 of the reference array).

The PID function block uses the CV Upper Clamp and CV Lower Clamp parameters to
limit the CV output. If a positive Minimum Slew Time (word 12 of the reference array) is
defined, it is used to limit the rate of change of the CV output. If either CV Clamp or the
rate of change limitis exceeded, the value of theintegral (reset) term is adjusted so that
CV is at the limit. The anti-reset-windup feature assures that when the error term tries to
drive CV above (or below) the clamps for a long period of time, the CV output will move
off the clamp immediately when the error term changes sufficiently.

This operation, with the Manual Command tracking CV in Automatic mode and setting
CV in Manual mode, provides a bump-lesstransferfrom Automaticto Manualmode. The
CV Upperand Lower Clamps and the Minimum Slew Time always apply to the CV output
in Manual mode and the integral term is always updated. This assures that when a user
rapidly changes the Manual Command value in Manual mode, the CV output cannot
change any faster than the slew rate limit set by the Minimum Slew Time, and the CV
cannot go above the CV Upper Clamp limit or below the CV Lower Clamp limit.

In order to assure a bump-less transfer from Manual back to Automatic mode, the user
program should copy the PV to the SP before switching back to Automatic mode. This
allows the algorithm to update the last sample period time and prepare to re-calculate
CV based upon the new Auto Mode SP commanded.

7.3.3 Time Interval for the PID Function

The start time of each CPU sweep is used as the current time when calculating the time
interval between solutions of the PID function. The times and time intervals have a
resolution of 100 us. When an application uses multiple PID functions, all of them use

the same time value.

PID Built-In Function Block 400

CPU Programmer’s Reference Manual Section 7
GFK-2950M Dec 2024

The PID algorithm is solved when the current time is equal to or greater than the time of
the last PID solution plus the Sample Period or 10 ms; whichever is larger. If the Sample
Period is set for execution on every sweep (value = 0), the PID function is restricted to a
minimum of 10 ms between solutions. If the sweep time is less than 10 ms, the PID
function waits until enough sweeps have occurred to accumulate an elapsed time
of at least 10 ms. For example, if the sweep time is 9 ms, the PID function executes
every other sweep, and the time interval between solutions is 18 ms. If a specific PID
functionis executed more than once per sweep (by referencing the same reference array
location in multiple PID function blocks), the algorithm is solved only on the first call.

The longest possible interval between executions is 65,535 times 10 ms, or 10 minutes,
55.35 seconds.

7.4 PID Algorithm Selection (PIDISA or PIDIND)

and Gain Calculations

The PID function supports both the Independent Term (PID_IND) and ISA standard
(PID_ISA) forms of the PID algorithm. The Independent Term form takes its name from
the fact that the coefficients for the proportional, integral and derivative terms act
independently. The ISA algorithmis named for the Instrument Society of America (now
the International Society for Measurement and Control), which standardized and
promoted it.

The two algorithms differ in how words 6 through 8 of the reference array are used and
in how the PID output (CV) is calculated.

PID Built-In Function Block 401

CPU Programmer’s Reference Manual Section 7
GFK-2950M Dec 2024

The Independent term PID (PID_IND) algorithm calculates the output as:
PID Output = Kp * Error + Ki * Error * dt + Kd * Derivative + CV Bias

where Kp is the proportional gain, Kiis the integral rate, Kd is the derivative time, and dt
is the time interval since the last solution.

The ISA (PID_ISA) algorithm has different coefficients for the terms:
PID Output = Kc * (Error + Error * dt/Ti + Td * Derivative) + CV Bias

where Kc is the controller gain, Ti is the Integral time and Td is the Derivative time. The
advantage of PID_ISA is that adjusting Kc changes the contribution for the integral and
derivative terms as well as the proportional term, which can simplify loop tuning.

If you have the PID_ISA Kc, Ti and Td values, use the following equations to convert
them to use as PID_IND parameters:

Kp = Kc, Ki = Kc/Ti, and Kd = Kc * Td

The following diagram shows how the PID_IND algorithm works:

Figure 258: PID_IND Diagram

Proporional Tem = oV

Error Term Kp + Emor - Bias
5P Sign
+i-
Integral Term = .
Dead . Slew Upper / Lower Polari o
Band Previous Integ. Term + Limit Clamp ity
+

Ki* Emor* ATime
py * DerivAction Vel Derfvative Tem =

1 TATime Kd » ol

ime

The ISA Algorithm (PID_ISA) is similar except that its Kc gain coefficient is applied after
the three terms are summed, so that the integral gain is Kc/ Ti and the derivative gain is
Kc*d.

Bits 0, 1 and 2 in the Config Word set the Error sign, Output Polarity and Derivative
Action, respectively.

PID Built-In Function Block 402

CPU Programmer’s Reference Manual Section 7
GFK-2950M Dec 2024

7.4.1 Derivative Term

The Derivative Term is Kd (word 7 of the reference array) multiplied by the time rate of
change of the Error term in the interval since the last PID solution.

Derivative = Kd * Aerror / dt = Kd * (Error — previous Error) / dt
where
dt = Current controller time — controller time at previous PID solution.

Two bits in the Config Word (word 13 of the reference array) affect the calculation of
Aerror: Error Term Mode and Derivative Action. For additional information about the
operation of these bits, refer to Config Word above.

7.4.2 Error Term Mode

The sign of the Error term is determined by the value of a mode bit in the reference amay
for the PID function.

In reverse acting mode, the change in the error term is:
Aerror = (Error — previous Error) = ASP — APV
where
APV = (PV — previous PV), and ASP = (SP — previous SP).

However, in direct acting mode, the error term is (PV — SP), the sign of the change in the
error term is reversed:

Aerror = (Error — previous Error) = = APV — ASP.

7.4.3 Derivative Action on PV Bit

By default, the change in the error term depends on changes in both SP and PV. If SP
is constant, ASP=0, and SP has no effect on the derivative term. When SP changes,
however, it can cause large transient swings in the derivative term and hence the output.
Loop stability can be improved by eliminating the effect of SP changes on the derivative
term.

To calculate the Derivative based only on the change in PV, set bit 2 of the Config Word
to 1. This modifies the equations above by assuming SP is constant (ASP = 0).

PID Built-In Function Block 403

CPU Programmer’s Reference Manual Section 7

GFK-2950M Dec 2024
7.4.4 Combined Operation of Error Term and Derivative
Action Modes
Bit 0 of Config Word Bit 2 of Config Word
ivati Error Term Value
Value Error Term Mode Value Der.l vative
Action

0 Reverse Acting (default) 0 ASP included ASP -A PV

1 Direct Acting 0 ASP included APV -A SP

0 Reverse Acting (default) 1 ASP ignored —-APV

1 Direct Acting 1 ASP ignored APV
7.4.5 CV Bias Term

The CV Bias term (word 9 in the reference array) is an additive term separate from the
PID inputs. It may be useful if you are using only Proportional gain (Kp) and you want
the CV to be anon-zero value whenthe PV equals the SP and the Erroris 0. Inthis case,
set the CV Bias to the desired CV when the PV is at the SP. CV Bias can also be used
for feed forward control where another PID loop or control algorithm is used to adjust the
CV output of this PID loop.

If a non-zero Integral rate is used, the CV Bias will normally be 0 as the integral tem acts
as an automatic bias or reset. Just start up in Manual mode and use the Manual
Command word (word 14 of the reference array) to set the desired CV, and then switch
to Automatic mode. This will immediately calculate the required value for the integral

term.

7.4.6 CV Amplitude and Rate Limits

The PID block does not send the calculated Output directly to CV. Both PID algorithms
can impose amplitude and rate of change limits on the output Control Variable. If the
Minimum Slew Time (word 12 of the reference array) is non-zero, the rate of change
(slew rate) limit is determined by dividing the maximum CV value (32,000) by the
Minimum Slew Time. For example, if the Minimum Slew Time is 100 seconds, the rate
limit will be 320 CV counts per second. If the solution interval was 50 ms, the new CV
output cannot change more than 320*50/1000 or 16 CV counts from the previous CV

output.

The CV output is then compared to the CV Upper Clamp and CV Lower Clamp values
(words 10 and 11 of the reference array). If CV is outside either limit, the CV outputis
clamped to the appropriate limit value. When the CV output is modified to impose either
slewrate oramplitude limits (or both) the stored integral term would normally accumulate
a large value over time. This phenomenon is known as reset windup. Reset windup
introduces errors in CV after the PID output no longer needs to be limited. For example,
windup would prevent the CV output from moving off a clamp value immediately.

There are two optional methods for preventing reset windup. If the Anti-reset-windup
Action bit (bit 4) of Config Word (word 13 of the reference array) is zero (the default), the
integral term is adjusted at each PID solution to match the error input and limited CV
output exactly. When PV changes while CV is clamped, or when CV is both rate and
amplitude limited in a particular PID solution, this option assures that a smooth transition
will always occur after CV is no longer limited.

PID Built-In Function Block 404

CPU Programmer’s Reference Manual Section 7
GFK-2950M Dec 2024

If the Anti-reset-windup Action bit of Config Word is set, then the integral term stored on
the previous PID solutionis simply retained as long as CV is limited. This option was
added to assure compatibility with existing PID applications when the default action

described above was introduced. This option is not recommended for new applications.

Finally, the PID block checks the Output Polarity (bit 2 of the Config Word) and changes
the sign of the output if the bit is 1.

CV = — (Clamped PID Output) if Output Polarity bit set, or
CV= (Clamped PID Output) if Output Polarity bit cleared.

If the block is in Automatic mode, the final CV is placed in the Manual Command (word
14 of the reference array). If the block is in Manual mode, the PID equation is skipped
because CV is set by the Manual Command, but the slew rate and amplitude limits are
still checked. This assures that the Manual Command cannot change the output above
the CV Upper Clamp orbelowthe CV Lower Clamp, and the outputcannot change faster
than allowed by the Minimum Slew Time.

7.4.7 Sample Period and PID Function Block Scheduling

The PID function block is a digital implementation of an analog control function, so the dt
sample time in the PID Output equation is not the infinitesimally small sample time
available with analog controls. The majority of processes being controlled can be
approximated as a gain with a first or second order lag and (possibly) a pure time delay.
The PID function block sets a CV output to the process and uses the process feedback
PV to determine an Error to adjust the next CV output. A key process parameter is the
total time constant, which is how fast the process can change PV when the CV is
changed. As discussed in Determining the Process Characteristics below, the total ime
constant, Tp+Tc, for a firstorder system is the time required for PV to reach 63% of its
final value when CV is stepped. The PID function block will not be able to control a
process unless its Sample Period is well under half the total time constant. Larger
Sample Periods will make it unstable.

The Sample Period should be no bigger than the total time constant divided by 10 (or
down to 5 worst case). For example, if PV seems to reach about 2/3 of its final value in
2 seconds, the Sample Period should be less than 0.2 seconds, or 0.4 seconds worst
case. On the other hand, the Sample Period should not be too small, such as less than
the total time constant divided by 1000, orthe Ki * Error* dt term forthe PID integral tem
will round down to 0. For example, a very slow process that takes 10 hours or 36,000
seconds to reach the 63% level should have a Sample Period of 40 seconds or longer.

Variations of the time interval between PID function solutions can have short-term effects
onthe CV output. For example, if a step change to PV caused by measurement noise
occurs between solutions, the value of the derivative term will be inversely proportional
to the time interval. The performance of PID loops that are tuned for quick response may
be improved when the solution interval is held constant by configuring the CPU for
constant sweep mode. Depending on the CPU model and the application, constant
sweep times of 10 ms, integer multiples of 10 ms, or exactdivisors of 10 ms (1, 2or 5
ms) will be possible. The Sample Period can then be set for a suitable multiple of 10 ms.

If many PID loops are used, allowing the application to solve all the loops on the same
sweep may lead to wide variations in CPU sweep time. If the loops have a common

PID Built-In Function Block 405

CPU Programmer’s Reference Manual Section 7
GFK-2950M Dec 2024

Sample Period thatis at least equal to the number of PID loops times the sweep time, a
simple solution is to sequence one or more 1’s through an array of zero ‘s and use these
bits to enable power flow to individual PID function blocks. The logic should assure that

each PID function block is enabled no more often than its Sample Period.

7.5 Determining the Process Characteristics

The PID loop gains, Kp, Ki and Kd, are determined by the characteristics of the process
being controlled. Two key questions when setting up a PID loop are:

1. How big is the change in PV when CV is changed by a fixed amount, or what is
the open loop gain of the process?

2. How fast does the system respond, or how quickly does PV change after the
CV output is stepped?

Many processes can be approximated by a process gain, first or second order lag and a
puretimedelay. Inthe frequency domain, the transfer function forafirstorderlag system
with a pure time delay is:

PV(s)

cr(s) . Ols) _ Ke

Plotting the response to a step input at time t0 in the time domain provides an operHoop
unit reaction curve:

~T, [(1+T,5)

Figure 259

CW Unit Step Output fo Process

The following process model parameters can be determined from the PV unit reaction
curve:

Parameter | Description

K Process open loop gain = final change in PV/change in CV at time to
(Note no subscript on K)

T, Process or pipeline time delay or dead time after to before the process output PV starts
moving

T. First order Process time constant, time required after T, for PV to reach 63.2% of the final
PV

Usually the quickest way to measure these parameters is by putting the PID function
block in Manual mode, making a small step change in the CV output by changing the
Manual Command (word 14 of the reference array), and then plotting the PV response
overtime. Forslow processes this can be done manually, butfor faster processes achart
recorder or computer graphic data-logging package will help. The CV step size should
be large enough to cause an observable change in PV, but not so large that it disrupts

PID Built-In Function Block 406

CPU Programmer’s Reference Manual Section 7
GFK-2950M Dec 2024

the process being measured. A good step size may be from 2 to 10% of the difference
between the CV Upper and CV Lower Clamp values.

PID Built-In Function Block 407

CPU Programmer’s Reference Manual

GFK-2950M

7.6 Setting Tuning Loop Gains

7.6.1 Basic Iterative Tuning Approach

Because PID parameters are dependent on the process being controlled, there are no
predetermined values that will work. However, a simple iterative process can be used to
find acceptable values for Kp, Ki, and Kd gains.

1.

PID Built-In Function Block

Set all the reference array parameters to 0, then set the CV Upper and CV
Lower Clamps to the highest and lowest CV expected. Set the Sample Period
to a value within the range Tc/10 to Tc/100, where Tc is the estimated process
time constant defined in Determining the Process Characteristics

Put the PID function block in Manual mode and set the Manual Command
(word 14 in the reference array) to different values to check if CV can be
moved to Upper and Lower Clamp. Record the PV value at some CV pointand
load it into SP.

Set a small gain, such as 100 * Maximum CV/Maximum PV, into Kp and turn
off Manual mode. Step SP by 2% to 10% of the Maximum PV range and
observe PV response. Increase Kp if PV step response is too slow or reduce
Kp if PV overshoots and oscillates without reaching a steady value.

Once aKp is found, start increasing Ki to get overshooting that dampens out to
a steady value in two to three cycles. This may require reducing Kp. Also try
different SP step sizes and CV operating points.

After suitable Kp and Ki gains are found, try adding Kd to get quicker
responses to input changes, providing it doesn't cause oscillations. Kd is often
not needed and will not work with noisy PV.

Check gains over different SP operating points and add Dead Band and
Minimum Slew Time if needed. Some Reverse Acting processes may need
setting of Config Word Error Term or Output Polarity bits.

408

Section 7
Dec 2024

CPU Programmer’s Reference Manual Section 7
GFK-2950M Dec 2024

7.6.2 Setting Loop Gains Using the Ziegler and Nichols
Tuning Approach

This approach provides good response to system disturbances with gains producing an
amplitude ratio of 1/4. The amplitude ratio is the ratio of the second peak over the first
peak in the closed loop response.

1. Determine the three process model parameters, K, Tp and Tc for use in
estimating initial PID loop gains.

2. Calculate the Reaction rate:
R = K/Tc
3. For Proportional control only, calculate Kp as:
Kp = 1/(R* Tp) = Tc/(K * Tp)
For Proportional and Integral control, use:
Kp =0.9/(R*Tp)=0.9* Tc/(K* Tp) Ki = 0.3 * Kp/Tp

For Proportional, Integral and Derivative control, use:
Kp = G/(R * Tp)where G is from 1.2 to 2.0
Ki =0.5* Kp/Tp
Kd =0.5*Kp *Tp
4. Check that the Sample Period is in the range
(Tp + Tc)/10 to (Tp + Tc)/1000

7.6.3 |deal Tuning Method

The Ideal Tuning procedure provides the best response to SP changes that are delayed
only by the Tp process delay or dead time.

1. Determine the three process model parameters, K, Tp and Tc for use in
estimating initial PID loop gains.
2. Calculate Kp, Ki, and Kd as follows:
Kp=2*Tc/ (3*K*Tp)
Ki=Tc
Kd = Ki/4 if Derivative term is used
3. Once initial gains are determined, convert them to integers.

4. Calculate the Process gain, K, as a change in input PV Counts divided by the
resulting output step change in CV Counts. (Not in process PV or CV
engineering units.) Specify all times in seconds.

5. Once Kp, Kiand Kd are determined, Kp and Kd are multiplied by 100 while Ki
is multiplied by 1000. The resulting values are entered the corresponding
reference array word locations.

PID Built-In Function Block 409

CPU Programmer’s Reference Manual Section 7
GFK-2950M Dec 2024

1.7 PID Example

The following PID example has a sample period of 100ms, a Kp gain of 4.00 and a Ki
gain of 1.500. The set point is stored in %R0001, the control variable is output in
%AQ0002, and the process variable is returned in %Al0003. CV Upper and CV Lower
Clamps must be set, in this case to 20000 and 4000, and an optional small Dead Band
of +5 and -5 is included. The 40-word reference array starts in %R0100. Normally, user
parameters are set in the reference array, but %M0006 can be set to re-initialize the 14

words starting at %R0102 (word 3) from constants stored in logic (a useful technique).

The block can be switched to Manual mode with %M1 so that the Manual Command,
%R113, can be adjusted. Bits % M4 or % M5 canbe usedtoincreaseordecrease %R113
and the PID CV by 1 every 100ms solution. For faster manual operation, bits %M2 and
%M3 canbe used to add orsubtract the value in %R2 to/from %R113 every CPU sweep.
The %T1 output is on when the PID is OK.

7.7.1 Reference Array Initialization using %MO00006
For details on the contents of the reference array, refer to Reference Array for the PID
Function
Word|Function Address|Value
3 Sample Period %R102 10
4 + Dead Band %R103 5
5 - Dead Band %R104 5
6 Kp %R105 400
7 Kd %R106 0
8 Ki %R107 1500
9 CV Bias %R108 0

10 CV Upper Clamp %R109 2000
11 CV Lower Clamp %R110 400

12 Minimum Slew Time [%R111 0
13 Config Word %R112 0
14 Manual Command | %R113 0
15 Control Word %R114 0
16 Internal SP %R115 0

PID Built-In Function Block 410

CPU Programmer’s Reference Manual Section 7
GFK-2950M Dec 2024
Figure 260 : PID Example Logic
M0000e BLK CLR BLKMOV BLKMOV
1 b WORD INT INT
35
ROO100 —{IN 10 =N1 2| Roo102 20000 =IN1 Q[ROD109
PID IND To0001
2 {—
RO0100
ROODO1 =—SF CVf= AQOODZ
AI0003 —|PY
MO0001
{ } MAN
MO0004
i up
MODO0S
| } DN
MO0002 ADD INT
3 i | =
ROO11Z —{IN1 O RO0113
ROOOOZ —{IN2
MO0003 SUB INT
4 i -
ROO113 —{IN1 @ RO0113
ROOOOZ —|IN2

PID Built-In Function Block

411

CPU Programmer’s Reference Manual Section 8
GFK-2950M Dec 2024

Section 8 Structured Text (ST)
Programming

The Structured Text (ST) programming language isan IEC 61131-3 textual programming
language. This chapter describes how structured textis implemented in PACSystems.
Forinformation on using the structured text editor in the programming software, refer to
the online help.

The block types Block, Parameterized Block, and Function Block (UDFB) can be
programmed in ST. The _MAIN program block can also be programmed in ST. For
details on blocks, refer to Program Organization in Section 2. For CPS400 programming
refer to GFK-3279 VersaMax SafetyNet Function Block Manual for the list of allowed
instructions.

8.1 Language Overview
8.1.1 Statements

A structured text program consists of a series of statements, which are constructed from
expressions and language keywords. A statement directs the PACSystems controller to
perform a specified action. Statements provide variable assignments, conditional
evaluations, iteration, and the ability to call built-in functions. PACSystems supports
those statements described in Section 8.2, Statement Types.

8.1.2 Expressions

Expressions use operators to calculate values from variables and constants. An example
of a simple expression is (x+5).

Composite expressions can be created by nesting simpler expressions, for example,
(at+b)*(c+d)-3.0 ** 4.

8.1.3 Operators

The table belowlists the operators that you can use within an expression. They are listed
according to their evaluation precedence, which determines the sequence in which they
are executed within the expression. The operator with the highest precedence is applied
first, followed by the operator with the next highest precedence. Operators of equal
precedence are evaluated left to right. Operators in the same group, for example + and
-, have the same precedence.

Any addressoperatorsusedin LD canbe used on SToperands. Address operators have
precedence over the ST language operators. Address operators include indirect
addressing (for example, @Var1), array indexing (for example, Var1[3]), bit within word
addressing (for example, Var1.X[3]), and structure fields (for example, Var1.field1).

Precedence Operator Operand Types Description
Group 1 (Highest) (--2) Parenthesized expression
Group 2 - INT, DINT, REAL, LREAL Negation
NOT BOOL, BYTE, WORD, Boolean complement
DWORD

Structured Text (ST) Programming 412

CPU Programmer’s Reference Manual

Section 8

GFK-2950M Dec 2024
Precedence Operator Operand Types Description
Group 3 A INT, DINT, UINT, REAL, Exponentiation® "

LREAL®
Group 4 * INT, DINT, UINT, REAL, Multiplication®
LREAL
/ INT, DINT, UINT, REAL, Division® "
LREAL
MOD INT, DINT, UINT Modulus operation™
Group 5 + INT, DINT, UINT, REAL, Addition®
LREAL
- INT, UINT, DINT, REAL, Subtraction®
LREAL
Group 6 <, >, <=, >= INT, DINT, UINT, REAL, Comparison
LREAL, BYTE, WORD,
DWORD
Group 7 = ANY ™" Equality
<> 1= ANY™ Inequality
Group 8 AND, & BOOL, BYTE, WORD, Boolean AND
DWORD
Group 9 XOR BOOL, BYTE, WORD, Boolean exclusive OR
DWORD
Group 10 (Lowest) OR BOOL, BYTE, WORD, Boolean OR
DWORD

Some comparison and math operators have corresponding built-in functions. For
instance, the ‘+’ operator is similar to the ADD_INT function. You can use either the
language operator or the built-in function. The built-in function has the advantage of
returning an ENO status. For additional information refer to Built-in Functions Supported
for ST Calls.

Operand Types
Type casting is not supported. To convert a type, use one of the built-in conversion
functions. Use of built-in functions is described in Function Call.

For untyped operators (+, *, ...), the types of the operands must match.

8.1.4 Structured Text Syntax

The syntax of the STimplementation for PACSystems follows the IEC 61131-3 standard.

e Structured Text statements must end in a semi-colon (;).

8The base must be type REAL orLREAL. Ifthe base is REAL, the power can be type INT, DINT, UINT, or REAL and the result is
type REAL. If the base is type LREAL, the power must be LREAL and the result will be LREAL
°Use of math operators can cause

Overflow or underflow.

Overflow results are truncated.

' |f either operand is positive or negative infinity, the result is undefined.

" The CPU flags a “divide-by-0” error as an application fault.

2 Operators that can take operands of type ANY can be used with any of the supported elementary datatypes. The supported data
types are: BOOL, INT, DINT, UINT, BYTE, WORD, DWORD, LREAL and REAL. STRING and TIME data types are not supported
Structured Text (ST) Programming 413

CPU Programmer’s Reference Manual Section 8
GFK-2950M Dec 2024

e Structured Text variables must be declared in the variable list for the target.
These symbols have the following functions.

= assigns an expression to a variable

; required to designate the end of a statement

[] used for array indexing where the array index is an integer. For example, this
sets the third element of an array to the value j+10: intarray[3]: = j + 10;

(* *) designates a comment. These comments can span multiple lines. For
example, (*This comment spans multiple lines.*)

Il or designates a single line comment. For example,

c :=a+b; //This is a single line comment.

C :=a+b; ‘This is a single line comment.

Structured Text (ST) Programming 414

Section 8
Dec 2024

CPU Programmer’s Reference Manual
GFK-2950M

8.2 Statement Types

The Structured Text statements, which specify the actual program execution, consist of
the following types, which are described in more detail on the following pages.

Statement Description Example
Type
Assignment Sets an object to a specified value. A:==1,B:=A;C:=A+B;
CASE Provides for the conditional execution of a set of statements. CASE A OF
1,2:C:=3;
3: C:=4;
4.5:C:=5;
ELSE
C:=0;
END_CASE;
COMMENT Places a text explanation in the program. Ignored by the ST (* This is a block comment *)
compiler. ‘ This is a line comment
/I This is a line comment //
Function call Calls a function for execution. Fbinst(IN1 := 1, OUT1 => A);
RETURN Causes the program to return from a subroutine. The return RETURN;
statement provides an early exit from a block.
EXIT Terminates iterations before the terminal condition becomes EXIT;
TRUE (1).
IF Specifies that one or more statements be executed conditionally. | IF (A < B) THEN
C:=4;
ELSIF (A =B) THEN
C:=5;
ELSE
C:=6
END_IF;
FOR ... DO Executes a statement sequence repeatedly based on the value | FORI:=1 TO 100 BY 2 DO
of a control symbol. IF (Var1 — 1) =40 THEN
Key :=1;
EXIT;
END_IF;
END_FOR,;
WHILE Indicates that a statement sequence be executed repeatedly unti | WHILE J <= 100 DO
a Boolean expression evaluates to FALSE (0). Ji=J+2;
END_WHILE;
REPEAT Indicates that a statement sequence be executed repeatedly unti | REPEAT
a Boolean expression evaluates to TRUE (1). J:i=J+2;
UNTIL J >= 100
END_REPEAT;
ARG_PRESENT [Determines whether a parameter value was present when the | ARG_PRES (IN :=In1, Q:>Out1,
function block instance of the parameter was invoked. For ENO:>0ut2);
example, a parameter can be optional (pass by value).
Empty Statement ;

8.2.1 Assignment Statement

The assignment statement replaces the value of a variable with the result of evaluating
an expression (of the same data type).

Notes:
° Assignment statements can affect transition bits.

Structured Text (ST) Programming 415

CPU Programmer’s Reference Manual Section 8
GFK-2950M Dec 2024

° Assignment statements take override bits into account.

Format

Variable := Expression;
Where:
Variable is a simple variable, array element, etc.
Expression is a single value, expression, or complex expression.
Examples
Boolean assignment statements:
VarBool1 := 1,
VarBool2 := (val <= 75);
Array element assignment:

Array_1[13] := (RealA /RealB)* PI;

Structured Text (ST) Programming 416

CPU Programmer’s Reference Manual Section 8
GFK-2950M Dec 2024

8.2.2 Function Call

The structured text function call executes a predefined algorithm that performs a
mathematical, bit string or other operation. The function call consists of the name of the
function or block followed by required input or output parameters.

The structured textlogic can call blocks or the PACSystems built-in functions listed in
the table below. The call must be made in a single statement and cannotbe part of a
nested expression.

Calls to some functions, such as communications request (COMMREQ), require a
command block or parameter block. For these functions, an array is declared, initialized
in logic, and then passed as a parameter to the function.

Built-in Functions Supported for ST Calls

Note: Only the functions listed in the following table are supported in the current
PACSystems version. Other built-in functions are not supported.

Example: cos(IN := inReal, Q => outReal, ENO => outBool);

Category Functions More
information
Advanced Math ASIN, ATAN, ACOS, COS, SIN, TAN Section 4

LOG, LN, EXP, EXPT,
SQRT_INT, SQRT_DINT, SQRT_REAL

Math ABS_INT, ABS_DINT, ABS_REAL Section 4
SCALE_DINT, SCALE_INT, SCALE_UINT
Communication PNIO_DEV_COMM PACSystems RX3i &

RSTi-EP PROFINET
1/0 Controller
Manual, GFK-2571

Control DO_10, MASK_IO_INTR, SCAN_SET_IO, Section 4
SUS_IO, SUS_IO_INTR, SVC_REQ,
SWITCH_POS, F_TRIG, R_TRIG
Data Conversion BCD4_TO_INT, BCD4_TO_UINT, Section 4
BCD4_TO_REAL

BCD8_TO_DINT, BCD8_TO_REAL
DINT_TO_BCDS8, DINT_TO_DWORD,
DINT_TO_INT, DINT_TO_UINT,
DINT_TO_REAL, DINT_TO_LREAL
DWORD_TO_DINT

INT_TO_BCD4, INT_TO_DINT,
INT_TO_UINT, INT_TO_REAL,
INT_TO_WORD

UINT_TO_BCD4, UINT_TO_BCDS,
UINT_TO_INT, UINT_TO_DINT,
UINT_TO_REAL, UINT_TO_WORD
REAL_TO_INT, REAL_TO_UINT,
REAL_TO_DINT, REAL_TO_LREAL
LREAL_TO_DINT, LREAL_TO_REAL
TRUNC_INT, TRUNC_DINT
DEG_TO_RAD, RAD_TO_DEG
WORD_TO_INT, WORD_TO_UINT
Structured Text (ST) Programming 417

CPU Programmer’s Reference Manual Section 8

GFK-2950M Dec 2024
Category Functions More
information
Data Move ARRAY_SIZE, ARRAY_SIZE_DIM1, Section 4
ARRAY_SIZE_DIM2, COMMREQ,
MOVE_DATA_EX, SIZE_OF
PACMotion The RX3i CPUs support 56 PLCopen PACMotion Multi-Axis
compliant motion functions and function Motion Controller
blocks. User's Manual,
GFK-2448

Calls to Standard Function Blocks

Standard function blocks are instructions that have instance data in the form of a
structure variable. (For more information on function blocks and their instance data, refer
to Functions and Function Blocks in Section 2.) Standard function blocks are called in
the same way that a UDFB is called.

PACSystems controllers support three standard function blocks:

Pulse timer (TP) Generates output pulses of a given Referto Timer Pulse in Section
duration 4

On-delay timer (TON) Delays setting an output ON for a fixed Refer to On Delay Timer in
period after an input is set ON. Section 4

Off-delay timer (TOF) Delays setting an output OFF for a fixed | Referto Off Delay Timer in

period after an input goes OFF so that Section 4
the output is held on for a given period
longer than the input.

Format of Calls to Standard Timer Function Blocks

Notes:

TOF, TON and TP have the same input and output parameters, except for the
instance variable, which must be the same type as the instruction.

Writing or forcing values to the instance data elements IN, PT, Q, ET, ENO or TI
may cause erratic operation of the timer function block.

Instance data can be a variable or a parameter of the current UDFB or
parameterized block.

Formal Convention

myTOF_Instance_Data(IN := inBool, PT :
outBool, ENO => outBoolSuccess);

myTON_Instance_Data(IN := inBool, PT :
outBool, ENO => outBoolSuccess);
myTP_Instance_Data(IN := inBool, PT := inDINT, ET => outDINT, Q =>
outBool, ENO => outBoolSuccess);

inDINT, ET => outDINT, Q =>

inDINT, ET => outDINT, Q =>

Note:

ENO is an optional BOOL output parameter. If ENO is used in a statement that uses
the formal convention, the state of outBoolSuccess is set to 1 (call was successful
or 0 (call failed).

Informal Convention

Structured Text (ST) Programming 418

CPU Programmer’s Reference Manual Section 8
GFK-2950M Dec 2024

myTOF_Instance_Data(inBool, inDINT, outDINT, outBool);
myTON_Instance_Data(inBool, inDINT, outDINT, outBool);
myTP_Instance_Data(inBool, inDINT, outDINT, outBool);

Note: When using the informal convention, the operands must be assigned in the order shown
above (thatis, IN, PT, ET, Q and ENO).

Structured Text (ST) Programming 419

CPU Programmer’s Reference Manual Section 8
GFK-2950M Dec 2024

Block Types Supported for ST Calls

An ST blockcan call blocks of type Block, Parameterized Block, or user defined Function
Block (UDFB) or External Block (C block). For more information on block types, refer to
Section 2.

Formal Calls vs. Informal Calls

PACSystems supports formal and informal calls in ST.

Formal Calls Informal Calls

Input parameter assignments use the =’ Input and output parameters are listed in

notation while output assignments use the ‘=>" | parentheses.

notation.

Optional parameters can be omitted. Parameters cannot be omitted.

Parameters can be in any order. Parameters must be in the correct order as follows:
Inputs

Instance location (if required)
Length parameter (if required)
Outputs, starting with the last output

parameter.
The ENO parameter is specified in a formal The ENO parameter is not specified in an informal
function or block call. function or block call.

All built-in functions and user-defined blocks
have an optional ENO output parameter
indicating the success of the function or block.
Either ENO or YO can be used as this output
parameter name.

Format of Formal Function Call

FunctionName(IN1 := inparam1, IN2 := inparam2, OUT1 => outparam1, ENO =>
enoparam);

Format of Informal Function Call
FunctionName(inparam1, inparam2, outparam1);
Example

This code fragment shows the TAN function call.

TAN(AnyReal, Result);

Structured Text (ST) Programming 420

CPU Programmer’s Reference Manual Section 8

GFK-2950M

8.2.3

8.2.4

Dec 2024

RETURN Statement

The return statement provides an early exit from a block. For example, in the following
lines of code the third line will never execute. The variable a will have the value 4.

a:=4;
RETURN;
a:=>5;

|IF Statement

The IF construct offers conditional execution of a statement list. The condition is
determined by result of a Boolean expression. The IF constructincludes two optional
parts, ELSE and ELSIF, that provide conditional execution of alternate statement list(s).
One ELSE and any number of ELSIF sections are allowed per IF construct.

Format

IF BooleanExpression1 THEN
StatementList1;

[ELSIF BooleanExpression2 THEN (*Optional*)
StatementList2;]

[ELSE (*Optional*)
StatementList3;]

END_IF;

Where:
BooleanExpression Any expression that resolves to a Boolean value.

StatementList Any set of structured text statements.

Note: Either ELSIF or ELSEIF can be used for the else if clause in an IF statement.

Structured Text (ST) Programming 421

CPU Programmer’s Reference Manual Section 8
GFK-2950M Dec 2024

Operation

The following sequence of evaluation occurs if both optional parts are present:

e If BooleanExpression1is TRUE (1), StatementList1 is executed. Program execution
continues with the statement following the END_IF keyword.

e If BooleanExpression1 is FALSE (0) and BooleanExpression2 is TRUE (1),
StatmentList2 is executed. Program execution continues with the statement following
the END_IF keyword.

e If both Boolean expressions are FALSE (0), StatmentList3 is executed. Program
execution continues with the statement following the END_IF keyword.

If an optional part is not present, program execution continues with the statement
following the END_IF keyword.

Example

The following code fragment puts text into the variable Status, depending on the value
of I/O point input value.

IF Input01 < 10.0 THEN

Status := Low_Limit_Warning;
ELSIF Input02 > 90.0 THEN

Status := Upper_Limit_Warning;
ELSE

Status := Limits_OK;
END_IF;

Structured Text (ST) Programming 422

CPU Programmer’s Reference Manual Section 8
GFK-2950M Dec 2024

8.2.5 CASE Statement

The CASE OF construct offers conditional execution of statement lists. It uses the
value of an ST integer expression to determine whether to execute a statement list. The
statement list to be executed can be selected from multiple statement lists, depending
on the value of the associated integer expression.

Conditions can be expressed as a single value, a list of values, or a range of values. The

single-value, list of values, or range forms can be used by themselves or in combination.
The optional ELSE keyword can be used to execute a statement listwhen the associated

value does not meet any of the specified conditions.

You can have a maximum of 1024 cases in a single CASE ... OF construct. Additional
cases can be handled by adding the ELSE keyword to the construct and specifying a
nested CASE ... OF construct or an IF ... THEN construct after the ELSE.

The number of nested CASE ... OF constructs and the number of levels are limited by
the memory in your computer.

The number of constants and constant ranges in a single conditional statement is limited
by the memory in your computer.

Format
CASE Integer_Expression OF
Int1: (*Single Value*)
StatementList_1;
Int2,Int3,Int4: (*List of Values*)
StatementList_2;
Int5..Int6: (*Range of Values®)
StatementList_3;
[ELSE (*Optional*)
StatementList_Else;]
END_CASE;
Where:
Block Description
Integer_Expression An ST expression that resolves to an integer (INT, DINT or
UINT) value.
Int A constantinteger value.
StatementList_1 ... Structured Text statements.
StatementList_n

Operation

The Int values are compared to Integer_Expression. The statement list following the first
Int value that matches Integer Expression is executed. If the optional ELSE keyword is
used and no Int value matches Integer_Expression, the statement list following ELSE is

executed. Otherwise, no statement list is executed.

Requirements for Conditional Statements

Structured Text (ST) Programming 423

CPU Programmer’s Reference Manual Section 8
GFK-2950M Dec 2024

e All constants must be of type INT, DINT or UINT.

¢ In range declarations, the beginning value must be less than the ending value
(reading from left to right). For example, 10..3 and 5..5 are invalid.

e Overlapping values in different case conditions are not allowed. For example, 5..10
and 7 cannot be specified as conditions in the same CASE ... OF construct.

Examples

The following code fragment assigns a value to the variable ColorVariable.

CASE ColorSelection OF
0: ColorVariable:= Red,;
1: ColorVariable:= Yellow;
2,3,4: ColorVariable:= Green;
5..9: ColorVariable:= Blue;
ELSE ColorVariable:= Violet;
END_CASE;

The following code fragment uses a nested CASE...OF...END_CASE construct.

CASE ColorSelection OF
0: ColorVariable:= Red;
1: ColorVariable:= Yellow;
2,3,4: ColorVariable:= Green;
5..9: ColorVariable:= Blue;
ELSE
CASE ColorSelection OF
10: ColorVariable:= Violet;
ELSE ColorVariable:= Black;
END_CASE;
ColorError: 1;
END_CASE;

Structured Text (ST) Programming 424

CPU Programmer’s Reference Manual Section 8
GFK-2950M Dec 2024

8.2.6 FOR ... DO Statements

The FOR loop repeatedly executes a statement list contained within the
FOR...DO...END_FOR construct. It is useful when the number of iterations can be
predicted in advance, for example to initialize an array. The number of iterations is
determined by the value of a control variable which is incremented (or decremented)
from an initial value to a final value by the FOR statement.

By default, each iteration of the FOR statement changes the value of the control variable
by 1. The optional BY keyword can be used to specify an increment or decrement of the
control variable by specifying a (non-zero) positive or negative integer or an expression
that resolves to an integer.

FOR loops can be nested to a maximum of ten levels.

Format

FOR Control_Variable := Start_Value TO End_Value [BY Step_Value]
DO

Statement list;
END_FOR;

Where:

Block Description

Control_Variable The control variable. Can be an INT, DINT or UINT variable or parameter.

Start_Value The starting value of the control variable. Must be an expression, variable, or
constant of the same data type as Int_Variable.

End_Value The ending value of the control variable. Must be an expression, variable, or
constant of the same data type as Int_Variable.

Step_Value (Optional) The increment or decrement value for each iteration of the loop. Must be
an expression, variable, or constant of the same data type as Int_Variable. If
Step_Value is not specified, the control variable is incremented by 1.

Statement list Any list of Structured Text statements.

Operation

The values of Start_Value, End_Value and Step_Value are calculated at the beginning
of the FOR loop. On the first iteration, Control_Variable is set to Start_Value.

At the beginning of each iteration, the termination condition is tested. If it is satisfied,
execution of the loop is complete and the statements after the loop will proceed. If the
termination condition is not satisfied, the statements within the FOR...END_FOR
construct are executed. At the end of each iteration, the value of Control Variable is
incremented by Step_Value (or 1 if Step_Value is not specified).

Structured Text (ST) Programming 425

CPU Programmer’s Reference Manual Section 8
GFK-2950M Dec 2024

The termination condition of a FOR loop depends on the sign of the step value.

Step Value | Termination Condition

>0 Control_Variable > End_Value

<0 Control Variable < End Value

0 None. A termination condition is never reached and the loop will repeat infinitely.

As with the other iterative statements (WHILE and REPEAT), loop execution can be
prematurely halted by an EXIT statement.

To avoid infinitely repeating or unpredictable loops, the following precautions are
recommended:

e Do notallowthe statementlistlogic within the FORloop to modify the control variable.
e Do not use the control variable in logic outside the FOR loop.

Examples

The following code fragment initializes an array of 100 elements starting at %R1000
(given that R1000 is at %R1000) by assigning a value of 10 to all array elements.

FOR R1000 := 1 TO 100 DO
@R1000 := 10;
END_FOR;
The following code fragment assigns the values of an I/O point to array elements over
ten I/O scans. The last entry is put in the array element with the smallest index.
FOR R1000 := 10 TO 1 BY -1 DO

@R1000 := Input01;
END_FOR;

Structured Text (ST) Programming 426

CPU Programmer’s Reference Manual Section 8
GFK-2950M Dec 2024

8.2.7 WHILE Statement

The WHILE loop repeatedly executes (iterates) a statement list contained within the
WHILE...END_WHILE construct as long as a specified condition is TRUE (1). It checks
the condition first, then conditionally executes the statement list. This looping construct
is useful when the statement list does not necessarily need to be executed.

Format

WHILE <BooleanExpression> DO
<StatementList>;
END_WHILE;

Where:
BooleanExpression Any expression that resolves to a Boolean value.

StatementList Any set of Structured Text statements.

Operation

If BooleanExpression is FALSE (0), the loop is immediately exited; otherwise, if the
BooleanExpression is TRUE (1), the StatementList is executed and the loop repeated.
The statement list may never execute, since the Boolean expressionis evaluated at the
beginning of the loop.

Note: It is possible to create an infinite loop that will cause the watchdog timer to expire.
Avoid infinite loops.

Example

The following code fragment increments J by a value of 2 if J is less than or equal to 100.

WHILE J <= 100 DO
J=J+2
END_WHILE;

Structured Text (ST) Programming 427

CPU Programmer’s Reference Manual Section 8
GFK-2950M Dec 2024

8.2.8 REPEAT Statement

The REPEAT loop repeatedly executes (iterates) a statement list contained within the
REPEAT...END_REPEAT construct until an exit condition is satisfied. It executes the
statement list first, then checks for the exit condition. This looping construct is useful
when the statement list needs to be executed at least once.

Format

REPEAT
StatementList;
UNTIL BooleanExpression END_REPEAT;

Where:
BooleanExpression Any expression that resolves to a Boolean value.

StatementList Any set of Structured Text statements.

Operation

The StatementList is executed. If the BooleanExpression is FALSE (0), then the loop is
repeated; otherwise, if the BooleanExpression is TRUE (1), the loop is exited. The
statement list executes at least once, since the BooleanExpression is evaluated at the
end of the loop.

Note: It is possible to create an infinite loop that will cause the watchdog timer to expire.
Avoid infinite loops.

Example

The following code fragment reads values from an array until a value greaterthan 5 is
found (or the upper bound of the array is reached). Since at least one array value must
be read, the REPEAT loop is used. All variables in this example are of type DINT, UINT,

or INT.
Index :=1;

REPEAT
Value:= @Index;
Index:=Index+1;
UNTIL Value > 5 OR Index >= UpperBound END_REPEAT;

Structured Text (ST) Programming 428

CPU Programmer’s Reference Manual Section 8

GFK-2950M

8.2.9

Dec 2024

ARG _PRES Statement

The ARG_PRES function determines whether an input parameter value was present
when the function block instance of the parameter was invoked. This may be necessary
if the parameter is optional (pass by value).

This function must be called from a function block instance or a parameterized block.

Format

ARG_PRES (IN :=In1, Q:>Out1, ENO:>0ut2);

Where:

Block Description

In1 Must be an input parameter of the function block that contains the ARG_PRES
instruction. Cannot be an array elementor structure element. An alias to a parameter
should resolve only to the parameter name.
Can be a BOOL, DINT, DWORD, INT, REAL, UINT, WORD variable, variable amy
head name or variable array head name element [000]. Input or output parameter
value of a function block instance or a parameterized block

Qut2 A BOOL variable. True if the parameter is present, otherwise false.

Note: ENO is an optional BOOL output parameter. If ENO is used in a statement that uses
the formal convention, the state of Out2 is set to 1 (call was successful) or 0 (call
failed).

Example

The parameter TempVal is an input to the function block CheckTemp. In the following
code fragment, ARG_PRES is used to determine whether a value existed for the
parameter TempVal when an instance of CheckTemp was invoked. If TempVal had a

value, the BOOL output Temp_Pres is set to 1.
ARG_PRES (TempVal, Temp_Pres);

Structured Text (ST) Programming 429

CPU Programmer’s Reference Manual Section 8
GFK-2950M Dec 2024

8.2.10 Exit Statement

The EXIT statement is used to terminate and exit from a loop (FOR, WHILE, REPEAT)
before it would otherwise terminate. Program execution resumes with the statement
following the loop terminator (END_FOR, END_WHILE, END_REPEAT). An EXIT

statement is typically used within an IF statement.

Format

EXIT;
Where:
ConditionForExiting An expressionthat determines whether to terminate early.

Example

The following code fragment shows the operation of the EXIT statement. When the
variable number equals 10, the WHILE loop is exited and execution continues with the

statement immediately following END_WHILE.
while (1) do
a:=a+1;
IF (a=10) THEN
EXIT;
END_IF;
END_WHILE;

Structured Text (ST) Programming 430

CPU Programmer’s Reference Manual Section 8
GFK-2950M Dec 2024

8.2.11 Data_Qual Function Blocks for Structured Text

The below functions implement the CHECK_DATA_QUAL function blocks. These are
only supported using the structured text language (ST). They are used to determine
whether a data item was transmitted without error from an input device into an I/O
module or from an I/O module to an output device.

Function Blocks

Data_qual_bool() Data_qual_Byte()
Data_qual_Word() Data_qual_Dword()
Data_qual_Int() Data_qual_Uint()
Data_qual_Dint() Data_qual_Real()

Argument1(IN) : Variable to check (DAT)

The address of a non-Boolean variable. Note that the Boolean variable may be in word
or bit-oriented memory. It may even be data flow, since non-l/O fault checks are
meaningful for data flow.

Argument2(IN) : Checks to perform (CHK)
The bit mask representing the fault checks to be performed.

Argument3(OUT) : Detected faults (FLT)

The bit mask representing the fault checks that were requested and failed. A '1'will be
set for each failed fault check.

Argument4(OUT): Output PFL(ENO)
Function block parameter status indicating status of FBK PFL output:

Positive PFL if no overflow occurred and no invalid operands, negative PFL otherwise.

Example: Data_qual_bool(DAT:=I0SYm, CHK:=Var_Word_CHK,
FLT=>Var_Word_Fault, ENO=>QBOOL);

8.3 PACSystems Simulator Structured Text (ST)
Programming

The following sections outline Structured Text (ST) functionality differences for the
PACSystems Simulator.

8.3.1 Math Functions

Refer to Section 4.14.1 Math Functions.

8.3.2 Control Functions

Refer to Section 4.14.3 Control Functions.

8.3.3 Data Move Functions

Refer to Section 4.14.4 Data Move Functions.

Structured Text (ST) Programming 431

CPU Programmer’s Reference Manual Section 8
GFK-2950M Dec 2024

8.3.4 Timers

Refer to Section 4.14.5 Timers.

8.3.5 Communication Blocks

Refer to Section 4.14.7 Communication Blocks.

Structured Text (ST) Programming 432

CPU Programmer’s Reference Manual Section 9
GFK-2950M Dec 2024

Section 9 Diagnostics

This chapterexplains the PACSystems faulthandling system, provides definitions of fault
extra data, and suggests corrective actions for faults.

Faults occur in the control system when certain failures or conditions happen that affect
the operation and performance of the system. Some conditions, such as the loss of an
I/O module or rack, may impair the ability of the PACSystems controller to control a
machine or process. Other conditions, such as when a new module comes online and

becomes available for use, may be displayed to inform or alert the user.

Any detected fault is recorded in the Controller Fault Table or the I/O Fault Table, as
applicable.

Information in this chapter is organized as follows:

e Fault Handling Overview

Using the Fault Tables
e System Handling of Faults
e Controller Fault Descriptions and Corrective Actions

e |/O Fault Descriptions and Corrective Actions

Diagnostics 433

CPU Programmer’s Reference Manual Section 9

GFK-2950M Dec 2024
9.1 Fault Handling Overview

The PACSystems CPU detects three classes of faults:

Fault Class Examples

Internal Failures (Hardware) Non-responding modules

Failed battery

Failed Energy Pack
(CPE302/CPE305/CPE310/CPE330 models)
Memory checksum errors

External I/O Failures (Hardware) Loss of rack or module
Addition of rack or module
Loss of Genius I/O block

Operational Failures Communication failures
Configuration failures
Password access failures

9.1.1 System Response to Faults

Hardware failures require that either the system be shut down or the failure be tolerated.
I/O failures may be tolerated by the control system, but they may be intolerable by the
application or the process being controlled. Operational failures are normally tolerated.

Faults have three attributes:

Fault Description
Fault Table Affected 1/0O Fault Table
Controller Fault Table
Fault Action Fatal
Diagnostic
Informational
Configurability Configurable

Non-configurable

9.1.2 Fault Tables

The PACSystems CPU maintains two fault tables, the Controller Fault Table for intemal
CPU faults and the I/O Fault Table for faults generated by I/O devices (including VO

controllers). For more information, refer 9.2, Using the Fault Tables.

Diagnostics 434

CPU Programmer’s Reference Manual

GFK-2950M

9.1.3

Diagnostics

Section 9

Fault Actions and Fault Action Configuration

Fatal faults cause the fault to be recorded in the appropriate table, diagnostic variables
to be set, and the system to be stopped. Only fatal faults cause the system to stop.

Dec 2024

Diagnostic faults are recorded in the appropriate table, and any diagnostic variables are
set. Informational faults are only recorded in the appropriate table.

Fault Action

Response by CPU

Fatal

Log fault in fault table.
Set fault references.
Go to STOP/Fault Mode.

Diagnostic

Log fault in fault table.
Set fault references.

Informational

Log fault in fault table.

The hardware configuration can be used to specify the fault action of some fault groups.
For these groups, the fault action can be configured as either fatal or diagnostic. When
a fatal or diagnostic fault within a configurable group occurs, the CPU executes the
configured fault action instead of the action specified within the fault.

Note:

The fault action displayed in the expanded fault details indicates the fault action

specified by the fault that was logged, but not necessarily the executed fault action.
To determine what action was executed for a particular fault in a configurable fault

group, you must refer to the hardware configuration settings.

Faults that are part of configurable fault groups:

Fault Groups

Fault Action Displayed in . . .

Fault Table Informational Diagnostic Fatal
Diagnostic or Fatal. Diagnostic or Fatal.

Fault Action Executed Informational Determlngd by action Determlngd by action
selected in Hardware selected in Hardware
Configuration. Configuration.

Faults that are part of non-configurable fault groups:

Fault Groups
Fault Action Displayed in Fault Table Informational Diagnostic Fatal
Fault Action Executed Informational Diagnostic Fatal

435

CPU Programmer’s Reference Manual

GFK-2950M

9.2

Section 9
Dec 2024

Using the Fault Tables

To display the fault tables in Logic Developer software,

1.
2.

Go online with the PACSystems.
Select the Project tab in the Navigator, right click the Target node and choose

Diagnostics. The Fault Table Viewer appears.

The Controller Fault Table and the I/O Fault Table display the following information:

Information

Description

Controller Time/Date

The current date and time of the CPU.

Last Cleared

The date and time faults were last cleared from the fault table. This information
is maintained by the PACSystems controller.

Status Displays Updating while the programmer is reading the fault table.
Status is Online when update is complete.
Total Faults The total number of faults since the table was last cleared.

Entries Overflowed

The number of entries lost because the fault table has overflowed since it was

cleared. Each fault table can contain up to 64 faults.

Note: Fault tables do not persist from one running PACSystems Simulator to a
newly launched PACSystems Simulator.

Controller Fault Table

The Controller Fault Table displays CPU faults such as password violations,
configuration mismatches, parity errors, and communications errors.

9.21

Figure 261 Controller Fault Table Display

Controller Q1-01-
[Choosa Fault Tabla| | Date/Time: 2000 00:01:51 Fault Table Status
& Cantroller Last Cleared: 2000 cccé;:cc:é Viewer online

O o _ - " .
oL Controller Fault Table (Displaying 2 of 2 faults, 0 Overflowed)

Loc
(rack.slot)

Print Fault Tables

Fault Description Date/Time

.4 LAN transceiver fault; OFF netwark until fixes 2000 00

Fault Extra Data
Format

Failed battery signal

F gyte T word
C ascn

Sort Order

C Location

© pascription

C pate/Time

= Hona

Coasc | @ esc

Clear Controller Fault
Table

Diagnostics 436

CPU Programmer’s Reference Manual

GFK-2950M

Diagnostics

Section 9
Dec 2024

The Controller Fault Table provides the following information for each fault:

Fault Description

Location Identifies the location of the fault by rack.slot.

Description Corresponds to a fault group, which is identified in the fault Details.

Date/Time The date and time the fault occurred based on the CPU clock.

Details To view detailed information, click the fault entry. Refer to Viewing Controller
Fault Details for more information.

Viewing Controller Fault Details

Note:

The fault action displayed in the expanded fault details indicates the fault action specified
by the fault that was logged, but not necessarily the executed fault action. To determine
what action was executed for a particular fault in a configurable fault group, you must
refer to the hardware configuration settings.

To see controller fault details, click the fault entry. The detailed information box for the
fault appears. (To close this box, click the fault.)

Figure 262: Detail Information for Controller Fault Entry

0.1

IFaiIed battery signal

Jo1-02-2000 19:06:59

Error Code

Group Action Task Num |

0

Fault Extra Data:

18 2:Diagnostic] |
02 00 |

The detailed information for controller faults includes the following:

Fault Description

Error Code Furtheridentifies the fault. Each fault group has its own set of error codes.

Group Group is the highest classification of a fault and identifies the general category
of the fault. The fault description textdisplayed by your programming software
is based on the fault group and the error codes.

Action Fatal, Diagnostic, or Informational. For definitions of these actions, refer to

Fault Actions and Fault Action Configuration.

Task Number

Not used for most faults. When used, provides additional information for
Technical Support representatives.

Fault Extra Data

Provides additional information for diagnostics by Technical Support
engineers. Explanations of this information are provided as appropriate for
specific faults in

Controller Fault Descriptions and Corrective Actions below.

437

CPU Programmer’s Reference Manual

GFK-2950M

9.2.2

Diagnostics

User-Defined Faults

User-defined faults can be logged in the Controller Fault Table. When a user-defined
fault occurs, itis displayed in the appropriate fault table as Application Msg (error_code).
and may be followed by a descriptive message up to 24 characters. The user can define
all characters in the descriptive message. Although the message must end with the null
character, e.g., zero (0), the null character does not count as one of the 24 characters.
If the message contains more than 24 characters, only the first 24 characters are
displayed.

Certain user-defined faults can be used to set a system status reference (% SA0081—
%SA0112).

User-defined faults are created using SVC_REQ 21: User-Defined Fault Logging which
is described in Section 6.

Note: When a user-defined fault is displayed in the Controller Fault table, a value
of -32768 (8000 hex) is added to the error code. For example, the error code 5 will
be displayed as -32763.

/O Fault Table

The I/O Fault Table displays I/O faults such as circuit faults, address conflicts, forced
circuits, /O module addition/loss faults and I/O bus faults.

The fault table displays a maximum of 64 faults. When the fault table is full, it displays
the earliest 32 faults (33—64) and the last 32 faults (1—32). When another fault is
received, fault 32 is shoved out of the table. In this way, thefirst 32 faults are preserved
for the user to view.

Figure 263 1/0 Fault Table Display

PLC Date/Time: 09-22-2005 12:41:56 . Status |
| thoose Fault Table Last Cleared: 09-13-2005 12:06:57 Fault Table Viewer [Online
Cpc o . . N
[Pc Pro | 1/0 Fault Table (Displaying 27 of 27 faults, 0 Overflowed)
Print Fault Tables CIRC Yariable Ref. Fault -
e No. Name Address Category Felighe DR
Fault Extra Data 0.3 nfa Fossoig/o 09-22-2005 03:27:38
Format Module
i (e .
Boms word 0.5 na |sir PR 09-22-2005 03:27:38
ASCII
[sortorder || los na |int kﬂfgufef /o 09-22-2005 03:27:38
« Location
€ pescription 0.3 n/a I';f:dsuf: vo 09-22-2005 03:24:51
© pate/Time
@y 0.5 nfa |ait ;C:;uf: vo 09-22-2005 03:24:51
one
C asc | @ pesc 0.6 nfa |int kﬂfguf: /0 09-22-2005 03:24:51

438

Section 9
Dec 2024

Section 9
Dec 2024

CPU Programmer’s Reference Manual
GFK-2950M

The I/O Fault Table provides the following information for each fault:

Diagnostics

Fault Description

Location Identifies the location of the fault by rack.slot location, and sometimes bus and buss
address.

CIRC No. When applicable, identifies the specific I/O point on the module.

Variable Name

If the fault is on a point that is mapped to an I/O variable, and the variable is set to
publish (either internal or external), the 1/0 Fault Table displays the variable name.
Unpublished 1/O variables will not be displayed in this field.

Ref. Address

If the faultis on a pointthatis mapped to a reference address, this field identifies the
1/0 memory type and location (offset) that corresponds to the point experiencing the
fault. When a Genius device fault or local analog module fault occurs, the reference
address refers to the first point on the block where the fault occurred.

Note:

The Reference Address field displays 16 bits and %W memory
has a 32-bit range. Addresses in %W are displayed correctly for
offsets in the 16-bit range (<65,535). For %W offsets greater than
16 bits, the I/O Fault Table displays a blank reference address.

Fault Category

Specifies a general classification of the fault.

Fault Type Consists of subcategories under certain fault categories. Set to zero when not
applicable to the category.

Date/Time The date and time the fault occurred based on the CPU clock.

Details To view detailed information, click the fault entry. Refer to Viewing I/O Fault Details

Viewing /O Fault Details
for more information.

Viewing I/O Fault Details

To see I/O fault details, click the fault entry. The detailed information box for the fault
appears. (To close this box, click the fault.)

Figure 264 : 1/O Fault Table Fault Entry Detail Display

% = Circuit Analog o e
0.3 1 %AQ 00001 Fault Fault 01-01-2000 00:02:27
Wi Bus | POt oo | s | [Faul |

| M08 | ngivess | adrass | O | Acton | Category | 0
| nfa | nfa | 1 | 10 [2:Diagnostic | 1 [22 =)
Fault Extra | 00

Data 00
Fault >
Description Input Open Wire

439

CPU Programmer’s Reference Manual Section 9
GFK-2950M Dec 2024

The detailed information for I/O faults includes:

Fault Description

1/0 Bus When the module in the slot is a Genius Bus Controller (GBC), this number is
always one.

Bus Address The serial bus address of the Genius device that reported or has the fault.

Point Address Identifies the point on the I/O device that has the fault when the fault is a point-type
fault.

Group Fault group is the highest classification of a fault. It identifies the general category
of the fault.

Action Fatal, Diagnostic, or Informational. For definitions of these actions, refer to

Fault Actions and Fault Action Configuration.

Category Identifies the category of the fault.

Fault Type Identifies the fault type by number. Set to zero when notapplicable to the category.

Fault Extra Data Provides additional information for diagnostics by Technical Support engineers.
Explanations of this information are provided as appropriate for specific faults in

1/0 Fault Descriptions and Corrective Actions.

Fault Description | Provides a specific fault code when the 1/O fault category is a circuit fault (discrete
circuit fault, analog circuit fault, low-level analog fault) or module fault. It is set to
zero for other fault categories.

Diagnostics 440

CPU Programmer’s Reference Manual Section 9
GFK-2950M Dec 2024

9.3 System Handling of Faults

The system fault references listed below can be used to identify the specific type of fault
that has occurred. (A complete list of System Status References is provided in Section
3.) Refer to Section 3.13.3 System Status References for details on PACSystems
Simulator system fault references.

System Address Description

Fault

Reference

#ANY_FLT %SC0009 Any new faultin eithertable since the last power-up or clearng
of the fault tables

#SY_FLT %SC0010 Any new system fault in the Controller Fault Table since the
last power-up or clearing of the fault tables

#IO_FLT %SC0011 Any new faultin the I/O Fault Table since the last power-up or
clearing of the fault tables

#SY_PRES %SC0012 Indicates that there is at least one entry in the Controller Fault
Table

#|O_PRES %SC0013 Indicates that there is atleast one entry in the I/O Fault Table

#HRD_FLT %SC0014 Any hardware fault

#SFT_FLT %SC0015 Any software fault

On power-up, the system fault references are cleared. If a fault occurs, the positive
contact transition of any affected reference is turned on the sweep after the fault occurs.
The system fault references remain on until both fault tables are cleared, or All Memory
in the CPU is cleared.

9.3.1 System Fault References

When a system faultreference is set, additional fault references are also set. These other
types of faults are listed in Fault References for Configurable Faults below and Note: If
the fault action for a fault logged to the fault table is informational, the configured action
is not used. For example, if the logged fault action foran SBUS_ERR is informational,
but you configure it as fatal, the action is still informational.

#LST_SCN Fault References for Non-Configurable Faults in the section whichfollows.

Fault References for Configurable Faults

Fault
(Default Address | Description May Also Be Set
Action)
#SBUS_ER %SA0032 Systembus error. Allsystembus | #HRD_FLT, #SY_PRES, #SY_FLT
(diagnostic) error faults are logged as
informational.
#SFT_lOC® %SA0029 Non-recoverable software error | #/0_FLT, #|0_PRES, #SFT_FLT
(diagnostic) in an 1/0 Controller (I0C).

® The #SFT_IOC software fault will have the same action as what you set for #L.OS_10C.
Diagnostics 441

CPU Programmer’s Reference Manual Section 9
GFK-2950M Dec 2024
Fault
(Default Address | Description May Also Be Set
Action)
#LOS_RCK™ %SA0012 Loss of rack (BRMfailure, loss of [#SY_FLT, #SY_PRES,
(diagnostic) power) or missing a configured | #/O_FLT, #/0_PRES
rack.
#LOS_lOC® %SA0013 Loss of I/O Controller or missing | #/O_FLT, #/0_PRES
(diagnostic) a configured Bus Controller.
#LOS_IOM %SA0014 Loss of 1/0 module (does not | #IO_FLT, #/0_PRES
(diagnostic) respond), or missing a
configured 1/0 module.
#LOS_SIO %SA0015 Loss of intelligent module (does | #SY_FLT, #SY_PRES
(diagnostic) not respond), or missing a
configured module.
#IOC_FLT %SA0022 Non-fatal bus or 1/0 Controller | #/0_FLT, #/0_PRES
(diagnostic) error, more than 10 bus errors in
10 seconds. (Error rate is
configurable.)
#CFG_MM %SA0009 Configuration mismatch. Wrong | #SY_FLT, #SY_PRES
(fatal) module type detected. The CPU
does not check the configuration
parameter settings forindividual
modules such as Genius 1/O
blocks.
#OVR_TMP %SA0008 CPU temperature has exceeded | #SY_FLT, #SY_PRES
(diagnostic) its normal operating
temperature.

Note: If the fault action for a fault logged to the fault table is informational, the
configured action is not used. For example, if the logged fault action foran SBUS_ERR
is informational, but you configure it as fatal, the action is still informational.

#LST_SCNFault References for Non-Configurable Faults

(diagnostic)

Fault Address |Description Result
#PS_FLT %SA0005 Power supply fault Sets #SY_FLT, #SY_PRES
#HRD_CPU %SA0010 CPU hardware fault (such as failed [Sets #SY_FLT, #SY_PRES,
(fatal) memory device or failed serial port). #HRD_FLT
#HRD_SIO %SA0027 Non-fatal hardware fault on any module in | Sets #SY_FLT, #SY_PRES,
(diagnostic) the system, such as failure of a serial port | #HRD_FLT

on a LAN interface module.
#PNIO_ %SA0030 A diagnostic PROFINET alarm has been | Sets #ANY_FLT, #IO_FLT,
ALARM received and an I/O fault has been logged | #/0_PRES

in group 28.
#SFT_SIO %SA0031 Non-recoverable software error in a LAN | Sets #SY_FLT, #SY_PRES,
(diagnostic) interface module. #SFT_FLT
#PB_SUM %SA0001 Program or block checksum failure during | Sets #SY_FLT, #SY_PRES
(fatal) power-up or in RUN Mode.
#LOW_BAT %SA0011 The low battery indication is not supported | Sets #SY_FLT, #SY_PRES
(diagnostic) for all CPU versions. For details, refer to

Battery Status (Group 18).
#OV_SWP %SA0002 Constant sweep time exceeded. Sets #SY_FLT, #SY_PRES

“When a Loss of Rack or Addition of Rack fault is logged, individual loss or add faults for each module in that rack are usually not

%enerated.

Even if the #LOS_IOC fault is configured as Fatal, the CPU will not go to STOP/FAULT unless both GBCs of an internal

redundant pair fail.
Diagnostics

442

CPU Programmer’s Reference Manual

GFK-2950M

Diagnostics

Section 9
Dec 2024
Fault Address |Description Result
#SY_FULL %SA0022 Controller fault table full (64 entries).| Sets #SY_FLT, #SY_PRES,
#10_FULL I/0 Fault Table full (64 entries). #lO_FLT, #10_PRES
(diagnostic)
#APL_FLT %SA0003 Application fault. Sets #SY_FLT, #SY_PRES
(diagnostic)
#ADD_RCK™ %SA0017 New rack added, extra rack, or previously [Sets #SY_FLT, #SY_PRES
(diagnostic) faulted rack has returned.
#ADD_IOC %SA0018 Extra IOC, previously faulted I/O Controler | Sets #10_FLT, #/10_PRES
(diagnostic) is no longer faulted.
#ADD_IOM %SA0019 Extra 10 module, or previously faulted IO [Sets #/O_FLT, #/0_PRES
(diagnostic) module is no longer faulted.
#ADD_SIO %SA0020 New intelligent module is added, or| Sets #SY_FLT, #SY_PRES
(diagnostic) previously faulted module no longer
faulted.
#IOM_FLT %SA0023 Point orchannelonan1/O module;a partal | Sets #/O_FLT, 1#0O_PRES
(diagnostic) failure of the module.
#NO_PROG %SB0009 No application program is present at| CPU will not go to RUN
(information) power-up. Should only occur the first time [Mode; it continues executing
the PACSystems controller is powered up | STOP Mode sweep until a
or if the user memory containing the | valid program is loaded. This
program fails. can be a null program that
doesnothing. Sets #SY_FLT
and #SY_PRES.
#BAD_RAM %SB0010 Corrupted program memory at power-up. | Sets #SY_FLT and
(fatal) Program could not be read and/or did not [#SY_PRES.
pass checksum tests.
#WIND_ER %SB0001 Window completion error. Servicing of | Sets #SY_FLT and
(information) Controller Communications or Logic|#SY_PRES.
Window was skipped. Occurs in Constant
Sweep mode.
#BAD_PWD %SB0011 Change of privilege level request to a | Sets #SY_FLT and
(information) protection level was denied; bad|#SY_PRES.
password.
#NUL_CFG %SB0012 No configuration present upon transition to | Sets #SY_FLT and
(fatal) RUN Mode. Running without a|#SY_PRES.
configuration is equivalent to suspending
the I/O scans.
#SFT_CPU %SB0013 CPU software fault. A non-recoverable | CPU immediately transitions
(fatal) error has been detected in the CPU. May | to STOP/Halt Mode. The only
be caused by Watchdog Timer expiring. | activity permitted is
communication with the
programmer. To be cleared,
controller power must be
cycled. Sets SY_FLT,
SY_PRES, and SFT_FLT.
#STOR_ER %SB0014 Download of data to CPU from the CPU will not transition to RUN
(fatal) programmer failed; some data in CPU Mode. This faultis not cleared

may be corrupted.

at power-up, intervention is
required to correct it. Sets
SY_FLT and SY_PRES.

443

CPU Programmer’s Reference Manual Section 9
GFK-2950M Dec 2024

9.3.2 Using Fault Contacts

Fault ({F]-)and no-fault(-[NF]-) contacts can be used to detectthe presence of I/O faults
in the system. These contacts cannot be overridden. The following table shows the state
of fault and no-fault contacts.

Condition [F] [NF]
Fault Present ON OFF
Fault Absent OFF ON

An NF contact will be ON (F contact will be OFF) when the referenced I/O point is not
faulted, or the referenced I/O point does not exist in the hardware configuration.

Fault Locating References (Rack, Slot, Bus, Module)

The PACSystems CPU supports reserved fault names for each rack, slot, bus, and
module. By programming these names on the FAULT and NOFLT contact instructions,
logic can be executed in response to faults associated with configured racks and
modules.

Fault Locating Reference Name Format

These fault names can only be programmed on the FAULT and NOFLT contacts. The
reserved fault names are always available. It is not necessary to enable a special option,
such as point faults.

Fault Reference | Reserved Comment
Type Name
Rack #RACK_000r Where ris rack numberQ to 7.
Slot #SLOT_Orss Where ris rack number 0 to 7 and
ss is slot number 0 to 31.
Bus #BUS_Orssb Where ris rack number0 to 7,
(Genius only) ss is slot number 0 to 31, and
b is the bus number (1 or 2).
Module #M_rssbmmm Where risrack number0 to 7,
(Genius only) ss is slot number 0 to 31,

b is the bus number (1 or 2), and
mmm is the Bus Address number 000 to 255.

These fault names do not correspond to %SA, %SB, %SC, orto any other reference
type. They are mapped to a memory area that is not user-accessible. Only the name is

displayed.

Diagnostics 444

CPU Programmer’s Reference Manual Section 9
GFK-2950M Dec 2024

Fault Reference Name Examples:

Figure 265
S#RACE_0001 #SLOT_0105 Q00001

| {F} {NF}

#RACK 0001 represents rack 1.

#SLOT _0105 represents rack 1, slot 5.

#BUS 02041 represents rack 2, slot 4, bus 1.

#M_ 2061028 represents rack 2, slot 6, bus 1, Genius module 28.

Note: When a slot level failure fault is reported to the fault tables, all bus and module fault
locating references associated with that slot are set (the FAULT contact passes power
flow, and the NOFLT contact does not pass power flow), regardless of what type of
module it is. Conversely, when a slot level reset fault is reported to the fault tables, all
bus and module fault locating references are cleared (the FAULT contact does not pass
power flow, and the NOFLT contact passes power flow).

Behavior of Fault Locating References

At power-up, all fault locating references are cleared in the CPU. When a faultis logged,
the CPU transitions the state of the affected reference(s). The state of the fault reference

remains in the fault state until one of the following actions occurs:

e Both the Controller and the I/O Fault Tables are cleared through your programming
software eitherby clearing each table individually or clearing the entire CPU memory.

o The associated device (rack, I/O module, or Genius device) is added back into the
system. Whenever an Addition of. . . fault is logged, the CPU initializes all fault
references associated with the device to the NoFlt state. These references remain in
the NoFIt state until another fault associated with the device is reported. (This could
take several seconds for distributed I/O faults, especially if the bus controller has been
reset.)

Note: These fault references are set for informational purposes only. They should not be used
to qualify I/O data. The Alarm Contacts (described in Using Alarm Contacts) may be
used to qualify I/O data. The CPU does not halt execution as a result of setting a fault
locating reference to the Fault state.

The fault references have a cascading effect. If there is a problem in the module located
at rack 5, slot 6, bus 1, module 29, the following fault references are set: RACK_05,
SLOT_0506, BUS_05061, and M_5061029. There will only be one entry in the fault table
to describe the problem with the module. The fault table does not show separate entries
pertaining to the rack, slot, and bus in this case.

If an analog base module (IC697ALG230) is lost, the fault locating reference for that
moduleis set. The fault locating references for its expander modules (IC697ALG440 and
ALG441) are not set as a result of the loss. Therefore, any faultlocating references to
an expander module should also reference the base module to verify that the module or

its base have not been lost.

Diagnostics 445

CPU Programmer’s Reference Manual Section 9
GFK-2950M Dec 2024

9.3.3 Using Point Faults

Point faults pertain to external I/O faults, although they are also set due to the failure of
associated higher-level internal hardware (for example, IOC failure or loss of a rack). To
use point faults, they must be enabled in Hardware Configuration on the Memory
parameters tab of the CPU.

When enabled, a bit for each discrete I/O pointand a byte for each analog I/O channel
are allocated in CPU memory. The CPU memory used for point faults is included in the
total reference table memory size. The FAULT and NOFLT contacts, described in Using

Alarm Contacts, provide access to the point faults.

The full support of pointfault contacts depends on the capability of the I/O module. Some
Series 90-30 modules do not support point fault contacts. The point fault contacts for
these modulesremain all off, unless a Loss of I/O Module occurs, in which cas e the RX3i
CPU turns on all point fault contacts associated with the lost module.

9.3.4 Using Alarm Contacts

High (-[HA]-)and low (-[LA]-) alarm contacts are used to represent the state of the analog
input module comparator function. To use alarm contacts, point faults must first be
enabled in Hardware Configuration on the Memory parameters tab of the CPU.

The following example logic uses both high and low alarm contacts.

Figure 266
| AT0001 AT0002 a

| B A} LA}

Note: HA and LA contacts do not create an entry in a fault table.

Diagnostics 446

Section 9
Dec 2024

CPU Programmer’s Reference Manual
GFK-2950M

9.4 Controller Fault Descriptions and Corrective

Actions

Each fault explanation contains a fault description and instructions to correct the faulit.
Many fault descriptions have multiple causes. In these cases, the error code and
additional faultinformation are used to distinguish among fault conditions sharing the
same fault description.

9.4.1 Controller Fault Groups

Group Name Default Fault | Configurable
Action™

1 Loss of or Missing Rack Diagnostic Yes
4 Loss of or Missing Option Module Diagnostic Yes
5 Addition of, or Extra Rack N/A No
8 Reset of, Addition of, or Extra Option Module N/A No
11 System Configuration Mismatch Fatal” Yes
12 System Bus Error Fatal Yes
13 CPU Hardware Failure N/A No
14 Module Hardware Failure N/A No
16 Option Module Software Failure N/A No
17 Program or Block Checksum Failure Group N/A No
18 Battery Status Group N/A No
19 Constant Sweep Time Exceeded N/A No
20 System Fault Table Full N/A No
21 1/0 Fault Table Full N/A No
22 User Application Fault N/A No
24 CPU Over Temperature Diagnostic Yes
128 System Bus Failure N/A No
129 No User Program on Power-up N/A No
130 Corrupted User Program on Power-up N/A No
131 Window Completion Failure N/A No
132 Password Access Failure N/A No
134 Null System Configuration for RUN Mode N/A No
135 CPU System Software Failure N/A No
137 Communications Failure During Store N/A No
140 Non-critical CPU Software Event N/A No

9.4.2 Loss of or Missing Rack (Group 1)

The fault group Loss of or Missing Rack occurs when the system cannot communicate
with an expansion rack because the BTM (Bus Transmitter Module) in the main rack
failed, the BRM (Bus Receiver Module) in the expansion rack failed, power failed in the

®The fault action indicated is not applicable if the fault is displayed as informational. Faults displayed as informational, a lways
behave as informational.

' |f a system configuration mismatch occurs when the CPU is in RUN Mode, the fault action will be Diagnostic regardless of the
fault configuration. For additional information, refer to Fault Parameters in PACSystems RX7i, RX3i and RSTi-EP CPU Reference
Manual, GFK-2222.

Diagnostics 447

CPU Programmer’s Reference Manual Section 9
GFK-2950M Dec 2024

expansion rack, or the expansion rack was configured in the configuration file but did not
respond during power-up.

Default action: Diagnostic. Configurable.

1, Rack Lost

The CPU generates this error when the main rack can no longer communicate with an
expansionrack. The erroris generated foreach expansionrack that exists in the system.

Correction

1. Power off the system. Verify that both the BTM and the BRM are seated
properly in their respective racks and that all cables are properly connected
and seated.

2. Replace the cables.

3. Replace the BRM.

4. Replace the BTM.

2, Rack Not Responding

The CPU generates this error when the configuration file stored from the programmer
indicates that a particular expansion rack should be in the system, but none responds
for that rack number.

Correction

1. Check rack number jumper behind power supply—first on missing rack and
then on all other racks—for duplicated rack numbers.

2. Update the configuration file if a rack should not be present.

3. Add the rack to the hardware configuration if a rack should be present and one
is not.

4. Power off the system. Verify that both the BTM and the BRM are seated

properly in their respective racks and that all cables are properly connected

and seated.

Replace the cables.

Replace the BRM.

Replace the BTM.

Check for Termination Plug on last BRM.

9.4.3 Loss of Option Module (Group 4)

The fault group Loss of Option Module occurs when a LAN interface module, BTM, or
BRM fails to respond. The failure may occur at power-up or store of configuration if the
module is missing or during operation if the module fails to respond. This may also occur
due to hot removal of an option module.

® N o o

Default action: Diagnostic. Configurable

3C hex/60 decimal, Module in Firmware Update Mode

The CPU generates this errorwhenit finds a module in Firmware Update mode. Modules

in this mode will not communicate with the CPU.
Diagnostics 448

CPU Programmer’s Reference Manual Section 9
GFK-2950M Dec 2024
Correction
1. Run the firmware update utility for the module.
2. Reset the module with the push-button.
3. Power-cycle the entire system.

4. Power-cycle the rack containing the module.

63 hex/99 decimal, Module Hot Removed

The CPU logs this fault when it detects hot removal of an option module such as the LAN
interface module. No correction necessary.

All Others, Module Failure During Configuration

The CPU generates this error when a module fails during power-up or configuration
store.

Correction
1. Power off the system. Replace the module located in that rack and slot.

2. If the board is located in an expansion rack, verify BTM/BRM cable
connections are tight and the modules are seated properly; verify the
addressing of the expansion rack.

3. Replace the BTM.
4. Replace the BRM.
5. Replace the rack.

Diagnostics 449

CPU Programmer’s Reference Manual Section 9
GFK-2950M Dec 2024

944 Addition of, or Extra Rack (Group 5)

This fault group occurs when a configured expansion rack with which the CPU could not
communicate comes online or is powered on, or an unconfigured rack is found.

Action: Non-configurable.

1, Addition of Rack
2, Extra Rack

Correction

1. Check rack jumper behind power supply for correct setting.

2. Update the configuration file to include the expansion rack.

Note: No correction necessary if rack was just powered on.

9.4.5 Reset of, Addition of, or Extra Option Module (Group
8)
The fault group Reset of, Addition of, or Extra Option Module occurs when an option

module (LAN interface module, BTM, etc.) comes online, is reset, is hot inserted ora
module is found in the rack but is not configured.

Action: Non-configurable.

3, LAN Interface Restart Complete, Running Utility

The LAN Interface module has restarted and is running a utility program.
Correction
Referto the LAN Interface manual, GFK-0868 or GFK-0869 (previously GFK-0533).

7, Extra Option Module

Note: This fault is logged for an RX3i CPE310 that is configured as a CPU310, or a
CPE330 configured as a CPU320, because the RX3i system detects the embedded
Ethernet module as an unconfigured module.

Correction

1. Update the configuration file to include the module.

2. Remove the module from the system.

E Hex/14 Decimal, Option Module Hot inserted

The CPU logs this fault when it detects hot insertion of an option module such as the
LAN interface module. No correction necessary

Note: When configuration is cleared or stored, a reset fault is generated for every
intelligent option module physically present in the system.

Diagnostics 450

CPU Programmer’s Reference Manual Section 9
GFK-2950M Dec 2024

9.4.6 System Configuration Mismatch (Group 11)

The fault group Configuration Mismatch occurs when the module occupying a slot is
different from that specified in the configuration file. When the GBC generates the
mismatch because of a Genius block, the second byte in the Fault Extra Data field
contains the bus address of the mismatched block.

Default action: Fatal. Configurable.

Note: Ifa system configuration mismatch occurs when the CPU is in RUN Mode, the fault
action will be Diagnostic regardless of the fault configuration. See Fault Parameters
in PACSystems RX7i, RX3i and RSTi-EP CPU Reference Manual, GFK-2222.

2, Genius 1/0 Block Model Number Mismatch

The CPU generates this fault when the configured and physical Genius I/O blocks have
different model numbers.

Correction

1. Replace the Genius I/O block with one corresponding to the configured
module.

2. Update the configuration file.

Fault Extra Data for Genius I/O Block Model Number Mismatch

Byte Value

[0] FF (flag byte)

11 Serial Bus address

[2] Installed module type (referto Installed/Configured Module Types (Bytes 2 and 3

of Fault Extra Data) below).

[3] Configured module type (referto Installed/Configured Module Types (Bytes 2 and
3 of Fault Extra Data) below).

Diagnostics 451

CPU Programmer’s Reference Manual Section 9
GFK-2950M Dec 2024

Installed/Configured Module Types (Bytes 2 and 3 of Fault Extra

Data)
Number
Description
Decimal | Hexadecimal
4 4 Genius Network Interface (GENI)
5 5 Phase B Hand Held Monitor
6 6 Phase B Series Six GBC with Diagnostics
7 7 Phase B Series Six GBC without Diagnostics
8 8 PLCM/Series Six
9 9 PLCM/Series 90-70
10 A Series 90-70 Single Channel Bus Controller
11 B Series 90-70 Dual Channel Bus Controller
12 C Series 90-10 Genius Communications Module
13 D Series 90-30 Genius Communications Module
32 20 High Speed Counter
69 45 Phase B 115Vac 8-point (2 amp) Grouped Block
70 46 Phase B 115Vac/125Vdc 8-point Isolated Block
70 46 Phase B 115Vac/125Vdc 8-point Isolated Block without Failed Switch
71 47 Phase B 220Vac 8-point Grouped Block
72 48 Phase B 24-48Vdc 16-point Proximity Sink Block
72 48 Phase B 24Vdc 16-point Proximity Sink Block
73 49 Phase B 24-48Vdc 16-point Source Block
73 49 Phase B 24Vdc 16-point Proximity Source Block
74 4A Phase B 12-24Vdc 32-point Sink Block
75 4B Phase B 12-24Vdc 32-point Source Block
76 4C Phase B 12-24Vdc 32-point 5V Logic Block
77 4D Phase B 115Vac 16-point Quad State Input Block
78 4E Phase B 12-24Vdc 16-point Quad State Input Block
79 4F Phase B 115/230Vac 16-point Normally Open Relay Block
80 50 Phase B 115/230Vac 16-point Normally Closed Relay Block
81 51 Phase B 115Vac 16-point AC Input Block
82 52 Phase B 115Vac 8-point Low-Leakage Grouped Block
127 7F Genius Network Adapter (GENA). Refer to
GENA Application ID Numbers below.
131 83 Phase B 115Vac 4-input, 2-output Analog Block
132 84 Phase B 24Vdc 4-input, 2-output Analog Block
133 85 Phase B 220Vac 4-input, 2-output Analog Block
134 86 Phase B 115Vac Thermocouple Input Block
135 87 Phase B 24Vdc Thermocouple Input Block
136 88 Phase B 115Vac RTD Input Block
137 89 Phase B 24/48Vdc RTD Input Block

Diagnostics 452

CPU Programmer’s Reference Manual Section 9

GFK-2950M Dec 2024
Number .
- - Description
Decimal | Hexadecimal
138 8A Phase B 115Vac Strain Gauge/mV Analog Input Block
139 8B Phase B 24Vdc Strain Gauge/mV Analog Input Block
140 8C Phase B 115Vac 4-input, 2-output Current Source Analog Block
141 8D Phase B 24Vdc 4-input, 2-output Current Source Analog Block

GENA Application ID Numbers

If the model number is 7F hex (Genius Network Adapter), the block may be one of the
following. (The GENA Application ID is shown for reference.)

Number

Decimal |Hexadecimal | Description

131 83 115Vac/230Vac/125Vdc Power Monitor Module
132 84 24/48Vdc Power Monitor Module
160 A0 Genius Remote 90-70 Rack Controller

Diagnostics 453

CPU Programmer’s Reference Manual

GFK-2950M

Diagnostics

4, 1/0 Type Mismatch

Section 9
Dec 2024

The CPU generates this fault when the physical and configured I/O types of Genius
grouped blocks are different.

Correction

1.

2.

Fault Extra Data for /O Type Mismatch

Remove the indicated Genius module and install the module indicated in the

configuration file.

Update the Genius module descriptions in the configuration file to agree with

what is physically installed.

Byte | Value

[0] FF

[1] Bus address

[2] Installed module’s 1/0O type
[3] Configured module’s 1/O type

Genius Installed Module I/O Types (Byte 2 of Fault Extra Data)

Value [Description
01 Input only

02 Output only

03 Combination

454

CPU Programmer’s Reference Manual Section 9
GFK-2950M Dec 2024

Genius Configured Module 1/O Types (Byte 3 of Fault Extra Data)

Value

Decimal | Hexadecimal | Description

0 0 Discrete input

1 1 Discrete output

2 2 Analog input

3 3 Analog output

4 4 Discrete grouped

5 5 Analog grouped

20 14 Analog in, discrete in

21 15 Analog in, discrete out

24 18 Analog in, discrete grouped
30 1E Analog out, discrete in

31 1F Analog out, discrete out

34 22 Analog out, discrete grouped
50 32 Analog grouped, discrete in
51 33 Analog grouped, discrete out
54 36 Analog grouped, discrete grouped

8, Analog Expander Mismatch

The CPU generates this error when the configured and physical Analog Expander
modules have different model numbers.

Correction

1. Replace the Analog Expander module with one corresponding to configured
module.

2. Update the configuration file.

9, Genius 1/0 Block Size Mismatch

The CPU generates this error when block configuration size does not match the
configured size.

Correction

Reconfigure the block.

Diagnostics 455

CPU Programmer’s Reference Manual Section 9
GFK-2950M Dec 2024

Fault Extra Data for Genius I/O Block Size Mismatch

Byte |Value

[0] FF

[1] Bus address

[2] Module’s broadcast data length

[3] Configured module’s broadcast data length

A hex/10 decimal, Unsupported Feature

Configured feature not supported by this revision of the module.
Correction
1. Update the module to a revision that supports the feature.
2. Change the module configuration.

Fault Extra Data for Unsupported Feature

Byte Value

[8] Contains a reason code indicating what feature is not supported.
0x5 — GBC revision too old
0x6 — Only supported in main rack

E hex/14 decimal, LAN Duplicate MAC Address

This LAN Interface module has the same MAC address as another device on the LAN.
The module is off the network.
Correction

1. Change the module’s MAC address.
2. Change the other device’s MAC address.

F hex/15 decimal, LAN Duplicate MAC Address Resolved

Previous duplicate MAC address has beenresolved. The module is back on the network.
This is an informational message. No correction required.

10 hex/16 decimal, LAN MAC Address Mismatch

MAC address programmed by softswitch utility does not match configuration stored from
software.

Correction

Change MAC address on softswitch utility or in software.

11 hex/17 decimal, LAN Softswitch/Modem mismatch

Configuration of LAN module does not match modem type or configuration programmed
by softswitch utility.

Correction

Diagnostics 456

CPU Programmer’s Reference Manual Section 9
GFK-2950M Dec 2024

1. Correct configuration of modem type.

2. Consult LAN Interface manual for configuration setup.

13 hex/19 decimal, DCD Length Mismatch

Directed control data lengths do not match.
Correction

See Fault Extra Data.

Fault Extra Data for DCD Length Mismatch

Byte |Value

[0] FF

[1] Bus address

[2] Module’s directed data length

[3] Configured module’s directed data length

25 hex/37 decimal, Controller Reference Out-of-Range

A reference on either the trigger, disable, or /O specificationis out of the configured
limits.

Correction

Modify the incorrect reference to be within range or increase the configured size of the
reference data.

26 hex/38 decimal, Bad Program Specification

The I/O specification of a program is corrupted.
Correction

Contact Technical Support.

Diagnostics 457

CPU Programmer’s Reference Manual Section 9
GFK-2950M Dec 2024

27 hex/39 decimal, Unresolved or Disabled Interrupt
Reference

The CPU generates this error when an interrupt trigger reference is either out of range
or disabled in the I/O module’s configuration.

Correction

1. Remove or correct the interrupt trigger reference.

2. Update the configuration file to enable this particular interrupt.

43 hex/67 decimal, Module Configuration Failure

Module configuration was not successfully accepted by the module.
Correction

Check fault table for other module-specific faults for possible reasons why the module
did not accept the configuration. Check that the configuration for the module is comect
and valid.

4B hex/75 decimal, ECC jumperis disabled, but should be
enabled

If the CPU redundancy feature is supported and required, the ECC jumper must be in
the enabled position.

Correction

Set the ECC jumper to the enabled position. (See the instructions provided with the
Redundancy CPU firmware upgrade Kkit).

4C hex/76 decimal, ECC jumper is enabled, but should be
disabled

If the CPU firmware does not support redundancy, the ECC jumper must be in the
disabled position.

Correction

Set the ECC jumper to the disabled position (jumper on one pin or removed entirely).

All Others, Module and Configuration do not Match
The CPU generates this fault when the module occupying a slot is not of the same type
that the configuration file indicates.

Correction
1. Replace the module in the slot with the type indicated in the configuration file.

2. Update the configuration file.

9.4.7 System Bus Error (Group 12)
The fault group System Bus Error occurs when the CPU encounters a bus error.

Diagnostics 458

CPU Programmer’s Reference Manual Section 9

GFK-2950M

9.4.8

Diagnostics

Dec 2024

Default action: Diagnostic. Configurable.

4, Unrecognized VME Interrupt Source

The CPU generates this error when a module generates an interrupt not expected by the
CPU (unconfigured or unrecognized).

Correction

Ensure that all modules configured for interrupts have corresponding interrupt
declarations in the program logic.

CPU Hardware Failure (Group 13)

The fault group CPU Hardware occurs when the CPU detects a hardware failure, such
as a RAM failure or a communications port failure.

When a CPU Hardware failure occurs, the OK LED will flash on and off to indicate that
the failure was not serious enough to prevent Controller Communications to retrieve the
fault information.

Action: Non-configurable.

6E hex/110 decimal, Time-of-Day Clock not Battery-
Backed

The battery-backed value of the time-of-day clock has been lost.
Correction

1. Replace the battery. Do not remove power from the main rack until
replacement is complete. Reset the time-of-day clock using your programming
software.

2. Replace the module.

0A8 hex/168 decimal, Critical Over-Temperature Failure

CPU’s critical operating temperature exceeded.

459

CPU Programmer’s Reference Manual Section 9

GFK-2950M

9.4.9

Diagnostics

Dec 2024
All Others

Correction

Replace the module.

Fault Extra Data for CPU Hardware Failure

For a RAM failure in the CPU (one of the faults reported as a CPU hardware failure), the

address of the failure is stored in the first four bytes of the field.

Module Hardware Failure (Group 14)

The fault group Module Hardware Failure occurs when the CPU detects a non-fatal
hardware failure on any module in the system, for example, a serial port failure on a LAN
interface module. The fault action for this group is Diagnostic.

Action: Non-configurable.

1A0 hex/416 decimal, Missing 12 Volt Power Supply

A power supply that supplies 12 volts is required to operate the LAN Interface module.
Correction
1. Install/replace a 100-watt power supply.

2. Connect an external VME power supply that supplies 12 volts.

1C2 - 1C6 hex (450 — 454 decimal), LAN Interface
Hardware Failure

Refer to the LAN Interface manual, GFK-0868 or GFK-0869 (previously GFK-0533), for
a description of these errors.

All Others, Module Hardware Failure

A module hardware failure has been detected.
Correction

Replace the affected module.

460

CPU Programmer’s Reference Manual Section 9
GFK-2950M Dec 2024

9.4.10 Option Module Software Failure (Group 16)

The fault group Option Module Software Failure occurs when:

e A non-recoverable software failure occurs on an intelligent option module.
e The module type is not a supported type.
e The Ethernet Interface logs an event in its Ethernet exception log.

Action: Non-configurable.

1, Unsupported Board Type

The board is not one of the supported types.
Correction

1. Upload the configuration file and verify that the software recognizes the board
type in the file. If there is an error, correct it, download the corrected
configuration file, and retry.

2. Display the Controller Fault Table on the programmer. Contact Technical
Support, giving them all the information contained in the fault entry.

2, 3, COMMREQ Frequency Too High

COMMREQs are being sent to a module faster than it can process them.
Correction

Change the application program to send COMMREQs to the module at a slower rate or
check the completion status of each COMMREQ before sending the next.

4, More Than One BTM in a Rack

There is more than one BTM present in the rack.
Correction

Remove one of the BTMs from the rack; there can only be one in a CPU rack.

>4, Option Module Software Failure

Software failure detected on an option module.
Correction
1. Reload software into the indicated module.

2. Replace the module.

Diagnostics 461

CPU Programmer’s Reference Manual
GFK-2950M

9.4.11

Diagnostics

>400, LAN System Software Fault

The Ethernet interface software has detected an unusual condition and recorded an
event in its exception log. The Fault Extra Data contains the corresponding event in the
Ethernet exceptionlog, which can be viewed by the Ethernetinterface’s StationManager
function. The first two digits of Fault Extra Data contain the Event type; the remaining
data correspond to the four-digit values for Entry 2 through Entry 6. Some exceptions
may also contain optional multi-byte SCode and other data.

Correction
For information on interpreting the fault extra data, refer to the PACSystems TCP/IP

Ethernet Communications Station Manager User Manual, GFK-2225, Appendix B.

Program or Block Checksum Failure (Group 17)

The fault group Program or Block Checksum Failure occurs when the CPU detects emor
conditions in program or blocks. It also occurs during RUN Mode background checking.
In all cases, the Fault Extra Data field of the Controller Fault Table record contains the
name of the program or block in which the error occurred.

Action: Non-configurable.

All Error Codes, Program or Block Checksum Failure

The CPU generates this error when a program or block is corrupted.
Correction

1. Clear CPU memory and retry the store.
2. Examine C application for errors.

3. Display the Controller Fault Table on the programmer. Contact Technical
Support, giving them all the information contained in the fault entry.

Fault Extra Data for Program or Block Checksum Failure

The name of the offending program block is contained in the first eight bytes of the Fault
Extra Data field.

462

Section 9
Dec 2024

CPU Programmer’s Reference Manual Section 9
GFK-2950M Dec 2024

9.4.12 Battery Status (Group 18)

Faults in this group occur when the CPU detects a failed battery (or Energy Pack).

Action: Non-configurable.

0, Failed Battery

CPUs with battery-backed RAM, including RX7i CPUs, and RX3i
CPU310, CPU315, CPU/CRU320 and NIU001

The battery in the CPU module has failed or is disconnected.

If the battery is disconnected, this fault is logged for all CPU types and all supported
battery types.

Should a Smart Battery fail during operation, this fault is logged for all CPU types. When
used with a legacy (non-smart) battery, this indication is not reliable.

CPE302, CPE305 and CPE310

The Energy Pack has failed or is disconnected.
Correction

Replace the battery or Energy Pack. For instructions on replacing the battery, refer to
the PACSystems Battery and Energy Pack Manual, GFK-2741.

1, Low Battery — CPUs with Battery-Backed RAM

This fault is supported only by the CPU versions listed in the PACSystems Battery and
Energy Pack Manual, GFK-2741.

The CPU detects the low battery condition only while the CPU is powered up.

If a low battery condition occurs while the CPU is powered down, the CPU logs a Low
Battery fault upon power-up as soon as it detects the signal from the smart battery.
While the CPU is powered up, it is unlikely that a Low Battery fault will be detected
because the current drain on the battery is negligible. The exception is when a good
battery is replaced with a low battery while the CPU has power. In this case, a Low
Battery fault would indicate that a good battery has been accidentally replaced with a
depleted battery.

The Controller fault table indicates the battery status. For details of LED operation of
specific CPUs, refer to PACSystems RX7i, RX3i and RSTi-EP CPU Reference Manual,
GFK-2222.

When a Failed Battery fault is logged, this fault is also logged.

Correction

Replace the battery. For instructions on replacing the battery, refer to the PACSystems
Battery and Energy Pack Manual, GFK-2741.

Diagnostics 463

CPU Programmer’s Reference Manual Section 9
GFK-2950M Dec 2024

1, Low Battery — CPE302/CPE305/CPE310/CPE330 CPUs
with Energy Pack

The Status LED and the Controller fault table indicate the Energy Pack status.

PLC_BAT LOW_BAT Energy Pack Status
(%S0014) (%SA0011)

0 0 Energy Pack connected and operational (may be charging)
1 1 Energy Pack not connected or has failed
0 1 Energy Pack is nearing its end-of-life and should be replaced.

9.4.13 Constant Sweep Time Exceeded (Group 19)

The fault group Constant Sweep Exceeded occurs when the CPU operates in Constant
Sweep mode and detects that the sweep has exceeded the constant sweep timer. In the
fault extra data, the DWORD at byte offset 8 contains the amount of time that the sweep
went beyond the constant sweep time (in microsecond units). Stored in Big Endian

format.

Action: Non-configurable.

0, Constant Sweep

Correction
If Constant Sweep (0):

1. Increase constant sweep time.

2. Remove logic from application program.

Note: Error code 1 is not used.

9.4.14 System Fault Table Full (Group 20)

The fault group System Fault Table Full occurs when the Note: Fault tables do not

persist from one running PACSystems Simulator to a newly launched PACSystems
Simulator.

Controller Fault Table reaches its limit.

Action: Non-configurable.

0, System Fault Table Full

Correction

Clear the Controller Fault Table.

Diagnostics 464

CPU Programmer’s Reference Manual Section 9
GFK-2950M Dec 2024

9.4.15 |/O Fault Table Full (Group 21)

The fault group I/O Fault Table Full occurs when the I/O Fault Table reaches its maximum
configured limit. To avoid loss of additional faults, clear the earliest entry from the table.

Action: Non-configurable.

0, /0 Fault Table Full

Correction

Clear the 1/O Fault Table.

9.4.16 User Application Fault™ (Group 22)

The fault group Application Fault occurs when the CPU detects a fault in the user
program.

Action: Non-configurable.

2, Software Watchdog Timer Expired

The CPU generates this error when the watchdog timer expires. The CPU stops
executing the user program and enters STOP/Halt Mode. To recover, cycle power to the

CPU with battery disconnected. Causes of timer expiration include: Looping, via jump,
very long program, etc.

Correction

1. Determine what caused the expiration (logic execution, external event, etc.)
and correct.

2. Use the system service function block to restart the watchdog timer.

7, Application Stack Overflow

Block call depth has exceeded the CPU capability.
Correction

Increase the program’s stack size or adjust application program to reduce nesting.

11 hex/17 decimal, Program Run Time Error

A run-time error occurred during execution of a program.
Correction

Correct the specific problem in the application.

1E - 21 hex (30 - 33 decimal), LAN Interface Fault

Refer to the PAC Systems TCP/IP Ethernet Communications User Manual, GFK-2224
for a description of these errors. Please see the Diagnostics Chapter, 'Controller Fault
Table'.

22 hex/34 decimal, Unsupported Protocol

Hardware does not support configured protocol.

'® Error Codes 1, 4, 5, 6, 8-15, 28, 29 and 49 are not used by PACs.
Diagnostics 465

CPU Programmer’s Reference Manual Section 9

GFK-2950M

Diagnostics

Dec 2024

33 hex/51 decimal, Flash Read Failed

Possible causes:

1. Files not in flash. (May be caused by power cycle during flash write.)
2. Could not read from flash because OEM protection is enabled.

34 hex/52 decimal, Memory Reference Out of Range

A user logic memory reference, computed during logic execution, is out of range.
Includes indirect references, array element references, and potentially other types of
references.

Correction

Correct logic or adjust memory size in hardware configuration.

35 hex/53 decimal, Divide by zero attempted in user logic.
User logic contained a divide by zero operation. (Applies to ST and FBD logic.)
Correction

Correct logic.

36 hex/54 decimal, Operand is not byte aligned.

A variable in user logic is not properly byte-aligned for the requested operation.
Correction

Correct logic or adjust memory size in hardware configuration.

39 hex/57 decimal, DLB heartbeat not received, All DLBs
stopped and deleted

The controller has not received a heartbeat signal from the programmer within the time
specified by the DLB Heartbeat setting in the Target properties.

466

CPU Programmer’s Reference Manual Section 9
GFK-2950M Dec 2024

Correction

Increase the DLB Heartbeat setting. For additional information, refer to Executing DLBs.
3B hex /59 decimal, PSB called by a block whose %L or
%P memory is not large enough to accommodate this
reference.

Parameterized blocks do not have their own %L data, but instead inherit the %L data of
theircalling blocks. If %L references are used within a parameterized block and the block
is called by _MAIN, %L references are inherited from the %P references wherever
encountered in the parameterized block (for example, %L0005 = %P0005). For a
discussion of the use of local data with parameterized blocks, refer to the section entitled
Parameterized Blocks and Local Data.

Correction

Determine which block called the parameterized subroutine block and increase the size
of %L or %P memory allocated to the calling block. (To do this, change the Extra Local
Words setting in the block’s Properties.)

The maximum size of %L or %P is 8192 words per block. If your application needs more
space, consider changing some %P or %L references to %R, %W, %Al, or %AQ. These
changes require a recompilation of the program block and a STOP Mode Store to the

CPU.

It is possible, by using Online Editing in the programming software to cause a
parameterized block to use %L higher than allowed because of the way it inherits data.
To correct this condition, delete the %L variables from the logic and then remove the
unused variables from the variable list. These changes require a recompilation of the
program block and a STOP Mode Store to the CPU.

9.4.17 CPU Over-Temperature (Group 24)

Default action: Diagnostic. Configurable.

1, Over-Temperature failure.

CPU’s normal operating temperature exceeded.
Correction

Turn off CPU to allow heat to disperse and install a fan kit to regulate temperature.

Diagnostics 467

CPU Programmer’s Reference Manual Section 9
GFK-2950M Dec 2024

9.4.18 Power Supply Fault (Group 25)

Action: Non-configurable.

1, Power supply failure.

Unknown power supply failure.
Correction
Replace power supply module.

2, Power supply overloaded

The load on the power supply has reached its rated maximum
Correction

Replace power supply with a higher capacity modelor reconfigure system to reduce load
on power supply.

3, Power supply switched off

The switch on the power supply was moved to the OFF position.

4, Power-supply has exceeded normal operating
temperature

The temperature of the power supply is a just a few degrees from causing it to turn off.
Correction
Turn off system to allow heat to disperse. Install a fan kit to regulate temperature.

9.4.19 No User Program on Power-Up (Group 129)

The fault group No User Program on Power-Up occurs when the CPU powers up with its
memory preserved but no user program exists inthe CPU. The CPU detects the absence

of a user program on power-up; the controller stays in STOP Mode.

Action: Non-configurable.
Correction

Download an application program before attempting to go to RUN Mode.

Diagnostics 468

CPU Programmer’s Reference Manual
GFK-2950M

9.4.20

9.4.21

Diagnostics

Corrupted User Program on Power-Up (Group 130)

The fault group Corrupted User Program on Power-Up occurs when the CPU detects
corrupted user RAM. The CPU will remain in STOP Mode.

Action: Non-configurable.

1, Corrupted user RAM on power-up

The CPU generates this error when it detects corrupted user RAM on power-up.
Recommended Corrections, Listed in Order

1. Cycle power without battery or Energy Pack.

2. Examine any C applications for errors.

3. Replace the volatile memory backup battery on the CPU.

4. Replace the CPU.

7, User memory not preserved over power cycle
The CPU generates this error when it detects a battery failure that occurred while the
controller was powered down.

If this fault occurs on a power cycle when the battery was not detached or replaced, the
battery has failed and should be replaced.

Correction

Replace the battery on the CPU. For instructions on replacing the battery, refer to the
PACSystems Battery and Energy Pack Manual, GFK-2741.

Window Completion Failure (Group 131)

The fault group Window Completion Failure is generated by the pre-logic and
end-of-sweep processing software inthe CPU. The fault extra data contains the name of
the task that was executing when the error occurred.

Action: Non-configurable.

0, Window Completion Failure

The CPU generates this error when it is operating in Constant Sweep mode and the
constant sweep time was exceeded before the programmer window had a chance to
begin executing.

469

Section 9
Dec 2024

CPU Programmer’s Reference Manual Section 9
GFK-2950M Dec 2024

Correction

Increase the constant sweep timer value.

1, Logic Window Skipped

The logic window was skipped due to lack of time to execute.
Correction

1. Increase base cycle time.

2. Reduce Communications Window time.

9.4.22 Password Access Failure (Group 132)

The fault group Password Access Failure occurs when the CPU receives a request to
change to a new privilege level and the password included with the request is not valid
for that level.

Action: Non-configurable.

0, Password Access Failure

Correction

Retry the request with the correct password.

9.4.23 Null System Configuration for RUN Mode (Group 134)

The fault group Null System Configuration for RUN Mode occurs when the CPU
transitions from STOP Modeto one of the RUN Modes and a configuration file is not
present. The transition to Run is permitted, but no I/O scans occur.

Action: Informational. Non-configurable.

0, Null System Configuration for RUN Mode

Correction

Download a configuration file.

Diagnostics 470

CPU Programmer’s Reference Manual
GFK-2950M

9.4.24

Diagnostics

CPU System Software Failure (Group 135)

Faults in this group are generated by the operating software of the CPU. They occur at
many different points of system operation. When a fatal fault occurs, the CPU
immediately transitions to STOP/Halt. The only activity permitted when the CPU is in this
mode is communications with the programmer. The only method of clearing this condition
is to cycle power on the controller with the battery disconnected.

Action: Non-configurable.

5A hex/90 decimal, User Shut Down Requested

The CPU generates this informational alarm when SVC_REQ #13 (User Shut Down)
executes in the application program.

Correction

None required. Information-only alarm.

94 hex/148 decimal, Units Contain Mismatched Firmware,
Update Recommended

This fault is logged each time the redundancy state changes and the redundant CPUs
contain incompatible firmware.

Correction

Ensure that redundant CPUs have compatible firmware.

D8 hex/216 decimal, Processor Exception Trap

The processor has detected an error condition while executing an instruction. The CPU
was placed into STOP/Halt mode.

Correction

Disconnect the battery from the CPU and cycle power to clear the STOP/Halt condition.
DA hex/218 decimal, Critical Over-Temperature Failure

Critical operating temperature of CPU exceeded.
Correction

Turn off CPU to allow heat to disperse and install a fan kit to regulate temperature

471

Section 9
Dec 2024

CPU Programmer’s Reference Manual Section 9
GFK-2950M Dec 2024

All Others, CPU Internal System Error

An internal system error has occurred that should not occur in a production system.
Correction

Display the Controller Fault Table on the programmer. Contact Technical Support and
give them all the information contained in the fault entry.

Error Fault Extra Data |Description

Value (First Byte)
DEVICE_NOT_AVAILABLE |CF Specific device is not available in the system.
BAD_DEVICE_DATA CcC Data stored on device has been corrupted and

is no longer reliable. Or, Flash Memory has not
been initialized.

DEVICE_RW_ERROR CB Error occurred during a read/write of the Flash
Memory device.
FLASH_INCOMPAT_ERROR | 8E Data in Flash Memory is incompatible with the

CPU firmware release due to the CPU firmware
revision numbers, the instruction groups
supported, or the CPU model number.
ITEM_NOT_FOUND_ERROR | 8D One or more specified items were not found in
Flash Memory.

9.4.25 Communications Failure During Store (Group 137)

This fault group occurs during the store of programs or blocks and other data to the CPU.
The stream of commands and data for storing programs or blocks and data starts with a
special start-of-sequence command and terminates with an end-of-sequence command.
This fault is logged if communications with the programming device performing the store
is interrupted or any other failure that terminates the store occurs. As long as this fault is
present in the system, the controller will not transition to RUN Mode. This fault is not
automatically cleared on power-up; you must specifically clear the condition.

Action: Non-configurable.

Diagnostics 472

CPU Programmer’s Reference Manual Section 9
GFK-2950M Dec 2024

0, Communications Failure During Store

Correction

Clear the fault and retry the download of the program or configuration file.

1, Communications Lost During RUN Mode Store

Communications or power was lostduringa RUN Mode Store. The new program or block
was not activated and was deleted.

Correction
Perform the RUN Mode Store again. This fault is diagnostic.

2, Communications Lost During Cleanup for RUN Mode
Store

Communications was lost, or power was lost during the cleanup of old programs or
blocks during a RUN Mode Store. The new program or block is installed, and the
remaining programs and blocks were cleaned up.

Correction

None required. This fault is informational.

3, Power Lost During a RUN Mode Store

Power was lost in the middle of a RUN Mode Store.
Correction

Delete and restore the program. This error is fatal.

Diagnostics 473

CPU Programmer’s Reference Manual Section 9

GFK-2950M

9.4.26

Diagnostics

Dec 2024

Non-Critical CPU Software Event (Group 140)

This group is used for recording conditions in the system that may provide valuable
information to Technical Support.

Default action: Non-configurable.

Error Code Description Correction

1-30 Events during power-up No corrective action is required unless this

Events on the serial port orin a | fault occurs with other specific faults. The

31-50

serial protocol fault may contain useful information for
Miscellaneous intemnal system Technical Support if other problems are
51,52 events encountered.
53 Access control fault See details below.

No corrective action is required unless this
fault occurs with other specific faults. The
fault may contain useful information for
Technical Support if other problems are
encountered.

Error code 53, Access Control Fault

Miscellaneous internal system

54 and greater
events

If data access is prevented because of the Enhanced Security settings, the Controller
logs afault into the fault table. This fault can be used to help diagnose access problems.
To prevent overflowing the fault table, only one fault is logged until the fault table is
cleared.

Fault example

Location: 0.8 Date/Time: 07-07-2013 17:06:55.087

Group: 140 INFO_CPU_SOFTWR - CPU software event

Error Code: 53 Action:1 Task Num:3

Extra Data: 00 fa 02 a5 00 00 00 00 01 1e 06 00 00 00 00 00 00 00 01 00 00 00 00 00
Meaning of this example fault

A 1-bit READ request beginning at %S7 was rejected due to an access violation.
Interpreting the Fault Extra Data

Bytes 1 -8: Ignored when decoding a security-related fault.

Byte 9: The operation during which the fault occurred.

01 (as in the example): Read

02: Write
Byte 10: The hexadecimal value (HV) that specifies a CPU memory area.
Hexadecimal Value (HV) | Memory area
08 %R (Register memory)
0A %Al (Analog input memory)
0oC %AQ (Analog output memory)
10 %I (Discrete input memory)

474

CPU Programmer’s Reference Manual
GFK-2950M

12 %Q (Discrete output memory)

14 %T (Discrete temporary status memory)
16 %M (Discrete momentary internal memory)
18 %SA (Discrete system memory A)

1A %SB (Discrete system memory B)

1C %SC (Discrete system memory C)

1E %S (Discrete system memory)

1F Symbolic Boolean

38 %G (Genius global memory)

C4 %W (Bulk Memory)

Section 9
Dec 2024

Bytes 11-18: 0-based bit offset of the memory area being accessed. The 8-byte value
is encoded in little endian format, meaning that the byte values are
reversed. In the example, the value is 0x0000000000000006, which is
equal to 1-based bit offset 7.

Bytes 19-22: The length in bits of data requested. In the example, 1 bit was requested.

Bytes 23-24: Ignored when decoding a security-related fault.

Diagnostics

475

CPU Programmer’s Reference Manual

GFK-2950M

9.5

9.5.1

9.5.2

9.5.3

I/O Fault Descriptions and Corrective

Actions
The I/O fault table reports the following data about faults:

Fault Group

Fault Action

Fault category

Fault type

Fault description

Allfaults have afaultcategory, butafault type and fault group may notbe listed for every
fault. To view the detailed information pertaining to a fault, click the fault entry in the VO

Fault Table.

Emerson reserves the right to change the fault data without prior notice.

Note: The model number mismatch and I/O type mismatch faults are reported in the

controller fault table under the System Configuration Mismatch group. They are not
reported in the I/O fault table.

Fault Extra Data

An I/O fault table entry contains up to 21 bytes of I/O fault extra data that contains
additional information related to the fault. Not all entries contain I/O fault extra data.

|/O Fault Groups

Default Fault

Group Number| Group Name . Configurable
P P Action’® 9
2 Loss of or Missing 10C Diagnostic Yes
L f or Missing | |
3 oss of or !ssmg /O module or Diagnostic Yes
network Device
6 Addition or Reset of, or Extra IOC N/A No

7 Addition of qr Extra 1/0 module or N/A No
network Device

9 10C or I/O Bus Fault Diagnostic Yes
10 1/0 Module Fault N/A No
15 IOC Software Failure Same As Group 2 * | Yes
16 Module Software Failure N/A No
28 PROFINET Alarms Diagnostic No
133 Genius Block Address Mismatch N/A No

|/O Fault Categories

Category Fault Type Fault Description Fault Extra Data
Loss of User Side Power _—) .
(01 hex) Circuit Configuration
Circuit Fault (1) Discrete Fault (1) ﬁg;)rt Circuit in User Wiring (02 Circuit Configuration

Sustained Overcurrent (04 hex)| Circuit Configuration

" The fault action for the I0C Software Failure group 15 always matches the action used by the Loss of or Missing |0C group 2. If
the Loss of or Missing I0C group is configured, the IOC Software Failure group is also configured to take the same fault action.

Diagnostics

476

Section 9
Dec 2024

CPU Programmer’s Reference Manual

GFK-2950M

Diagnostics

Section 9
Dec 2024

Category

Fault Type

Fault Description

Fault Extra Data

Low or No Current Flow
(08 hex)

Circuit Configuration

Switch Temperature Too High
(10 hex)

Circuit Configuration

Switch Failure (20 hex)

Circuit Configuration

Point Fault (83 hex)

Circuit Configuration

Output Fuse Blown (84 hex)

Circuit Configuration

Analog Fault (2)

Input Channel Low Alarm
(01 hex)

Circuit Configuration

Input Channel High Alarm
(02 hex)

Circuit Configuration

Input ChannelUnder Range (04
hex)

Circuit Configuration

Analog Fault (07)

Circuit Configuration

Analog Fault (08)

Circuit Configuration

Input Channel Over Range (08
hex)

Circuit Configuration

Input Channel Open Wire
(10 hex)

Circuit Configuration

Over Range or Open Wire
(18 hex)

Circuit Configuration

Output Channel Under Range
(20 hex)

Circuit Configuration

Output Channel Over Range
(40 hex)

Circuit Configuration

Expansion Channel Not
Responding
(80 hex)

Circuit Configuration

Invalid Data (81 hex)

Circuit Configuration

GENA (Genius
Network
Adapter) Fault (3)

GENA Circuit Fault (80 hex)

Byte 2:GENA Fault

Low-Level Analog
Fault (4)

Input Channel Low Alarm
(01 hex)

Circuit Configuration

Input Channel High Alarm
(02 hex)

Circuit Configuration

Input ChannelUnder Range (04
hex)

Circuit Configuration

Input Channel Over Range (08
hex)

Circuit Configuration

Input Channel Open Wire
(10 hex)

Circuit Configuration

Wiring Error (20 hex)

Circuit Configuration

Internal Fault (40 hex)

Circuit Configuration

Input Channel Shorted (80 hex)

Circuit Configuration

Invalid Data (81 hex)

Circuit Configuration

Remote 1/0
Scanner Fault (5)

Remote 1/0 Scanner Circuit
Fault

Byte 1: Circuit Type
Byte 2: 1/0 Type

Enhanced Analog
Aggregate Fault (7)

(01 hex) Low Alarm

Circuit Configuration

(02 hex) High Alarm

Circuit Configuration

(04 hex) Low-Low Alarm

Circuit Configuration

(08 hex) High-High Alarm

Circuit Configuration

(10 hex) Under Range

Circuit Configuration

477

CPU Programmer’s Reference Manual

GFK-2950M

Diagnostics

Section 9
Dec 2024

Category

Fault Type

Fault Description

Fault Extra Data

(20 hex) Over Range

Circuit Configuration

(40 hex) Open Wire

Circuit Configuration

Enhanced Analog
Singleton Fault (8)

(01 hex) Negative Rate of
Change

Circuit Configuration

(02 hex) Positive Rate of
Change

Circuit Configuration

(03 hex) Calibration Fault

Circuit Configuration

(04 hex) Wiring Error

Circuit Configuration

(05 hex) Scaling Error

Circuit Configuration

(06 hex) Input Shorted

Circuit Configuration

(07 hex) Upper Clamp Limit

Circuit Configuration

(08 hex) Lower Limit

Circuit Configuration

Not Specified (0)
A/D

Block Configuration

Loss of Block (2) s NA Number of Input Circuits
Communications o
Number of Output Circuits
Lost (1)
- Block Configuration
(A?jdltlon of Block NA NA Number of Input Circuits
Number of Output Circuits
Bus Fault (1)
Bus Outputs
I/O Bus Fault (6 NA NA
us Fault ®) | picabled (2)
SBA Conflict (3)
Configuration Memory Failure
Headend Fault (0) [(08 hex)
A to D Comm. Fault | Calibration Memory Failure (20
Genius Module (1) hex) NA
Fault (8) User Scaling Error | Shared RAM Failure (40 hex)
(5) Internal Circuit Fault (80 hex)
Store Fail (6) Watchdog Timeout (81 hex)
Output Fuse Blown (84 hex)
Addition of I0OC NA Extra Module (01 hex) NA
9) Reset Request (02 hex)
Timeout
Unexpected State
Loss of I0C (10) | NA NA Unexpected Mail Status
VME Bus Error
I0C Software NA NA NA
Fault (11)
Forced Circuit NA NA B!ock Conflguratlon. .
(12) Discrete/Analog Indication*®
Unforced Circuit NA NA Block Configuration
(13) Discrete/Analog Indication*®
Loss of /10
Module (14) NA NA NA
Addition of I/0 NA VME Module Reset Requested NA
Module (15) (30 hex)
Extra 1/0 Module NA NA NA
(16)
Extra Block (17) | NA NA NA
| H
OC Hardware NA NA NA

Failure (18)

478

CPU Programmer’s Reference Manual

GFK-2950M

Diagnostics

Section 9
Dec 2024

Category

Fault Type

Fault Description

Fault Extra Data

GBC stopped
reporting faults

GBC detected high
error count on
Genius Bus and

because too dropped off the bus NA NA
many faults have for at least 1.5
occurred (19) seconds. (1)
Datagram queue
full (1)
R/W request queue
full (2)
Low priority mail
rejected (3)
Background
GBC Software message received NA
Exception (21) before CPU
completed
initialization (4)
Genius software
version too old (5)
Excessive use of
internal GBC
memory (6)
Block Configuration
Block Switch (22) Number of Input Circuits
— redundant NA NA Number of Output Circuits
Genius block Rack/Slot address of GBC
switched bus from which block was
removed.
Block not active
onredundantbus | NA NA NA
(23)
Reset of IOC (27) | NA NA NA
i;(\?vglrrézlts 33| NA Refer to PRQFINET controller NA
. documentation.
and higher)

479

CPU Programmer’s Reference Manual Section 9
GFK-2950M Dec 2024

9.5.4 Circuit Faults (Category 1)

Circuit faults apply to Genius /O modules and the IC697VRD008 RTD/Strain Bridge
modules. Fault extra data is available for all faults in this category. More than one
condition may be present in a particular reporting of the fault.

Action: Diagnostic.

Fault Extra Data for Circuit Faults

Genius Bus Controller

Circuit fault entries use one or two bytes of the fault extra data area. If the GBC reports
the fault, the first byte is generated by the GBC and the second byte contains the circuit

configuration and is encoded as shown in the following table.

Value Description
(Byte 2)

1 Circuit is an input.
2 Circuit is an input.
3 Circuit is an output.

If the fault type is a GENA fault, the second byte contains the data that was rep orted from
the GENA module in Fault Byte 2 of its Report Fault message.

VRDO001 RTD/Strain Bridge

Circuit fault entries; 13 bytes of the fault extra data area. The fault extra data is encoded
as shown in the following table.

Bytes [Description

1-10 Used by technical support.

11 Line number
12 Module number
13 Used by technical support.

Diagnostics 480

CPU Programmer’s Reference Manual

GFK-2950M

Diagnostics

Section 9
Dec 2024

Fault Descriptions for Discrete Faults (Fault Type 1)

Fault Type

Fault Description

Description

Correction

Discrete Fault (1)

(01 hex)

Loss of User Side Power

The GBC generates
this error when there is
a power loss on the
field wiring side of a
Genius I/O block.

Only valid for Isolated
I/0 blocks.) Initiate
Pulse Test COMREQ
#1. Pulse test may be
enabled or disabled at
I/O block.

Correct the power
failure.

Short Circuit in User Wiring

The GBC generates this
error when it detects a
short circuit in the user
wiring of a Genius block. A

Fix the cause of the short

(02 hex) short circuit is defined as a cireuit.

current level greater than

20 amps.
Sustained Overcurrent Fix the cause of the short |Fix the case of the over
(04 hex) circuit. current.

Low or No Current Flow
(08 hex)

The GBC generates this
error when there is very
low or no current flow in
the user circuit.

Fix the cause of the
condition.

(10 hex)

Switch Temperature Too High

The GBC generates this
error when the Genius
block reports a high
temperature in the Genius
Smart Switch.

Ensure that the block is
installed to provide
adequate circulation.
Decrease the ambient
temperature surrounding
the block.

Install RC Snubbers on
inductive loads.

Switch Failure (20 hex)

The GBC generates this
error when the Genius
block reports a failure in
the Genius Smart Switch.

Check for shunts across
Genius output
(pushbuttons).

Replace the Genius I/O
block.

Point Fault (83 hex)

The CPU generates this
error when it detects a
failure of a single I/O point
on a Genius 1/0 module.

Replace the Genius I/O
block.

Output Fuse Blown (84 hex)

The CPU generates this
error when it detects a
blown fuse on a Genius
1/0 output block

Determine and repair the
cause of the fuse
blowing; replace the fuse.
Replace the block.

Fault Descriptions for Analog Faults (Fault Type 2)

Fault Type

Fault Description

Description

Correction

Analog Fault (2)

Input Channel Low Alarm
(01 hex)

The GBC generates this error
when the Genius Analog module
reports a low alarm on an input
channel.

Correct the condition
causing the low alarm.

Input Channel High Alarm
(02 hex)

The GBC generates this error
when the Genius Analog module
reports a high alarm on an input
channel.

Correct the condition
causing the high alarm.

481

CPU Programmer’s Reference Manual

GFK-2950M

Diagnostics

Section 9
Dec 2024

Input Channel Under
Range (04 hex)

The GBC generates this error
when the Genius Analog module
reports an under-range condition
on an input channel.

Correct the problem
causing the condition.

Input Channel Over
Range (08 hex)

The GBC generates this error
when the Genius Analog module
reports an over-range condition
on an input channel.

Correct the problem
causing the condition.

Input Channel Open Wire
(10 hex)

The GBC generates this error
when a Genius Analog module
detects an open wire condition
on an input channel.

Correct the problem
causing the condition.

OverRange orOpen Wire
(18 hex)

Inputs open or inputs off-scale.

Correct the problem
causing the condition.

Output Channel Under
Range (20 hex)

The GBC generates this error
when the Genius Analog module
reports an under-range condition
on an output channel.

Correct the problem
causing the condition.

Output Channel Over
Range (40 hex)

The GBC generates this error
when the Genius Analog module
reports an over-range condition
on an output channel.

Correct the problem
causing the condition.

Expansion Channel Not
Responding
(80 hex)

The CPU generates this error
when data from an expansion
channelon a multiplexed analog
input board is not responding.

Check wiring to the
module.
Replace the module.

Invalid Data (81 hex)

The GBC generates this error
when it detects invalid data from
a Genius Analog input block.

Correct the problem
causing the condition.

Low-Level Analog Faults (Fault Type 4)

1, Input Channel Low Alarm

The GBC generates this error when the Genius Analog modulereports a low alarm on
an input channel.

Correction
Correct the condition causing the low alarm.
2, Input Channel High Alarm

The GBC generates this error when the Genius Analog module reports a high alam on
an input channel.

Correction
Correct the condition causing the high alarm.
4, Input Channel Under Range

The GBC generates this error when the Genius Analog module reports an under-range
condition on an input channel.

Correction

Correct the problem causing the condition.
482

CPU Programmer’s Reference Manual Section 9

GFK-2950M

Diagnostics

Dec 2024

8, Input Channel Over Range

The GBC generates this error when the Genius Analog module reports an over-range
condition on an input channel.

Correction
Correct the problem causing the condition.
10 hex, Input Channel Open Wire

The GBC generates this error when the Genius Analog module detects an open wire
condition on an input channel.

Correction
Correct the problem causing the condition.

20 hex/32 decimal, Wiring Error

The GBC generates this error when the Genius Analog module detects animproper RTD
connection or thermocouple reverse junction fault.

483

CPU Programmer’s Reference Manual Section 9
GFK-2950M Dec 2024

Correction
Correct the problem causing the condition.
40 hex/64 decimal, Internal Fault

The GBC generates this error when the Genius Analog module reports a cold junction
sensor fault on a thermocouple block or an internal error in an RTD block.

Correction
Correct the problem causing the condition.

80 hex/128 decimal, Input Channel Shorted

The GBC generates this errorwhenit detects aninput channel shorted ona Genius RTD
or Strain Gauge Block.

Correction
Correct the problem causing the condition.

81 hex/129 decimal, Invalid Data

The GBC generates this error when it detects invalid data from a Genius Analog input
block.

Correction

Correct the problem causing the condition.

GENA Fault (Fault Type 3)

The GENA Fault has no fault descriptions associated with it. GENA Fault Byte 2 is the
first byte of the fault extra data.

80 hex/128 decimal

The Genius I/O operating software generates this error when it detects a failure in a
GENA block attached to the Genius I/O bus.

Correction

Replace the GENA block.

Diagnostics 484

CPU Programmer’s Reference Manual Section 9

GFK-2950M

9.5.5

Diagnostics

Dec 2024

Loss of Block (Category 2)

The fault category Loss of Block applies to Genius devices.

Action: Diagnostic.

Loss of Block

The GBC generates this error when it is unable to communicate to the Genius device.
Correction

1. Verify power and wiring to the block.

2. Replace the block.
Loss of Block - A/D Communications Fault

The GBC generates this error when it detects a failure of A/D communications on a
Genius device.

Correction
1. Verify power and serial bus wiring to the block.
2. Replace the block.

Fault Extra Data for Loss of Block

The Loss of Block fault provides four bytes of fault extra data. The second byte contains
the block configuration and is encoded as shown in the following table. The third byte
specifies the number of input circuits possibly used, and the fourth byte specifies the
number of output circuits possibly used.

Block Configuration (Byte 2)

Value Description

1 Block is configured for inputs only.

2 Block is configured for outputs only.

Block is configured for inputs and outputs (grouped block).

485

CPU Programmer’s Reference Manual Section 9
GFK-2950M Dec 2024

9.5.6 Addition of Block (Category 3)

The fault category Addition of Block applies only to Genius devices. There are no fault
types or fault descriptions associated with this category.

The Genius operating software generates this error when it detects that a Genius block
that stopped communicating with the controller starts communicating again.

Action: Diagnostic.

Correction

Informational only. None required.

Fault Extra Data for Addition of Block

The Addition of Block fault provides four bytes of fault extra data. The second byte
contains the block configuration and is encoded as shownin the following table. The third
byte specifies the number of input circuits possibly used, and the fourth byte specifies
the number of output circuits possibly used.

Block Configuration (Byte 2)

Value |Description

1 Block is configured for inputs only.

2 Block is configured for outputs only.

Block is configured for inputs and outputs (grouped block).

9.5.7 |/O Bus Fault (Category 6)

The fault category I/O Bus Faults has three fault types associated with it.

Default action: Diagnostic. Configurable.

Bus Fault

The GBC operating software generates this error when it detects a failure with a Genius
I/O bus. (Generated when Error Rate in the GBC configuration is exceeded—the default
Error Rate is 10 errors in a 10 second period).

Correction
1. Determine the reason for the bus failure and correct it.
2. Replace the GBC.

The Error Rate can be set higher than the default value if needed, but the bus should be
examined electrically—use an oscilloscope for waveform check.

Bus Outputs Disabled

The GBC operating software generates this error when it times out waiting for the CPU
to perform an output scan.

Correction
1. Reduce time between GBC output scans by assigning them to scan set 1.

2. Increase CPU software watchdog timer setting
Diagnostics 486

CPU Programmer’s Reference Manual
GFK-2950M

9.5.8

Diagnostics

3. Replace the CPU.

4. Display the controller fault table on the programmer. Contact Technical
Support, giving them all the information contained in the fault entry.

SBA Conflict

The GBC detected a conflict between its serial bus address and that of another device
on the bus.

Correction
Adjust one of the conflicting serial bus addresses.

Module Fault (Category 8)

The fault category Module Fault has one fault type, headend fault, and eight fault
descriptions. This faultcategory does notprovide fault extra data. The default faultaction
for this category is Diagnostic.

08 hex, Configuration Memory Failure

The GBC generates this error when it detects a failure in a Genius block’'s EEPROM or
NVRAM.

Correction
Replace the Genius block’s electronics module.

20 hex/32 decimal, Calibration Memory Failure

The GBC generates this error when it detects a failure in a Genius block’s calibration
memory.

Correction

Replace the Genius block’s electronics module.

487

Section 9
Dec 2024

CPU Programmer’s Reference Manual Section 9
GFK-2950M Dec 2024

40 hex/64 decimal, Shared RAM Fault

The GBC generates this error when it detects an error in a Genius block’s shared RAM.
Correction

Replace the Genius block’s electronics module.

80 hex/128 decimal, Module Fault

An internal failure has been detected in a module.
Correction

Replace the affected module.

81 hex/129 decimal, Watchdog Timeout

The CPU generates this error when it detects that an input module watchdog timer has
expired.

Correction

Replace the input module.

84 hex/132 decimal, Output Fuse Blown

The CPU generates this error when it detects a blown fuse on an output module.
Correction
1. Determine and repair the cause of the fuse blowing and replace the fuse.

2. Replace the module.

Diagnostics 488

CPU Programmer’s Reference Manual Section 9
GFK-2950M Dec 2024

9.5.9 Addition of IOC (Category 9)

The fault category Addition of I/O Controller has no fault types or fault descriptions
associated with it. The default fault action for this category is Diagnostic.

Addition of IOC

The CPU generates this error when an IOC that has been faulted returns to operation or
when an I0C is found in the system and the configuration file indicates that no IOC is to
be in that slot or when an I0OC is hot inserted.

Correction

1. No action is necessary if the faulted module is in a remote rack and is returning
due to a remote rack power cycle.

2. Update the configuration file or remove the module.

01 hex, Extra Module

Module present, but not configured.
Correction
Update the configuration file or remove the module.

02 hex, Reset Request

Module added back after reset request. No corrective action is necessary.

Diagnostics 489

CPU Programmer’s Reference Manual Section 9
GFK-2950M Dec 2024

9.5.10 Loss of or Missing 1O Controller (Category 10)

The fault category Loss of IOC has no fault types or fault descriptions associated with it.
Default action: Diagnostic. Configurable.

Note: This fault is always displayed as Fatal in the I/O Fault Table, regardless of its
configured action.

The CPU generates this error when it cannot communicate with an I/O Controller and an
entry for the I0C exists in the configuration file.

This fault is also logged when an IOC is hot removed (No corrective action necessary in
this case).

Correction
1. Verify that the module in the slot/bus address is the correct module.
2. Review the configuration file and verify that it is correct.
3. Replace the module.
4

If fault is notresolved, display the controller fault table on the programmer.
Contact Technical Support, giving them all the information contained in the
fault entry.

Fault Extra Data for Loss of or Missing I0C

Fault extradataforLoss of or Missing IOC provides additional information for diagnostics
by Technical Support.

Diagnostics 490

CPU Programmer’s Reference Manual Section 9

GFK-2950M

9.5.11

9.5.12

Diagnostics

Dec 2024

|OC (I/0 Controller) Software Fault (Category 11)

The fault category I0C Software Fault applies to any type of I/O Controller.

Action: Fatal.

Datagram Queue Full, Read/Write Queue Full

Too many datagrams or read/write requests have been sent to the GBC.
Correction

Adjust the system to reduce the request rate to the GBC.

Response Lost

The GBC is unable to respond to a received datagram or read/write request.
Correction

Adjust the system to reduce the request rate to the GBC.

Forced and Unforced Circuit (Categories 12 and 13)

The fault categories Forced Circuit and Unforced Circuit report point conditions and
therefore are not technically faults. They have no fault types or fault descriptions. These
reports occur when a Genius /O point was forced or unforced with the Hand -Held
Monitor.

Action: Informational.

Fault Extra Data for Forced/Unforced Circuit

Three bytes of fault extra data are present when a circuit force is added or removed

Byte Number Description Value Description
1 Circuit Configuration 1 Circuit is an input.
2 Circuit is an input.
3 Circuit is an output.
2 Analog/Discrete 1 Block is a discrete block.
Information 2 Block is an analog block.
3 Block has both discrete and
analog.

491

CPU Programmer’s Reference Manual Section 9
GFK-2950M Dec 2024

9.5.13 Loss of or Missing I/0O Module (Category 14)

The fault category Loss of I/O Module applies to discrete and analog I/O modules. There
are no fault types or fault descriptions associated with this category.

Default action: Diagnostic. Configurable.

The CPU generates this error when it detects that an I/O module is no longer responding
to commands from the CPU, or when the configuration file indicates an I/O module is to
occupy aslot and no module exists in the slot. This fault is also logged when an 1/O
module is hot removed (No corrective action necessary in this case).

Correction

1. Replace the module.
2. Correct the configuration file.

3. Display the I/O fault table on the programmer. Contact Technical Support,
giving them all the information contained in the fault entry.

9.5.14 Addition of I/O Module (Category 15)

The fault category Addition of I/O Module applies to discrete and analog I/O modules.
There are no fault types or fault descriptions associated with this category.

Action: Diagnostic.

Addition of /0 Module
The CPU generates this error when an /O module that had been faulted returns to
operation or is hot inserted.

Correction

1. No action necessary if module was removed or replaced or if the remote rack
was power cycled.

2. Update the configuration file or remove the module.

30 hex/48 decimal, VME Reset on Request

Reset of VME module was requested. No corrective action necessary.

Diagnostics 492

CPU Programmer’s Reference Manual
GFK-2950M

9.5.15

9.5.16

9.5.17

9.5.18

Diagnostics

Extra I/0O Module (Category 16)

The fault category Extra I/O Module applies to discrete and analog I/O modules. There
are no fault types or fault descriptions associated with this category.

Action: Diagnostic.

The CPU generates this error when it detects an I/O module in a slot that the
configuration file indicates should be empty.

Correction

1. Remove the module. (It may be in the wrong slot.)

2. Update and restore the configuration file to include the extra module.

Extra Block (Category 17)

The fault category Extra Block applies only to Genius I/O devices. There are no fault
types or fault descriptions associated with this category.

Action: Diagnostic.

The GBC generates this error when it detects a Genius device on the bus at a serial bus
address where the configuration file does not have a block.

Correction

1. Remove or reconfigure the block. (It may be at the wrong serial bus address.)

2. Update and restore the configuration file to include the extra block.

|OC Hardware Failure (Category 18)
The fault category I0C Hardware Failure has no fault types or fault descriptions.
Action: Diagnostic.

The Genius operating software generates this error when it detects a hardware failure in
the bus communication hardware or a baud rate mismatch.

Correction

1. Verify that the baud rate set in the configuration file for the GBC agrees with
the baud rate programmed in every block on the bus.

2. Change the configuration file and restore it, if necessary.
3. Replace the GBC.

4. Selectively remove each block from the bus until the offending block is isolated
then replace it.

GBC Stopped Reporting Faults (Category 19)

GBC detected a high error count on the Genius I/O bus and dropped off the bus for at
least 1.5 seconds.

Correction

Check for incorrect wiring, interference from other equipment, a loose connection, ora
failed device on the Genius bus.

493

Section 9
Dec 2024

CPU Programmer’s Reference Manual Section 9
GFK-2950M Dec 2024

9.5.19 GBC Software Exception (Category 21)
1, Incoming datagram queue full

Too many datagrams or read/write requests have been sent to the GBC.
Correction

Adjust the system to reduce the request rate to the GBC.

2, Read/write request queue full

The queue for Read/Write requests in the GBC is full. The requests may be from the
Genius Bus or from COMMREQs.

Correction

Adjust the system to reduce the request rate to the GBC.

3, Low priority mail queue from GBC to CPU full

The response to the CPU was lost.

4, Genius background message requiring CPU action
received before CPU completed initialization

Message was ignored.

5, GBC software version too old

Correction

Update GBC firmware.

6, Excessive use of internal GBC memory

Correction
Verify COMMREQ usage.

9.5.20 Block Switch (Category 22)

The Block Switch fault category has no fault types or fault descriptions.
Action: Diagnostic.
The GBC generates this errorwhen a Genius block on redundant Genius buses switches
from one bus to another.
Correction

1. No action is required to keep the block operating.

2. The bus that the block switched from may need to be repaired.

a. Verify the bus wiring.
b. Replace the I/O controller.

c. Replace the Bus Switching Module (BSM).
Diagnostics 494

CPU Programmer’s Reference Manual Section 9
GFK-2950M Dec 2024

Fault Extra Data for Block Switch

Byte Description Value | Description
Number
1 Circuit configuration 1 Circuit is an input.
2 Circuit is an input.
3 Circuit is an output.
2 Block configuration 1 Block is configured for inputs only.
2 Block is configured for outputs only.
3 Block is configured for inputs and outputs
(grouped block).
3 Number of input
circuits used
4 Number of output
circuits used

9.5.21 Reset of |OC (Category 27)

The fault category Reset of /O Controller has no fault types or fault descriptions
associated with it. The default fault action for this category is Diagnostic.

The CPU generates this message when an I/O Controller is reset. No corrective action
necessary.

Diagnostics 495

CPU Programmer’s Reference Manual Section 9
GFK-2950M Dec 2024

9.6 Diagnostic Logic Blocks (DLBs)

A Diagnostic Logic Block (DLB) is a block of Ladder Diagram logic that can be
downloaded to the controller for independent execution. These blocks are useful tools
forinteracting with an application that is running in the PACSystems controller. DLBs
may be used to:

e Collect information from a running application to analyze and diagnose problems

o Test modifications and corrections to a running application before incorporating them
into the application.

e Test the devices that will be controlled by the application.
DLBs are intended to accomplish a specific task that is temporary in nature, such as
diagnosing the source of a problemortesting tuning parameters. When you have finished

using a DLB, it should be removed from the host controller. At this point the application
logic and its variable allocation return to what it was before the DLB was downloaded.

You can also remove the DLBs from the Logic Developer target, at which point the
target’s logic and variable allocation will be identical to what they were before the DLBs

were introduced.

Note that, although the DLB is removed from the controller, any changes the DLB made
to the system are not removed. For example, if the DLB logic changes a hardware
parameter, the parameter does notreturn to its previous value when the DLB is removed.

DLB logic can be executed with the controllerin STOP 10 Enabled Mode, which allows
debugging the application without the main application program running.

ACAUTION

Do notuse a DLB as a permanentpartof a production application, because a DLB is stopped and
deleted from memory when Logic Developer loses its Programmer-mode connection with the host
controller. This could happen if the programmer’s communications cable is disconnected or if a
second programmer connects serially to the same RX3i and establishes a Programmer-mode
session.

Note: Redundancy CPUs do not support DLBs.

Diagnostics 496

CPU Programmer’s Reference Manual Section 9

GFK-2950M Dec 2024
9.6.1 DLB Operation
Figure 267 Diagnostic Logic Blocks (DLBs) assigned to Target in MPE
=g PMM335
- @ Target
@ Data Watch Lists

B-{@ Diagnostic Logic Blocks
=] @ Active Blocks
= Testl
= ﬁ LDBK
&P Cam Profiles
=1 LDBK1
+ ‘E LDBK3

#-] Test2

DLBs are created as components of a specific Target and are separate from the
application logic block components associated with a target.

They are written in LD programming language and support many of the same features,
such as View Lock, Edit Lock, etc. as other block types.

A target can have a maximum of 128 DLBs in a given PAC Machine Edition target. Each
DLB can have associated published variable table (PVT) and cam profile (used with
Motion applications) files. Each DLB can use up to 128K bytes of memory.

ADLB canbecopied and pasted like other blocks. Regardless of where aDLB is pasted,
normal conflict handling is applied.

An active DLB can be dragged to the Toolchest, to folders under the Active Blocks
node, or to folders under the Program Blocks node. Note that only active blocks can be
dragged. Downloading, executing, or modifying a DLB does not affect the equality of the
main logic program.

Diagnostics 497

CPU Programmer’s Reference Manual Section 9
GFK-2950M Dec 2024

Suspend I/O Function and DLBs

The Suspend /O (SUS_IO)function operatesthe sameinaDLB asitdoesinapplication
logic. Both application logic and DLB logic execute in the CPU Sweep Logic window.
Therefore, when a SUSPEND_IO is executed by either the application or the DLB,
outputs are held current during the output scan that occurs immediately after the Logic
windowfinishesits execution, and inputreferences will not be updated frominputs during
the input scan that occurs immediately before the Logic window is executed in the next
CPU sweep.

Note that a SUSPEND _IO only affects normal I/O scans. It does not affect /O scanning
that is done as the result of DO _IO or SCAN_SET IO functions that execute in
application or DLB logic. SUS_IO has the same effect whether it is executed once in a

sweep or multiple times in a sweep.

Restrictions on DLB Operation

Because DLBs are intended only for temporary use, there are more restrictions on their
operation compared to application logic blocks. All built-in functions and function blocks
other than those listed below can be used in DLB logic.

e DLB logic may not call any logic block or be called by any logic block.

e You cannot define parameters or scheduling for a DLB.

e A DLB has no parameters other than the standard ENO output parameter. Since
DLBs cannot be called from other blocks, you can access its ENO parameter only by
reading or writing it in the DLB’s logic.

e You cannot use variables that have %L or %P addresses. Therefore, the following
features that require %L or %P memory cannot be used in a DLB:

a. #FST_EXE system variable
b. The built-in timer function blocks, ONDTR, OFDT, and TMR
c. %L or %P variables.

e Locally scoped variables must be symbolic. For additional information, refer to DLB
Variables.

e DLBs or their associated files cannot be loaded from the RX3i.

e DLBs and their associated files cannot be downloaded to flash memory.

e You cannot give an LD DLB the name _MAIN.

e You cannot modify an active LD DLB while it is executing on the Controller.
e You cannot perform a Test Edit (Online Edit Mode and Online Test Mode).
e You cannot perform word-for-word changes on an active DLB.

DLB Variables

A DLB can have its own variables, which are local to the DLB and not accessible by any
other block. All DLB local variables are symbolic, retentive, and published.

Local variables should be used within DLBs whenever possible. If the system is already
running and you create new global variables in the DLB, the programming software wil

Diagnostics 498

CPU Programmer’s Reference Manual Section 9
GFK-2950M Dec 2024

not download the DLB because the programmer’'s memory map will no longer match the
RX3i controller's memory map.

DLB logic can read and write the global variables of the application that resides in the
same target as it does. These variables may be mapped or symbolic.

To use functions that require the use of located variables, a DLB must use the global
located variables of the application that resides in the same target as the DLB. These

functions include:
a. COMMREQ (location of the Status variable)
b. DO_IO
c. Some SVC_REQ functions

A DLB can create aliases to global located application variables or arrays of variables
that were specifically created and documented to serve as scratchpad memory for DLBs
that need to use located variables.

Diagnostics 499

CPU Programmer’s Reference Manual Section 9
GFK-2950M Dec 2024

9.6.2 Executing DLBs
DLB Properties

The properties for an active DLB include Execution Mode, which has the following
possible values:

e Sweep (Default) - The DLB executes at a fixed point in the normal Controller sweep,
until explicitly stopped.

¢ Update Rate — Uses the Update Rate defined for the Target. The actual rate varies
from a minimum value equal to the Update Rate to a maximum value of Update
Rate + 1 sweep. If the sweep takes more time than the update rate, the DLB is
executed as soon as the user logic program execution completes in the current

sweep.

e Scan Once - The DLB executes exactly one time when the user requests for DLB
execution to start. It then stops executing until itis manually instructed to run again.

Figure 268 Properties of Diagnostic Logic Block (DLB)

Block Properties

Name MeasureTimeB etweenE xecutions

Description

Language Ladder

Block Type Block

Execution Mode Sweep j
Update Rate
Scan Once

Inspector I
Target Properties

The Target properties include DLB Heartbeat, which specifies, in milliseconds, the
maximum time the controller waits for a heartbeat signal from the programmer. If a
heartbeat timeout occurs, the DLB will be stopped and removed from the controller. This
insures that DLB execution is stopped in the event of a communications failure between

the programmer and the controller.

With larger applications or a slower PC, some operations such as opening the Controller
File Explorer may cause the DLB Heartbeat to time out. If this happens, you may need

to increase the DLB Heartbeat interval.

The DLB Heartbeat must always be greater than the Update Rate setting for the Target.

Figure 269 DLB Heartbeat Setting

Diagnostics 500

CPU Programmer’s Reference Manual Section 9
GFK-2950M Dec 2024

Scheduling Mode Normal »
Force Compact PYT True
Enable Shared Variables | False
DLEB Heartbeat [ms) |1 000
Physical Port ETHERNET v

Inspector

Right-click Online Operations for an Active DLB

Menu Enable Rules Description

Download Disabled if block is already running on | Downloads block to controller,
controller, target not in programmer mode, | removing any other DLB that was
Config+Logic is not equal, or Access Level | already there.

prevents write.

Start Disabled if block is already running, targetnot | Downloads block to controller,
in programmer mode, another block is | removing any other DLB thatwas
executing on controller, HWC+Logic is not | already there, and then staris

equal, or Access Level prevents write executing block.
Stop Disabled if block is not executing Stops execution of block.
Remove Disabled if block is not on controller, block is | Stops block, then removes it from
executing, or not in programmer mode controller.

DLB Online Operations

Only a single DLB can be downloaded and executed on the controller at a time. To
download an Active DLB to the controller, you must have:

e Program logic and HWC equal to the controller (Logic EQ)

e Target in programmer mode

e Enough privilege to write to the controller

Operation Minimum PACSystems RX3i Privilege Level
Required

Storing DLBs in STOP Mode 3

Storing DLBs in RUN Mode 4

When a DLB is downloaded, you are given the option of storing initial values or clearing
memory for local variables. If another DLB is already downloaded on the controller it will
be removed before the selected DLB is downloaded.

When a DLB is downloaded to the controller, all variables locally scoped to the DLB are
published from the controller so that HMIs or other devices can view the data.

While a DLB is running, the active target is read-only; no changes can DLB or the
application logic. If the DLB has been downloaded to the controller but is not executing,
changes are allowed but the first change will remove the DLB from the controller. You
will be prompted to confirm the change before the DLB is removed. Up loading of the DLB
is not supported.

Once a DLB is downloaded to the controller, it can be started if the main program is
running on the controller in STOP with I/O Enabled or RUN with /O Enabled Mode.

Diagnostics 501

CPU Programmer’s Reference Manual
GFK-2950M

Diagnostics

Removing a DLB from the Controller

The following actions will cause the DLB to be removed from the controller. If the DLB is
executing, it will be stopped before being removed.
e Removing the DLB from the controller through the Online Operations menu.

e Programmerconnection to controlleris lostby going offline ora communication failure
that causes a DLB Heartbeat timeout

e Switching from programmer mode to monitor mode

e Downloading to controller (Config, Logic, Stored Values, etc.)

e Clearing the controller, other than fault tables and controller supplemental files
e Performing any Flash operation, other than Verify

e Uploading from controller (Config, Logic, Stored Values, etc.)

e Changing the DLB that is on the controller

If there is an executing DLB, and you transition from RUN Mode to STOP Mode, the
executing DLB will be stopped as well. The DLB will not be removed from the controller
in this case.

If you initiate an upload, and there is a DLB on the controller, you will be prompted for
confirmation and notified that the DLB will be removed and that all active DLBs will be
made inactive. If there are no DLBs on the controller but there is at least one active DLB,
you will be prompted for confirmation and notified that all active DLBs will be made
inactive. If you choose to abort the upload, no changes are made. If you proceed, all
DLBs are deactivated. If DLBs are de-activated, you will have to reactivate them

manually.

When a DLB is removed from the controller, any PMM data logger (DLOG) and event
queue (ELOG) files that were created by the DLB are also removed.

502

Section 9
Dec 2024

CPU Programmer’s Reference Manual Section 9
GFK-2950M Dec 2024

Basic Steps for Using a DLB in the Controller

1. Create an LD Block under the Active Blocks DLB Node in the Navigator.
You can accomplish this in several ways, such as by creating a new block
under the Active Blocks node, dragging a block from the Toolchest, or copying
and pasting a block from another project.

2. Select DLB block properties, for example, Execution Mode, as desired.

3. If necessary, change the Target property, DLB Heartbeat. For larger projects,

you may need to increase DLB Heartbeat from its default value of 1000ms to

avoid timing out while performing some operations, such as opening the

Controller File Explorer.

Go online to the Controller and go into Programmer Mode, Logic Equal.

5. Right click the DLB and select the Online Operations menu to download the
DLB to the controller and start its execution. (To download and start the DLB in
one operation, select Online Operations > Start.)

6. Monitor DLB execution.

Monitoring DLB Execution

»

There are several tools to monitor the execution of the DLB in the controller:

e DLB Local Symbolic variables monitored in Data Watch, LD Editor, or Data Monitor.

e DLB Icon shows the DLB state in the Navigator: Downloaded & to controller or
Executing’ﬁr- .

e A Proficy View application can monitor the execution of the DLB by using its Local
Symbolic Variables in Panels and Scripts.

The DLB block icon in the Navigator indicates its current state, as shown below:

DLB Block Icon

Inactive DLB - & (lock displayed in gray)

Active DLB Downloaded to Controller - 'I_'E" (block displayed in blue)

Executing DLB - % (block displayed in green)

9.6.3 Diagnostic Logic Block (DLB) Example

In this example, a block of LD logic is downloaded to the controller and executed.

The basic steps for using a sample DLB in the controller are as follows:

1. Create an LD block named MonitorScan and place it in the Toolchest. For
information on working with the Toolchest, refer to the online help.

The logic inthe DLB block measures Controller scan time. It calculates the Minimum
(minTime), Maximum (maxTime), and Average (avgTime) time between DLB block
executions. When the DLB is set to Sweep Mode, these values should be closeto the
Controller Sweep time.

Logic for the Monitor Scan Block

Figure 270

Diagnostics 503

CPU Programmer’s Reference Manual Section 9
Dec 2024

GFK-2950M

1 B Cacture & new lime resding 8nd Sonver it int & nesl awmber
ad the cid time from the new timae, io Felre slapsed tma of the previous sweep
SVC REQ DINT TO
3 REAL
2
18 —FNC sveTimad) —{IN 2 ooy
sveTimg —{PAM
DIV REAL
3 -
1
weeTima(z) —JIN ol L] =4 M1 S rmerion
10000 —WHZ
ADD REAL SUB REAL MUL REAL
secy —{IM1 2 newTiee i Tima —INT 2 eispoedTime siscaedTime —IN1 9 eispsedfime
fraction —{IN2 oidTime —{INZ 1000 —{IN2
Figure 271
5 g‘c* tha “Tiesl” svaes, force &
EQ REAL MOVE
B j REAL L
rwmepCnt —INT a 9.0 =N 2f= slapsedTime
0.0 =JiN2
T H_:nle tha min, max, and sversge sweer limes
GT REAL LT REAL RMOVE
REA
s n L EAL |
minTias —|INT] wappsdTing —|IN1 s slagesd Tine —|IM S anTme
0.0 —{INZ minTima —|IN3
ET REAL MOVE
El
] — |7 EaL L
elageacTime <INT Q slappecTime —|IN 2= maxTims
sas Time =—]IN

504

Diagnostics

CPU Programmer’s Reference Manual Section 9

GFK-2950M Dec 2024
Figure 272
ATZD REAL ADT REAL O REAL
alapaed Tine —INT Qf— cumuiafive Tima sivaapCnt —{IN1 QI sawwepCnr sumulativeTima —|IN1 S avgTime
sutwlative Ting —{INZ 1.0 =2 paweaCal —|IN2
1| pghinisisl | M r
!

2. Drag and drop the DLB Block from the Toolchest to the Active Blocks node in
the Navigator.

Figure 273: Drag DLB from Toolchest and Drop in Active Blocks Node

g) i
= @ Demo
- scanTimes

'ﬁ Data Watch Lists
=@ Diagnostic Logic Blocks
= ﬁ Artive Blodks
R onvorscan
3] Inactive Blocks
+ ﬂ Hardware Configuration
+ I Logic
+- o Referance View Tables
+ 0y Supplemental Files

£ >

3. Inthe DLB block properties, set the Execution Mode to Sweep.

Figure 274: Set DLB Execution Mode to Sweep (Properties Tab)
B x

Block Properties
Namea . .Horie-S-:m
Dezcription
Language
Block Type |
EvecuonMode |Sweep |

Inmwtc-r!

4. Go online to the Controller and select Programmer Mode. Put the Controller in
RUN Mode or STOP Enabled Mode.

Diagnostics 505

CPU Programmer’s Reference Manual Section 9

GFK-2950M

Diagnostics

Dec 2024

5. Select the DLB Online Operations > Start menu to download the DLB to the
controller and start its execution.

Figure 275: Start DLB Execution

=1 (gl Demo
- & ScanTimes

a Data Watch Lists
SR | Diagnostic Logic Blocks
= B Active Blocks

+

@) Inactive Blog e Enter

+ fliip Hardware Confit cut Ctrl+X

+- 1B Logic Copy Ctl+C

+ L5 Reference View

+ [supplemental Fil
Delete Del

Dogniss

Check Block =
Deactivate
Propertes Alt+Enter

6. In the Initialize Symbolic Variables dialog box, select how new local symbolic
variables will be initialized and click OK.

Figure 276 : Initialize Local Symbolic Variables

Initialize symbolic variables

Choose how the memory allocated for new local symbolic variables will be
initialized.

@ Cleared (all values set to zerof
" Set to initial value of associated variable.

7. Notice the change in the DLB Icon and the DLB status in the Status bar.

506

CPU Programmer’s Reference Manual Section 9
GFK-2950M Dec 2024

DLB Block Icon/Status Bar Once Started.

Figure 277 : DLB Icon and Status Bar after Execution has Commenced

Mavigator
il §.
= @ Deémo
- 4 ScanTimes
ﬁ Data Watch Lists
=1] Diagnostic Logic Blocks

=) Active Blocks
¥
U@ Inactive Blodks
+ [l Hardware Configuration
+ 1B Logic
+)- =) Reference View Tables
Supplemental Files

o

DLE Running

& | Programmer, Stop Enabled, Config EQ, Logic EQ, Sweep= 0.0 ms. DLB[MonitorScan, Running]

8. Open the DLB block and place the DLB variables in the Data Watch window to

observe their operation.

Figure 278: Data Watch for DLB Variables

8 x
Variable Name | Addrass | Value
P MonitorScan avgTime 11.06866
SEF MonitorScan min Time 0.0
ﬁ_ﬁ_ MonitorScan max Time 27109.38
B MontorSean elapsedTime 78128
]
9.6.4 PACSystems Simulator Diagnostic Logic Blocks
(DLBs)

The PACSystems Simulator does not support Diagnostic Logic Blocks (DLBs).

Diagnostics 507

Contact Information and Support Guide
Questions? We are here to help.

Before starting a case or making a call, try searching our Knowledge Base on the Customer Center website—it
might have the answer you need right away.

If you have a question, try the following:

Search our . Register for a Customer
Knowledge Base LRI AT, Account

i S
P 1
e O

pacsystems.co/knowledge pacsystems.co/support pacsystems.co/signup

Other Helpful Links

Customer Center

Commercial Website Contact Information
Home Page
OF- % 2]0)] (=], 284 ()
e P

EE:

pacsystems.co/customercenter | pacsystems.co/commercial | pacsystems.co/contactus

Emerson reserves the right to modify or improve the designs or specifications of the products mentioned in this
manual at any time without notice. Emerson does not assume responsibility for the selection, use or maintenance

of any product. Responsibility for proper selection, use and maintenance of any Emerson product remains solely
with the purchaser.

© 2024 Emerson. All rights reserved.

Emerson Terms and Conditions of Sale are available upon request. The Emerson logo is a trademark and service
mark of Emerson Electric Co. All other marks are the property of their respective owners.

&

4
EMERSON.

https://pacsystems.co/knowledge
https://pacsystems.co/support
https://pacsystems.co/signup
https://pacsystems.co/customercenter
https://pacsystems.co/commercial
https://pacsystems.co/contactus

	Section 1 Introduction
	1.1 Revisions in this Manual
	1.2 PACSystems Programming and Configuration
	1.3 Migrating Series 90 Applications to PACSystems
	1.4 VersaMax SafetyNet Safety System
	1.1
	1.5 PACSystems Simulator
	1.6 PACSystems Documentation
	1.6.1 PACSystems Manuals
	1.6.2 RSTi-EP Manuals
	1.6.3 RX3i Manuals
	1.6.4 Series 90 Manuals

	Section 2 Program Organization
	2.1 Structure of a PACSystems Application Program
	2.1.1 Blocks
	2.1.2 Functions and Function Blocks
	2.1.3 How Blocks Are Called
	2.1.4 Nested Calls
	2.1.5 Types of Blocks
	Program Blocks
	Program Blocks and Local Data
	Using Parameters with a Program Block

	Parameterized Blocks
	Parameterized Blocks and Local Data
	Using Parameters with a Parameterized Block

	User-Defined Function Blocks (UDFBs)
	Defining a UDFB
	Creating UDFB Instances
	Instance Data Structures
	UDFBs and Scope
	Using Parameters with UDFBs
	Using Internal Member Variables with UDFBs
	UDFB Logic
	UDFB Operation with Other Blocks

	External Blocks
	External Blocks and Local Data
	Initialization of C Variables
	Using Parameters with an External Block

	2.1.6 Local Data
	2.1.7 Parameter Passing Mechanisms
	2.1.8 Languages
	Ladder Diagram (LD)
	Function Block Diagram
	Structured Text

	2.2 Controlling Program Execution
	2.3 Interrupt-Driven Blocks
	2.3.1 Interrupt Handling
	2.3.2 Timed Interrupts
	2.3.3 I/O Interrupts
	2.3.4 Module Interrupts
	2.3.5 Interrupt Block Scheduling
	Normal Block Scheduling
	Preemptive Block Scheduling

	2.3.6 PACSystems Simulator Interrupt-Driven Blocks

	Section 3 Program Data
	3.1 Variables
	3.1.1 Mapped Variables
	3.1.2 Symbolic Variables
	Restrictions on the Use of Symbolic Variables

	3.1.3 I/O Variables
	Restrictions on the Use of I/O Variables
	I/O Variable Format
	Supported I/O Variable Types
	I/O Variable Examples

	3.1.4 Arrays
	3.1.5 Variable Indexes and Arrays
	Requirements and Support
	Where Array Elements with Variable Indexes are Not Supported:
	Ensuring that a Variable Index does not Exceed the Upper Boundary of an Array
	One-Dimensional Array
	Two-Dimensional Array

	3.2 Reference Memory
	3.2.1 Word (Register) References
	Indirect References
	Bit in Word References
	Restrictions
	Examples:

	3.2.2 Bit (Discrete) References

	3.3 User Reference Size and Default
	3.3.1 %G User References and CPU Memory Locations

	3.4 Genius Global Data
	3.5 Transitions and Overrides
	3.6 Retentiveness of Logic and Data
	3.7 Data Scope
	3.8 System Status References
	3.8.1 %S References
	3.8.2 %SA, %SB, and %SC References
	3.8.3 Fault References
	System Fault References
	Configurable Fault References
	Non-Configurable Faults

	3.9 How Program Functions Handle Numerical Data
	3.9.1 Data Types
	3.9.2 Floating Point Numbers
	Types of Floating-Point Variables
	Internal Format of REAL Numbers
	Internal Format of LREAL Numbers
	Errors in Floating Point Numbers and Operations
	IEEE 754 Infinity Representations
	IEEE 754 Representations of NaN values:

	3.10 User Defined Types (UDTs)
	3.10.1 Working with UDTs
	3.10.2 UDT Properties
	3.10.3 UDT Limits
	3.10.4 RUN Mode Store of UDTs
	3.10.5 UDT Operational Notes
	Example

	3.11 Operands for Instructions
	3.12 Word-for-Word Changes
	3.12.1 Exception: Symbolic Variables

	3.13 PACSystems Simulator Program Data
	3.13.1 Variables
	3.13.2 Reference Memory
	3.13.3 System Status References
	%S References
	%SA, %SB, and %SC References

	Section 4 Ladder Diagram (LD) Programming
	4.1 Advanced Math Functions
	4.1.1 Exponential/Logarithmic Functions
	Operands of the Exponential/Logarithmic Functions

	4.1.2 Square Root
	Example
	Operands for the Square Root Function

	4.1.3 Trig Functions
	Operands of Trig Functions
	Example

	4.1.4 Inverse Trig – ASIN, ACOS, and ATAN
	Operands of Inverse Trig Functions

	4.2 Bit Operation Functions
	4.2.1 Data Lengths for the Bit Operation Functions
	4.2.2 Bit Position
	Operands of Bit Position
	Examples

	4.2.3 Bit Sequencer
	Memory Required for Bit Sequencer
	Operands for Bit Sequencer
	Example

	4.2.4 Bit Set, Bit Clear
	Operands for Bit Set, Bit Clear
	Example 1
	Example 2

	4.2.5 Bit Test
	Operands for Bit Test
	Example 1
	Example 2

	4.2.6 Logical AND, Logical OR, and Logical XOR
	Logical AND
	Logical OR
	Logical XOR
	Operands for Logical AND, OR, and XOR
	Example: Logical AND
	Example: Logical XOR

	4.2.7 Logical NOT
	Operands for Logical NOT
	Example

	4.2.8 Masked Compare
	Operands for Masked Compare Function
	Masked Compare Example 1
	Masked Compare Example 2

	4.2.9 Rotate Bits
	Operands for Rotate Bits
	Example

	4.2.10 Shift Bits
	Shift Left
	Shift Right
	Shift Left and Shift Right
	Operands for Shift Left, Shift Right, Shift Left and Shift Right
	Example

	4.3 Coils
	4.3.1 Coil Checking
	4.3.2 Graphical Representation of Coils
	Coil (Normally Open)
	Continuation Coil
	Negated Coil

	4.3.3 Set Coil, Reset Coil
	Example of Set Coil, Reset Coil

	4.3.4 Transition Coils
	POSCOIL and NEGCOIL
	Operands for POSCOIL and NEGCOIL
	Example for POSCOIL and NEGCOIL

	PTCOIL and NTCOIL
	Operands for PTCOIL and NTCOIL

	Examples Comparing PTCOIL and POSCOIL
	PTCOIL
	POSCOIL

	4.4 Contacts
	4.4.1 Continuation Contact
	4.4.2 Fault Contact
	Operands

	4.4.3 High and Low Alarm Contacts
	Operands

	4.4.4 No Fault Contact
	Operands

	4.4.5 Normally Closed and Normally Open Contacts
	Operands

	4.4.6 Transition Contacts
	POSCON and NEGCON
	Overrides
	Transition to RUN Mode
	Operands for POSCON and NEGCON
	POSCON and NEGCON Example 1

	PTCON and NTCON
	Operands for PTCON and NTCON
	Examples Comparing PTCON and POSCON
	PTCON
	POSCON
	Logic Example Using PTCON

	4.5 Control Functions
	4.5.1 Do I/O
	Do I/O for Inputs
	Do I/O for Outputs
	Operands
	Example - Do I/O for Inputs
	Example - Do I/O for Outputs

	4.5.2 Edge Detectors
	Operands
	Instance Data Structure

	F_TRIG Operation
	R_TRIG Operation
	Example

	4.5.3 Drum
	Using Drum in Parameterized Blocks
	Finding the Source Block
	Programming Drum in Parameterized Blocks
	Parameterized block called from one block
	Parameterized block called from multiple blocks

	Recursion

	Using Drum in UDFBs
	Example

	Operands for Drum
	Control Block for the Drum Sequencer Function

	4.5.4 For Loop
	Operands
	For Loop Example 1
	For Loop Example 2

	4.5.5 Mask I/O Interrupt
	Operands
	Example

	4.5.6 Read Switch Position
	Operands

	4.5.7 Scan Set IO
	Operands for SCAN_SET_IO
	Example

	4.5.8 Suspend I/O
	Example

	4.5.9 Suspend or Resume I/O Interrupt
	Operands
	Example

	4.6 Conversion Functions
	4.6.1 Convert Angles
	Operands

	4.6.2 Convert UINT or INT to BCD4
	Operands
	Example - UINT to BDC4
	Example - INT to BCD4

	4.6.3 Convert DINT to BCD8
	Operands
	Example

	4.6.4 Convert BCD4, UINT, DINT, or REAL to INT
	BDC4, UINT, and DINT
	REAL
	Operands
	Example: BCD4 to INT
	Example: UINT to INT
	Example: DINT to INT

	4.6.5 Convert BCD4, INT, DINT, or REAL to UINT
	Operands
	Example: BCD4 to UINT
	Example: INT to UINT
	Example: DINT to UINT

	Example: REAL to UINT

	4.6.6 Convert BCD8, UINT, INT, REAL or LREAL to DINT
	BCD8, UINT, and INT
	REAL and LREAL
	Operands
	Example: UINT to DINT
	Example: BCD8 to DINT
	Example: INT to DINT
	Example: REAL to DINT

	4.6.7 Convert BCD4, BCD8, UINT, INT, DINT, and LREAL to REAL
	Operands
	Example: UINT to REAL
	Example: INT to REAL
	Example: LREAL to REAL

	4.6.8 Convert REAL to LREAL
	Operands
	Example

	4.6.9 Convert DINT to LREAL
	4.6.10 Truncate
	Operands
	Example

	4.7 Counters
	4.7.1 Data Required for Counter Function Blocks
	Word 3: Control Word Structure

	4.7.2 Down Counter
	Operands
	Example – Down Counter

	4.7.3 Up Counter
	Operands
	Example – Up Counter
	Example – Up Counter and Down Counter

	4.8 Data Move Functions
	4.8.1 Array Size
	Operands
	Example

	4.8.2 Array Size Dimension Function Blocks
	Array Size Dimension 1
	Operands

	Array Size Dimension 2
	Operands
	Example - FOR_LOOP that Iterates Through Dimension 1 of an Array

	4.8.3 Block Clear
	Operands
	Example

	4.8.4 Block Move
	Operands
	Example

	4.8.5 BUS_ Functions
	Rack, Slot, Subslot, Region, and Offset Parameters
	BUS Read
	Operands for BUS READ
	BUS_RD Status in the ST Output

	BUS Read Modify Write
	Operands for BUS_RMW
	BUS_RMW Status in the ST Output

	BUS Test and Set
	Operands for BUS Test and Set

	BUS Write
	Operands for Bus Write

	4.8.6 Communication Request (COMMREQ)
	Command Block
	Command Block Structure
	Status Pointer Memory Type

	Operands for COMMREQ
	COMMREQ Status Word
	COMMREQ Example 1
	COMMREQ Example 2

	4.8.7 Data Initialization
	Operands
	Example

	4.8.8 Data Initialize ASCII
	Operands
	Example

	4.8.9 Data Initialize Communications Request
	Operands
	Example

	4.8.10 Data Initialize DLAN
	Operands

	4.8.11 Move
	MOVE Operands
	MOVE_BOOL Example
	MOVE_WORD Example

	4.8.12 Move Data
	MOVE_DATA Operands

	4.8.13 Move Data Explicit
	MOVE_DATA_EX Operands
	Example

	4.8.14 Move From Flat
	Operation
	Copying arrays and array elements
	Example:

	Copying to specified array elements
	Example:

	MOVE_FROM_FLAT Operands
	Example

	4.8.15 Move to Flat
	Copying Arrays and Array Elements
	MOVE_TO_FLAT Operands
	Example

	4.8.16 Shift Register
	Operands for Shift Register
	Example

	4.8.17 Size Of
	Operands
	Example

	4.8.18 Swap
	Operands for Swap
	Example for Swap

	4.9 Data Table Functions
	4.9.1 Array Move
	Operands for Array Move
	Array Move Example 1
	Array Move Example 2
	Array Move Example 3

	4.9.2 Array Range
	Operands for Array Range
	Array Range Example 1
	Array Range Example 2

	4.9.3 FIFO Read
	Operands for FIFO Read
	Example for FIFO Read

	4.9.4 FIFO Write
	Operands for FIFO Write
	Example for FIFO Write

	4.9.5 LIFO Read
	Operands for LIFO Read
	Example for LIFO Read

	4.9.6 LIFO Write
	Operands for LIFO Write
	Example for LIFO Write

	4.9.7 Search
	Search Relationships:
	Operands for the Search Function
	Example for the Search Function

	4.9.8 Sort
	Operands
	Example

	4.9.9 Table Read
	Operands
	Table Read Example

	4.9.10 Table Write
	Operands
	Table Write Example

	4.10 Math Functions
	4.10.1 Overflow
	4.10.2 Absolute Value
	Operands
	Example

	4.10.3 Add
	Operands of the ADD Function
	Example1 for ADD
	Example2 for ADD

	4.10.4 Divide
	Operands for the DIV Function
	DIV_MIXED Operands
	DIV_MIXED Example

	4.10.5 Modulus
	Operands for Modulus Function

	4.10.6 Multiply
	Operands for Multiply
	Example – Scaling Analog Input Values

	4.10.7 Scale
	Operands
	Example

	4.10.8 Subtract
	Operands for Subtract

	4.11 Program Flow Functions
	4.11.1 Argument Present
	Operands for ARG_PRES
	Example for ARG_PRES

	4.11.2 Call
	Operands for Call
	Example 1 for Call
	Example 2 for Call
	Logic for AVG_4 Parameterized Block

	4.11.3 Comment
	4.11.4 JumpN
	Operands

	4.11.5 Master Control Relay/End Master Control Relay
	MCRN
	EndMCRN
	Operands for MCRN/ENDMCRN
	Example of MCRN/ENDMCRN

	4.11.6 Wires

	4.12 Relational Functions
	4.12.1 Compare
	Operands
	Example

	4.12.2 Equal, Not Equal, Greater or Equal, Greater Than, Less or Equal, Less Than
	Operands

	4.12.3 EQ_DATA
	Operands

	4.12.4 Range
	Operands
	Example

	4.13 Timers
	4.13.1 Timed Contacts
	4.13.2 Timer Function Blocks
	Built-In Timer Function Blocks
	Data Required for Built-in Timer Function Blocks
	Word 1: Current value (CV)
	Word 2: Preset value (PV)
	Word 3: Control word

	Using OFDT, ONDTR and TMR in Program Blocks not Called Every Sweep
	Timers that are Skipped by the Jump Instruction
	Using OFDT, ONDTR and TMR in Parameterized Blocks
	Finding the Source Block
	Programming OFDT, ONDTR and TMR in Parameterized Blocks
	Parameterized block called from one block
	Parameterized block called from multiple blocks
	Recursion

	Using OFDT, ONDTR and TMR in UDFBs
	Example

	Off Delay Timer
	Timing diagram
	Operands for OFDT
	Example for OFDT

	On Delay Stopwatch Timer
	Timing diagram
	Operands for On Delay Stopwatch Timer
	Example for On Delay Stopwatch Timer

	On Delay Timer
	Timing Diagram
	Operands for On Delay Timer
	Example for On Delay Timer

	Standard Timer Function Blocks
	Data Required for Standard Timer Function Blocks
	Resetting the Timer
	Operands
	Timer Off Delay
	Timing Diagram
	Example

	Timer On Delay
	Timing Diagram
	Example

	Timer Pulse
	Timing Diagram
	Example

	4.14 PACSystems Simulator Ladder Diagram (LD) Program
	4.14.1 Math Functions
	4.14.2 Contacts
	4.14.3 Control Functions
	4.14.4 Data Move Functions
	4.14.5 Timers
	4.14.6 Motion Function Blocks
	4.14.7 Communication Blocks

	Section 5 Function Block Diagram (FBD)
	5.1 Note on Reentrancy
	5.2 Advanced Math Functions
	5.2.1 EXPT Function
	Operands of the EXPT Function

	5.3 Bit Operation Functions
	5.3.1 Logical AND, Logical OR, and Logical XOR
	Operands for AND, OR, and XOR
	Properties for AND, OR, and XOR

	5.3.2 Logical NOT
	Operands

	5.4 Comments
	5.4.1 Text Block

	5.5 Comparison Functions
	5.5.1 Equal, Not Equal, Greater or Equal, Greater Than, Less or Equal, Less Than
	Operands

	5.6 Control Functions
	5.7 Counters
	5.8 Data Move Functions
	5.8.1 Fan Out
	Operands

	5.8.2 Move Data
	MOV Operands

	5.9 Math Functions
	5.9.1 Overflow
	5.9.2 Add
	Operands of the ADD Function
	Properties for ADD

	5.9.3 Divide
	Operands for DIV_UINT, DIV_INT, DIV_DINT, and DIV_REAL

	5.9.4 Modulus
	Operands for Modulus Function

	5.9.5 Multiply
	Operands for Multiply
	Properties for Multiply

	5.9.6 Negate
	Operands

	5.9.7 Subtract
	Operands for Subtract
	Properties for Subtract

	5.10 Program Flow Functions
	5.11 Timers
	5.11.1 Built-in Timer Function Blocks
	5.11.2 Standard Timer Function Blocks

	5.12 Type Conversion Functions
	5.12.1 Convert WORD to INT
	Operands

	5.12.2 Convert WORD to UINT
	Operands

	5.12.3 Convert DWORD to DINT
	Operands

	5.12.4 Convert INT or UINT to WORD
	Operands

	5.12.5 Convert DINT to DWORD
	Operands

	5.13 PACSystems Simulator Function Block Diagram (FBD)
	5.13.1 Math Functions
	5.13.2 Control Functions
	5.13.3 Data Move Functions
	5.13.4 Timers
	1.1.1 Refer to Section 4.14.5 Timers.
	5.13.5 Communication Blocks

	Section 6 Service Request Function
	6.1 Operation of SVC_REQ Function
	6.1.1 Ladder Diagram
	Operands
	Example

	6.1.2 Function Block Diagram
	Operands

	6.2 SVC_REQ 1: Change/Read Constant Sweep Timer
	6.2.1 To disable Constant Sweep mode:
	6.2.2 To enable Constant Sweep mode and use the old timer value:
	6.2.3 To enable Constant Sweep mode and use a new timer value:
	6.2.4 To change the timer value without changing the selection for sweep mode state:
	6.2.5 To read the current timer state and value without changing either:
	Output
	SVC_REQ 1 Example

	6.3 SVC_REQ 2: Read Window Modes and Time Values
	Output
	Mode Values
	SVC_REQ 2 Example

	6.4 SVC_REQ 3: Change Controller Communications Window Mode
	6.4.1 To disable the controller communications window:
	6.4.2 To re-enable or change the controller communications window mode:
	SVC_REQ 3 Example

	6.5 SVC_REQ 4: Change Backplane Communications Window Mode and Timer Value
	6.5.1 To disable the Backplane Communications window:
	6.5.2 To enable the Backplane Communications window mode:
	SVC_REQ 4 Example

	6.6 SVC_REQ 5: Change Background Task Window Mode and Timer Value
	6.6.1 To disable the Background Task window:
	6.6.2 To enable the Background Task window mode:
	SVC_REQ 5 Example

	6.7 SVC_REQ 6: Change/Read Number of Words to Checksum
	6.7.1 To read the word count:
	6.7.2 To set a new word count:
	SVC_REQ 6 Example

	6.8 SVC_REQ 7: Read or Change the Time-of-Day Clock
	6.8.1 Parameter Block Formats
	BCD, 2-Digit Year
	BCD, 4-Digit Year
	POSIX
	Unpacked BCD (2-Digit Year)
	Unpacked BCD (4-Digit Year)
	Numeric, 2-Digit Year
	Numeric, 4-Digit Year
	Packed ASCII, 2-Digit Year
	Packed ASCII, 4-Digit Year
	SVC_REQ 7 Example

	6.9 SVC_REQ 8: Reset Watchdog Timer
	SVC_REQ 8 Example

	6.10 SVC_REQ 9: Read Sweep Time from Beginning of Sweep
	Output
	SVC_REQ 9 Example

	6.11 SVC_REQ 10: Read Target Name
	Output
	SVC_REQ 10 Example

	6.12 SVC_REQ 11: Read Controller ID
	Output
	SVC_REQ 11 Example

	6.13 SVC_REQ 12: Read Controller Run State
	Output
	SVC_REQ 12 Example

	6.14 SVC_REQ 13: Shut Down (STOP) CPU
	SVC_REQ 13 Example

	6.15 SVC_REQ 14: Clear Controller or I/O Fault Table
	SVC_REQ 14 Example

	6.16 SVC_REQ 15: Read Last-Logged Fault Table Entry
	Input Parameter Block
	Output Parameter Block
	Long/Short Value
	SVC_REQ 15 Example 1
	SVC_REQ 15 Example 2

	6.17 SVC_REQ 16: Read Elapsed Time Clock
	Output
	SVC_REQ 16 Example

	6.18 SVC_REQ 17: Mask/Unmask I/O Interrupt
	6.18.1 Masking/Unmasking Module Interrupts
	SVC_REQ 17 Example 1
	SVC_REQ 17 Example 2

	6.19 SVC_REQ 18: Read I/O Forced Status
	Output
	SVC_REQ 18 Example

	6.20 SVC_REQ 19: Set Run Enable/Disable
	SVC_REQ 19 Example

	6.21 SVC_REQ 20: Read Fault Tables
	6.21.1 Non-Extended Formats
	Input Parameter Block Format
	Non-Extended Output Parameter Block Format
	Format of Returned Data for Fault Table Entries
	Format for Parameter Setting 00h or 01h
	Format for Parameter Setting 41h

	6.21.2 Extended Formats
	Input Parameter Block Format
	Extended Format Output Parameter Block Format
	Format of Returned Data for Fault Table Entries
	Format for Parameter Setting 0x80h & 0x81h
	Format for Parameter Setting 0xC1h
	SVC_REQ 20 Example 1: Non-Extended Format
	SVC_REQ 20 Example 2: Extended Format

	6.22 SVC_REQ 21: User-Defined Fault Logging
	SVC_REQ 21 Example

	6.23 SVC_REQ 22: Mask/Unmask Timed Interrupts
	SVC_REQ 22 Example

	6.24 SVC_REQ 23: Read Master Checksum
	Output
	SVC_REQ 23 Example

	6.25 SVC_REQ 24: Reset Module
	SVC_REQ 24 Example

	6.26 SVC_REQ 25: Disable/Enable EXE Block and Standalone C Program Checksums
	SVC_REQ 25 Example

	6.27 SVC_REQ 29: Read Elapsed Power Down Time
	SVC_REQ 29 Example

	6.28 SVC_REQ 32: Suspend/Resume I/O Interrupt
	SVC_REQ 32 Example

	6.29 SVC_REQ 45: Skip Next I/O Scan
	SVC_REQ 45 Example

	6.30 SVC_REQ 50: Read Elapsed Time Clock
	Output
	SVC_REQ 50 Example

	6.31 SVC_REQ 51: Read Sweep Time from Beginning of Sweep
	Output
	SVC_REQ 51 Example

	6.32 SVC_REQ 56: Logic Driven Read of Nonvolatile Storage
	6.32.1 Discrete Memory
	6.32.2 Restoring data values on CPE200 Series
	6.32.3 Storage Disabled Conditions
	6.32.4 Maximum of One Active Instruction
	6.32.5 ENO and Power Flow To The Right
	6.32.6 Parameter Block
	Memory Type Codes
	Response Status Codes for SVC_REQ 56
	SVC_REQ 56 Example
	Parameter Block for SVC_REQ 56 Example

	6.33 SVC_REQ 57: Logic Driven Write to Nonvolatile Storage
	6.33.1 Length of Data Written
	6.33.2 Write Frequency
	6.33.3 Nonvolatile Storage Life Span
	6.33.4 Discrete Memory
	6.33.5 Creating a Removable Nonvolatile Storage Backup
	6.33.6 Retentiveness
	6.33.7 Maximum of One Active Instruction
	6.33.8 Storage Disabled Conditions
	Removable Storage Restore Disabled

	6.33.9 Error Checking
	6.33.10 Fragmentation
	6.33.11 When nonvolatile storage is full
	6.33.12 Equality
	6.33.13 Redundancy
	6.33.14 ENO and Power Flow to the Right
	6.33.15 Parameter Block for SVC_REQ 57
	Response Status Codes for SVC_REQ 57
	SVC_REQ 57 Example

	Parameter Block for SVC_REQ 57 Example

	6.34 SVC_REQ 63: Logic Driven Write of Reference Memory
	6.34.1 Write Frequency
	6.34.2 Data Deletion
	6.34.3 Equality
	6.34.4 Function Block Operation
	6.34.5 Status Word
	6.34.6 SVC_REQ 63 Example

	6.35 PACSystems Simulator Service Request Functions

	Section 7 PID Built-In Function Block
	7.1 Operands of the PID Function
	7.1.1 Operands for LD Version of PID Function Block
	7.1.2 Operands for FBD Version of PID Function Block

	7.2 Reference Array for the PID Function
	7.2.1 Scaling Input and Outputs
	7.2.2 Reference Array Parameters

	7.3 Operation of the PID Function
	7.3.1 Automatic Operation
	7.3.2 Manual Operation
	7.3.3 Time Interval for the PID Function

	7.4 PID Algorithm Selection (PIDISA or PIDIND) and Gain Calculations
	7.4.1 Derivative Term
	7.4.2 Error Term Mode
	7.4.3 Derivative Action on PV Bit
	7.4.4 Combined Operation of Error Term and Derivative Action Modes
	7.4.5 CV Bias Term
	7.4.6 CV Amplitude and Rate Limits
	7.4.7 Sample Period and PID Function Block Scheduling

	7.5 Determining the Process Characteristics
	7.6 Setting Tuning Loop Gains
	7.6.1 Basic Iterative Tuning Approach
	7.6.2 Setting Loop Gains Using the Ziegler and Nichols Tuning Approach
	7.6.3 Ideal Tuning Method

	7.7 PID Example
	7.7.1 Reference Array Initialization using %M00006

	Section 8 Structured Text (ST) Programming
	8.1 Language Overview
	8.1.1 Statements
	8.1.2 Expressions
	8.1.3 Operators
	Operand Types

	8.1.4 Structured Text Syntax

	8.2 Statement Types
	8.2.1 Assignment Statement
	Format
	Examples

	8.2.2 Function Call
	Built-in Functions Supported for ST Calls
	Calls to Standard Function Blocks
	Format of Calls to Standard Timer Function Blocks
	Formal Convention
	Informal Convention

	Block Types Supported for ST Calls
	Formal Calls vs. Informal Calls
	Format of Formal Function Call
	Format of Informal Function Call
	Example

	8.2.3 RETURN Statement
	8.2.4 IF Statement
	Format
	Operation
	Example

	8.2.5 CASE Statement
	Format
	Operation
	Requirements for Conditional Statements
	Examples

	8.2.6 FOR … DO Statements
	Format
	Operation
	Examples

	8.2.7 WHILE Statement
	Format
	Operation
	Example

	8.2.8 REPEAT Statement
	Format
	Operation
	Example

	8.2.9 ARG_PRES Statement
	Format
	Example

	8.2.10 Exit Statement
	Format
	Example

	8.2.11 Data_Qual Function Blocks for Structured Text

	8.3 PACSystems Simulator Structured Text (ST) Programming
	8.3.1 Math Functions
	8.3.2 Control Functions
	8.3.3 Data Move Functions
	8.3.4 Timers
	8.3.5 Communication Blocks

	Section 9 Diagnostics
	9.1 Fault Handling Overview
	9.1.1 System Response to Faults
	9.1.2 Fault Tables
	9.1.3 Fault Actions and Fault Action Configuration
	Faults that are part of configurable fault groups:
	Faults that are part of non-configurable fault groups:

	9.2 Using the Fault Tables
	9.2.1 Controller Fault Table
	Viewing Controller Fault Details
	User-Defined Faults

	9.2.2 I/O Fault Table
	Viewing I/O Fault Details

	9.3 System Handling of Faults
	9.3.1 System Fault References
	Fault References for Configurable Faults
	#LST_SCN Fault References for Non-Configurable Faults

	9.3.2 Using Fault Contacts
	Fault Locating References (Rack, Slot, Bus, Module)
	Fault Locating Reference Name Format
	Fault Reference Name Examples:

	Behavior of Fault Locating References

	9.3.3 Using Point Faults
	9.3.4 Using Alarm Contacts

	9.4 Controller Fault Descriptions and Corrective Actions
	9.4.1 Controller Fault Groups
	9.4.2 Loss of or Missing Rack (Group 1)
	1, Rack Lost
	Correction

	2, Rack Not Responding
	Correction

	9.4.3 Loss of Option Module (Group 4)
	3C hex/60 decimal, Module in Firmware Update Mode
	Correction

	63 hex/99 decimal, Module Hot Removed
	All Others, Module Failure During Configuration
	Correction

	9.4.4 Addition of, or Extra Rack (Group 5)
	1, Addition of Rack
	2, Extra Rack
	Correction

	9.4.5 Reset of, Addition of, or Extra Option Module (Group 8)
	3, LAN Interface Restart Complete, Running Utility
	Correction

	7, Extra Option Module
	Correction

	E Hex/14 Decimal, Option Module Hot inserted

	9.4.6 System Configuration Mismatch (Group 11)
	2, Genius I/O Block Model Number Mismatch
	Correction
	Fault Extra Data for Genius I/O Block Model Number Mismatch
	Installed/Configured Module Types (Bytes 2 and 3 of Fault Extra Data)
	GENA Application ID Numbers

	4, I/O Type Mismatch
	Correction
	Fault Extra Data for I/O Type Mismatch
	Genius Installed Module I/O Types (Byte 2 of Fault Extra Data)
	Genius Configured Module I/O Types (Byte 3 of Fault Extra Data)

	8, Analog Expander Mismatch
	Correction

	9, Genius I/O Block Size Mismatch
	Correction
	Fault Extra Data for Genius I/O Block Size Mismatch

	A hex/10 decimal, Unsupported Feature
	Correction
	Fault Extra Data for Unsupported Feature

	E hex/14 decimal, LAN Duplicate MAC Address
	Correction

	F hex/15 decimal, LAN Duplicate MAC Address Resolved
	10 hex/16 decimal, LAN MAC Address Mismatch
	Correction

	11 hex/17 decimal, LAN Softswitch/Modem mismatch
	Correction

	13 hex/19 decimal, DCD Length Mismatch
	Correction
	Fault Extra Data for DCD Length Mismatch

	25 hex/37 decimal, Controller Reference Out-of-Range
	Correction

	26 hex/38 decimal, Bad Program Specification
	Correction

	27 hex/39 decimal, Unresolved or Disabled Interrupt Reference
	Correction

	43 hex/67 decimal, Module Configuration Failure
	Correction

	4B hex/75 decimal, ECC jumper is disabled, but should be enabled
	Correction

	4C hex/76 decimal, ECC jumper is enabled, but should be disabled
	Correction

	All Others, Module and Configuration do not Match
	Correction

	9.4.7 System Bus Error (Group 12)
	4, Unrecognized VME Interrupt Source
	Correction

	9.4.8 CPU Hardware Failure (Group 13)
	6E hex/110 decimal, Time-of-Day Clock not Battery-Backed
	Correction

	0A8 hex/168 decimal, Critical Over-Temperature Failure
	All Others
	Correction
	Fault Extra Data for CPU Hardware Failure

	9.4.9 Module Hardware Failure (Group 14)
	1A0 hex/416 decimal, Missing 12 Volt Power Supply
	Correction

	1C2 - 1C6 hex (450 – 454 decimal), LAN Interface Hardware Failure
	All Others, Module Hardware Failure
	Correction

	9.4.10 Option Module Software Failure (Group 16)
	1, Unsupported Board Type
	Correction

	2, 3, COMMREQ Frequency Too High
	Correction

	4, More Than One BTM in a Rack
	Correction

	>4, Option Module Software Failure
	Correction

	>400, LAN System Software Fault
	Correction

	9.4.11 Program or Block Checksum Failure (Group 17)
	All Error Codes, Program or Block Checksum Failure
	Correction
	Fault Extra Data for Program or Block Checksum Failure

	9.4.12 Battery Status (Group 18)
	0, Failed Battery
	CPUs with battery-backed RAM, including RX7i CPUs, and RX3i CPU310, CPU315, CPU/CRU320 and NIU001
	CPE302, CPE305 and CPE310
	Correction

	1, Low Battery – CPUs with Battery-Backed RAM
	Correction

	1, Low Battery – CPE302/CPE305/CPE310/CPE330 CPUs with Energy Pack

	9.4.13 Constant Sweep Time Exceeded (Group 19)
	0, Constant Sweep
	Correction

	9.4.14 System Fault Table Full (Group 20)
	0, System Fault Table Full
	Correction

	9.4.15 I/O Fault Table Full (Group 21)
	0, I/O Fault Table Full
	Correction

	9.4.16 User Application Fault (Group 22)
	2, Software Watchdog Timer Expired
	Correction

	7, Application Stack Overflow
	Correction

	11 hex/17 decimal, Program Run Time Error
	Correction

	1E - 21 hex (30 - 33 decimal), LAN Interface Fault
	22 hex/34 decimal, Unsupported Protocol
	33 hex/51 decimal, Flash Read Failed
	34 hex/52 decimal, Memory Reference Out of Range
	Correction

	35 hex/53 decimal, Divide by zero attempted in user logic.
	Correction

	36 hex/54 decimal, Operand is not byte aligned.
	Correction

	39 hex/57 decimal, DLB heartbeat not received, All DLBs stopped and deleted
	Correction

	3B hex /59 decimal, PSB called by a block whose %L or %P memory is not large enough to accommodate this reference.
	Correction

	9.4.17 CPU Over-Temperature (Group 24)
	1, Over-Temperature failure.
	Correction

	9.4.18 Power Supply Fault (Group 25)
	1, Power supply failure.
	Correction

	2, Power supply overloaded
	Correction

	3, Power supply switched off
	4, Power-supply has exceeded normal operating temperature
	Correction

	9.4.19 No User Program on Power-Up (Group 129)
	Correction

	9.4.20 Corrupted User Program on Power-Up (Group 130)
	1, Corrupted user RAM on power-up
	Recommended Corrections, Listed in Order

	7, User memory not preserved over power cycle
	Correction

	9.4.21 Window Completion Failure (Group 131)
	0, Window Completion Failure
	Correction

	1, Logic Window Skipped
	Correction

	9.4.22 Password Access Failure (Group 132)
	0, Password Access Failure
	Correction

	9.4.23 Null System Configuration for RUN Mode (Group 134)
	0, Null System Configuration for RUN Mode
	Correction

	9.4.24 CPU System Software Failure (Group 135)
	5A hex/90 decimal, User Shut Down Requested
	Correction

	94 hex/148 decimal, Units Contain Mismatched Firmware, Update Recommended
	Correction

	D8 hex/216 decimal, Processor Exception Trap
	Correction

	DA hex/218 decimal, Critical Over-Temperature Failure
	Correction

	All Others, CPU Internal System Error
	Correction

	9.4.25 Communications Failure During Store (Group 137)
	0, Communications Failure During Store
	Correction

	1, Communications Lost During RUN Mode Store
	Correction

	2, Communications Lost During Cleanup for RUN Mode Store
	Correction

	3, Power Lost During a RUN Mode Store
	Correction

	9.4.26 Non-Critical CPU Software Event (Group 140)
	Error code 53, Access Control Fault
	Fault example
	Meaning of this example fault
	Interpreting the Fault Extra Data

	9.5 I/O Fault Descriptions and Corrective Actions
	9.5.1 Fault Extra Data
	9.5.2 I/O Fault Groups
	9.5.3 I/O Fault Categories
	9.5.4 Circuit Faults (Category 1)
	Fault Extra Data for Circuit Faults
	Genius Bus Controller
	VRD001 RTD/Strain Bridge

	Fault Descriptions for Discrete Faults (Fault Type 1)
	Fault Descriptions for Analog Faults (Fault Type 2)
	Low-Level Analog Faults (Fault Type 4)
	1, Input Channel Low Alarm
	Correction

	2, Input Channel High Alarm
	Correction

	4, Input Channel Under Range
	Correction

	8, Input Channel Over Range
	Correction

	10 hex, Input Channel Open Wire
	Correction

	20 hex/32 decimal, Wiring Error
	Correction

	40 hex/64 decimal, Internal Fault
	Correction

	80 hex/128 decimal, Input Channel Shorted
	Correction

	81 hex/129 decimal, Invalid Data
	Correction

	GENA Fault (Fault Type 3)
	80 hex/128 decimal
	Correction

	9.5.5 Loss of Block (Category 2)
	Loss of Block
	Correction

	Loss of Block - A/D Communications Fault
	Correction
	Fault Extra Data for Loss of Block
	Block Configuration (Byte 2)

	9.5.6 Addition of Block (Category 3)
	Correction
	Fault Extra Data for Addition of Block
	Block Configuration (Byte 2)

	9.5.7 I/O Bus Fault (Category 6)
	Bus Fault
	Correction

	Bus Outputs Disabled
	Correction

	SBA Conflict
	Correction

	9.5.8 Module Fault (Category 8)
	08 hex, Configuration Memory Failure
	Correction

	20 hex/32 decimal, Calibration Memory Failure
	Correction

	40 hex/64 decimal, Shared RAM Fault
	Correction

	80 hex/128 decimal, Module Fault
	Correction

	81 hex/129 decimal, Watchdog Timeout
	Correction

	84 hex/132 decimal, Output Fuse Blown
	Correction

	9.5.9 Addition of IOC (Category 9)
	Addition of IOC
	Correction

	01 hex, Extra Module
	Correction

	02 hex, Reset Request

	9.5.10 Loss of or Missing IO Controller (Category 10)
	Correction
	Fault Extra Data for Loss of or Missing IOC

	9.5.11 IOC (I/O Controller) Software Fault (Category 11)
	Datagram Queue Full, Read/Write Queue Full
	Correction

	Response Lost
	Correction

	9.5.12 Forced and Unforced Circuit (Categories 12 and 13)
	Fault Extra Data for Forced/Unforced Circuit

	9.5.13 Loss of or Missing I/O Module (Category 14)
	Correction

	9.5.14 Addition of I/O Module (Category 15)
	Addition of I/O Module
	Correction

	30 hex/48 decimal, VME Reset on Request

	9.5.15 Extra I/O Module (Category 16)
	Correction

	9.5.16 Extra Block (Category 17)
	Correction

	9.5.17 IOC Hardware Failure (Category 18)
	Correction

	9.5.18 GBC Stopped Reporting Faults (Category 19)
	Correction

	9.5.19 GBC Software Exception (Category 21)
	1, Incoming datagram queue full
	Correction

	2, Read/write request queue full
	Correction

	3, Low priority mail queue from GBC to CPU full
	4, Genius background message requiring CPU action received before CPU completed initialization
	5, GBC software version too old
	Correction

	6, Excessive use of internal GBC memory
	Correction

	9.5.20 Block Switch (Category 22)
	Correction
	Fault Extra Data for Block Switch

	9.5.21 Reset of IOC (Category 27)

	9.6 Diagnostic Logic Blocks (DLBs)
	9.6.1 DLB Operation
	Suspend I/O Function and DLBs
	Restrictions on DLB Operation
	DLB Variables

	9.6.2 Executing DLBs
	DLB Properties
	Target Properties
	Right-click Online Operations for an Active DLB

	DLB Online Operations
	Removing a DLB from the Controller
	Basic Steps for Using a DLB in the Controller
	Monitoring DLB Execution

	9.6.3 Diagnostic Logic Block (DLB) Example
	Logic for the Monitor Scan Block
	DLB Block Icon/Status Bar Once Started.

	9.6.4 PACSystems Simulator Diagnostic Logic Blocks (DLBs)

